DIMENSIONAL ANALYSIS

- Velocity potential = $[L^2 T^{-1}]$ Stream function = $[L^2 T^{-1}]$ Acceleration = $[LT^{-2}]$ Vorticity = $[T^{-1}]$
- Total no. of variables influencing the problem is equal to the no. of independent variables plus one, one being the no. of dependent variable.
- Buckingham π theorem states that if all the n-variable are described by m fundamental dimensions, they may be grouped into (n m) dimensionless π terms.
- Selection of 3 repeating variables from the geometry of flow, fluid properties and fluid motion.
- Geometric similarity similarity of shape
 Kinematic similarity similarity of motion
 Dynamic similarity similarity of forces

Number	Equation	Significance
Reynolds No.	$\frac{F_i}{F_v} = \frac{\rho V L}{\mu}$	Flow in closed conduit pipe
Froude No.		where a free surface is present, structure eg.
	$\sqrt{\frac{F_i}{F_g}} = \frac{V}{\sqrt{gL}}$	weirs spillway, channels, etc. where <i>gravity</i>
		force is predominant.
Eulers No.	$\sqrt{\frac{F_i}{F_p}} = \frac{V}{\sqrt{p}}$	In cavitation studies.
	Vρ	
Mach No.	F _i V	where fluid compressibility
	√F _e C	is important.
Weber No.	$\sqrt{\frac{F_i}{F_{\sigma}}} = \frac{V}{\sqrt{\sigma/\rho L}}$	In capillary studies.

Here, F_i = Inertia force F_v = Viscous force F_p = Pressure force F_e = Elastic force F_e = Surface tension force

REYNOLDS MODEL LAW

$$(Re)_m = (Re)_p$$
 $\frac{\rho_r V_r L_r}{\mu_r} = 1$

- Applications of Reynold's Model Law
 - Flow through small sized pipes.
 - Low velocity motion around automobiles and aeroplane
 - · Submarines completely under water.
 - Flow through low speed turbo machines.

FROUDE'S MODEL LAW

$$(F_r)_m = (F_r)_p \qquad \frac{V_r}{\sqrt{L_r g_r}} = 1$$

- · Applications of Froude's Model Law
 - Open channels
 - Notches & weirs
 - · Spill ways & dams
 - · Liquid jets from orifice
 - · Ship partially submerged in rough & turbulent sea

DISTORTED MODEL LAW

- (i) Velocity scale ratio: $V_r = \sqrt{(L_r)_V}$
- (ii) Area scale ratio: $A_r = (L_r)_H (L_r)_V$
- (iii) Discharge scale ratio: $Q_r = (L_r)_H (L_r)_V^{3/2}$