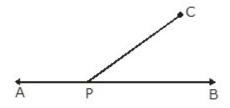
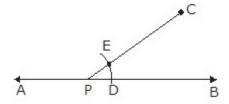
<u>Chapter – 10</u> <u>Practical Geometry</u>

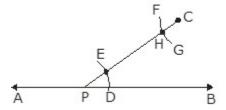
Exercise 10.1

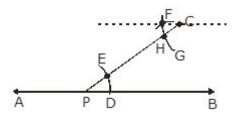

1. Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only.

Answer:

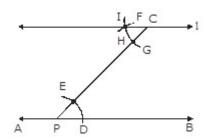

Here,

We have to draw the figure using following steps of construction:


Step 1: Draw a line AB and take a point P on the line AB. Also, take another point C outside the line AB and join PC.


Step 2: Now, taking P as a centre and with a certain radius (which should be much lesser than PC), draw an arc intersecting AB at D and PC at point E.

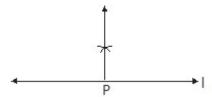
Step 3: Now taking C as a centre and with the same radius, draw an arc FG intersecting PC at H.



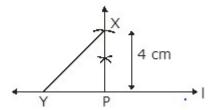
Step 4: Adjust the compasses according to the length of DE. And with the same opening, taking H as a centre, draw another arc intersecting the previous arc at the point I.

Step 5: Now, join CI in order to draw a line '1'.

This is the desired line parallel to line AB

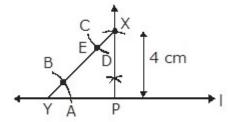


2. Draw a line 1. Draw a perpendicular to 1 at any point on 1. On this perpendicular choose a point X, 4 cm away from 1. Through X, draw a line m parallel to 1.

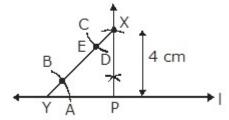

Answer:

According to the question,

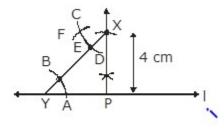
Step 1: At first, draw a line I and take a point P on the line and hence draw a perpendicular to the line I at point P.

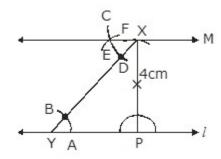


Step 2: Now taking point P as a center and Radius as 4 cm draw an arc intersecting the perpendicular at point X. Then, take any point Y on the line I and join XY.



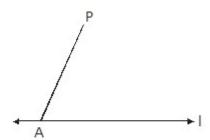
Following are steps to draw a parallel line with reference to line I and passing through X.


Step 3: Now, taking Y as a center and with certain radius mark an arc intersecting line l at A and XY at B.

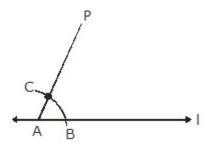

Step 4: Then, with the same previous radius and taking center as X draw an arc CD intersecting XY at E.

Step 5: Adjust the compasses according to the length of AB. And with same opening, taking E as a centre, draw another arc intersecting the previous arc CD at point F.

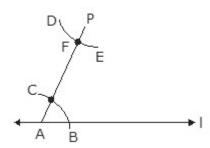
Step 6: Now, join XF in order to draw a line 'm'

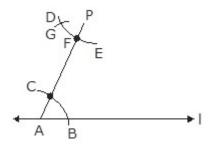


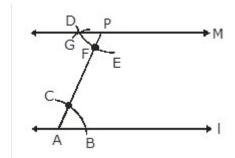
3. Let 1 be a line and P be a point not on 1. Through P, draw a line m parallel to 1. Now join P to any point Q on 1. Choose any other point R on m. Through R, draw a line parallel to PQ. Let this meet 1 at S. What shape do the two sets of parallel lines enclose?

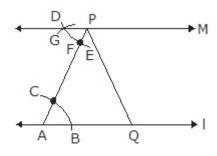

Answer:

We have to draw figure using following steps of construction:


Step 1: Draw a line I and mark one-point A on the line I and the other point P above the line I


Step 2: With A as a center and a certain radius draw an arc intersecting 1 at B and AP at C.


Step 3: Now, with the same radius taking the center as P draw an arc DE cutting AP at F.


Step 4: Adjust the compasses according to the length of BC. And with same opening, taking F as a center, draw another arc intersecting the previous arc DE at point G.

Step 5: Now, join PG to draw a line m which will be parallel to line 1

Step 6: Now, join P to Any random point Q on the line 1.

Step 7: Then choose another point R on line m. Draw a line from R which is parallel to PQ.

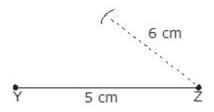
Hence, extend it to meet line 1 at point S.

:In quadrilateral PQRS opposite lines are parallel to each other.

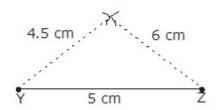
And PQRS is a parallelogram.

Exercise 10.2

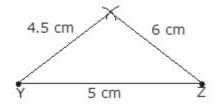
1. Construct $\triangle XYZ$ in which XY = 4.5 cm, YZ = 5 cm and ZX = 6 cm.


Answer:

We have to draw figure using following steps of construction:


Step 1: Draw a line segment ZY of 5 cm.

Step 2: Taking Z as a center and radius 6 cm mark an arc.



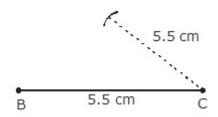
Step 3: Now, taking Y as a center and radius 4.5 cm mark another arc intersecting the previous arc at X.

Step 4: Join Z to X and Y to X

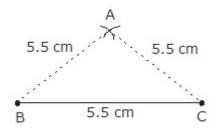
Hence ΔXYZ is the required triangle.

2. Construct an equilateral triangle of side 5.5 cm.

Answer:

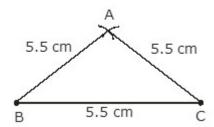

Here,

According to the question,


We have to draw figure using following steps of construction:

Step 1: Draw a line segment BC of 5.5cm

Step 2: Taking B as a center and radius 5.5 cm mark an arc.



Step 3: Now, taking C as a center and radius 5.5 cm mark another arc intersecting the previous arc at A.

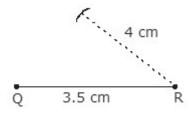
Step 4: Now, join B to A and A to C.

Hence, \triangle ABC is the required triangle.

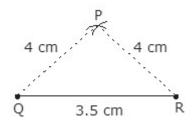
3. Draw $\triangle PQR$ with PQ = 4 cm, QR = 3.5 cm and PR = 4 cm. What type of triangle is this?

Answer:

Here,

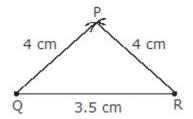

According to the question,

We have to draw figure using following steps of construction:


Step 1: Draw a line segment QR of 3.5 cm.

Step 2: Taking Q as a center and radius 4 cm mark an arc.

Step 3: Now, taking R as a center and radius 4 cm mark another arc intersecting the previous arc at P.

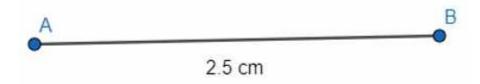


Step 4: Join Q to P and R to P

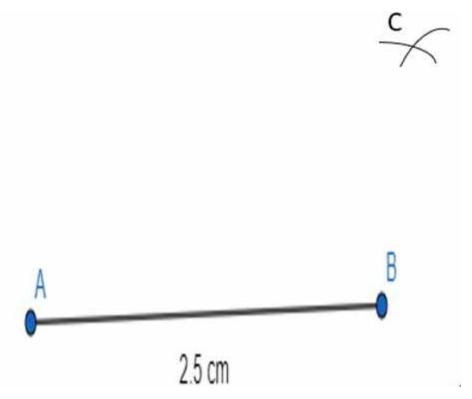
Hence $\triangle PQR$ is the required triangle.

Since the two sides (PQ and PR) have same length i.e. 4cm.

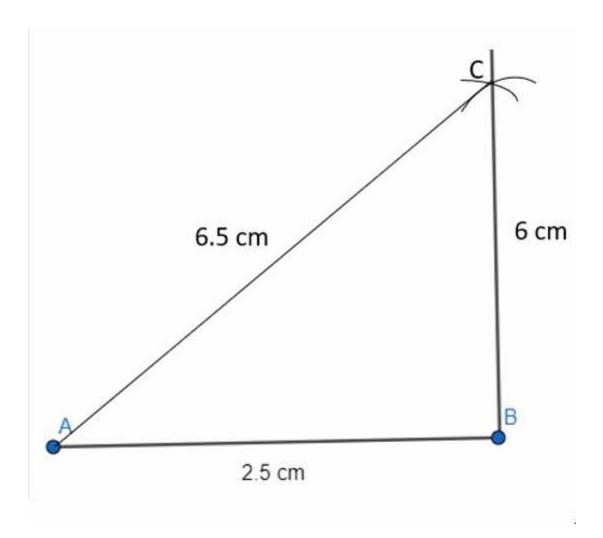
Thus, $\triangle PQR$ is an isosceles triangle.


4. Construct \triangle ABC such that AB = 2.5 cm, BC = 6 cm and AC = 6.5 cm. Measure \angle B

Answer:


Here,

According to the question,


Step 1: Draw a line segment AB of 2.5 cm.

Step 2: Taking B as a center and radius 6 cm mark an arc and from A an arc of 6.5 cm.

Step 3: Join CA and CB.

Hence $\triangle ABC$ is the required triangle.

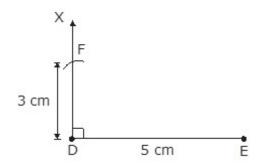
On measuring we can see

$$\angle ABC = 90^{\circ}$$
.

Exercise 10.3

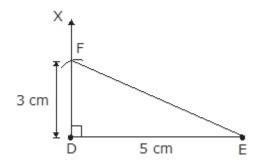
1. Construct $\triangle DEF$ such that DE = 5 cm, DF = 3 cm and $\angle EDF = 90^{\circ}$.

Answer:


Here,

According to the question,

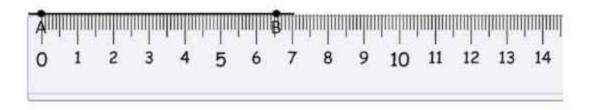
We have to draw figure using following steps of construction:


Step 1: Draw a line segment DE of 5 cm

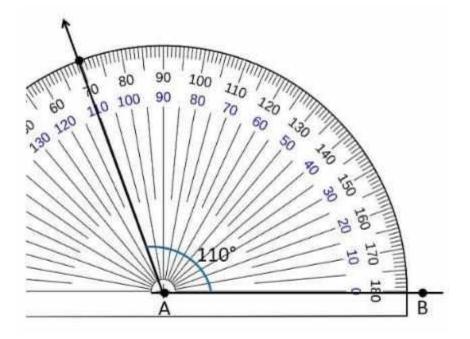
Step 2: Now, from point D draw a ray DX making an angle of 90° from DE and taking D as a center and radius 3 cm mark an arc intersecting DX at F.

Step 3: Join F to E.

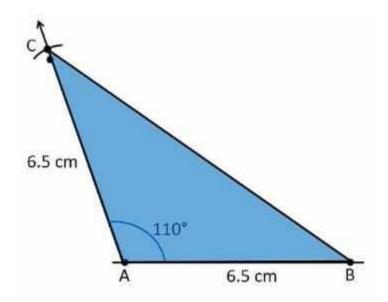
Hence ΔDEF is the required triangle.


2. Construct an isosceles triangle in which the length of each of its equal sides is 6.5 cm and the angle between them is 110°.

Answer:


Here,

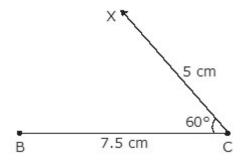
According to the question,


Step 1: Draw a line segment AB of 6.5 cm

Step 2: Now, from point A draw a ray AC making an angle of 110° from QR (with the help of protractor)

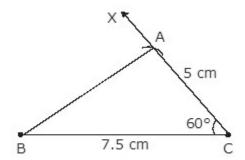
Step 3: Now, taking A as a centre and radius 6.5 cm mark an arc intersecting the line drawn in previous step. Mark the intersecting point as C. Final figure is

Hence $\triangle ABC$ is the required triangle.


3. Construct \triangle ABC with BC = 7.5 cm, AC = 5 cm and m \angle C= 60° Answer:

Here,

According to the question,


Step 1: Draw a line segment BC of 7.5 cm

Step 2: Now, from point C draw a ray CX making an angle of 60° from BC.

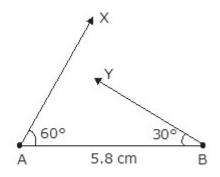
Step 3: Now, taking C as a center and radius 5 cm mark an arc intersecting CX at A. Then, join A to B.

Hence $\triangle ABC$ is the required triangle.

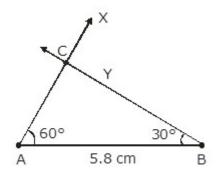
Exercise 10.4

1. Construct $\triangle ABC$, give m $\angle A = 60^{\circ}$, m $\angle B = 30^{\circ}$ and AB = 5.8 cm.

Answer:


Here,

According to the question,


We have to draw figure using following steps of construction:

Step 1: Draw a line segment AB of 5.8 cm

Step 2: Now, from point A draw a ray AX making an angle of 60° from AB. And, from B, draw a ray BY from AB making 30° angle.

Step 3: The rays YB and XA will intersect at point C. Hence \triangle ABC is the required triangle.

2. Construct $\triangle PQR$ if PQ = 5 cm, m $\angle RPQ = 105^{\circ}$ and m $\angle QRP = 40^{\circ}$

Answer:

Here,

According to the question,

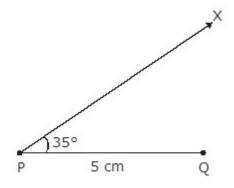
In $\triangle PQR$,

Using angle sum property of triangle,

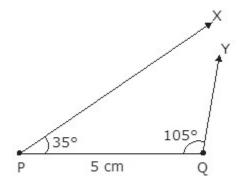
$$\angle$$
RPQ = 180 – (\angle PQR + \angle QRP)

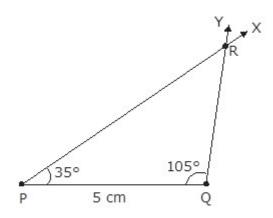
$$=180-(105+40)$$

$$= 180 - 145$$


$$\angle RPQ = 35^{\circ}$$

We have to draw figure using following steps of construction:


Step 1: Draw a line segment PQ of 5 cm


Step 2: Now, from point P draw a ray PX making an angle of 35° from PQ.

Step 3: From Q, draw a ray QY from PQ making 105° angle. and intersecting PX at R

Step 4: The ray QY will intersect with PX at point R. Hence \triangle ABC is the required triangle.

3. Examine whether you can construct ΔDEF such that EF = 7.2 cm, m $\angle E = 110^{\circ}$ and m $\angle F = 80^{\circ}$. Justify your answer.

Answer:

Here,

According to the question,

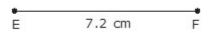
It is given that,

$$\angle E = 110^{\circ} \text{ and } \angle F = 80^{\circ}$$

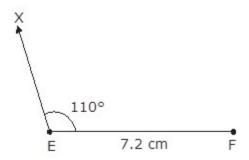
That shows that $\angle E + \angle F = 110 + 80$

$$= 190^{\circ}$$

This is greater than 180°


And, we know that,

The sum of interior angles of triangle is 180° Hence,


The given measurements cannot form a triangle.

We have to draw figure using following steps of construction:

Step 1: Draw a line segment EF of 7.2 cm



Step 2: Now, from point E draw a ray EX making an angle of 110° from EF.

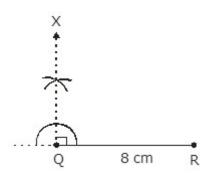
Step 3: From F, draw a ray FY from EF making 80° angle Now, we can observe that EX and FY does not intersect. Hence,

The ΔDEF is not possible.

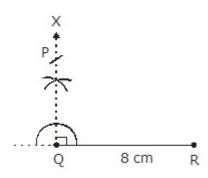
Exercise 10.5

1. Construct the right-angled $\triangle PQR$, where m $\angle Q = 90^{\circ}$, QR = 8cm and PR = 10cm.

Answer:

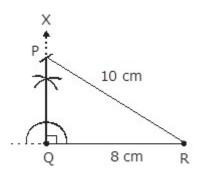

Here,

According to the question,


We have to draw figure using following steps of construction:

Step 1: Draw a line segment QR of 8 cm

Step 2: Now, From Q construct a ray QX making an angle of 90° with QR.



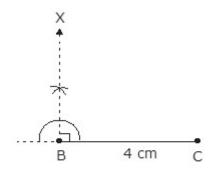
Step 3: Take R as a center and radius of 10 cm draw an arc intersecting QX at P

Step 4: Now, join RP

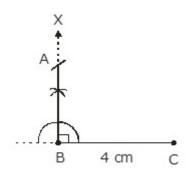
Hence, Δ PQR is the required triangle.

2. Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the les is 4 cm long.

Answer:

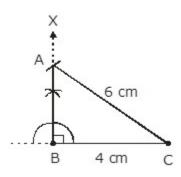

Here,

According to the question,


We have to draw figure using following steps of construction:

Step 1: Draw a line segment BC of 4 cm

Step 2: Now, From B construct a ray BX making an angle of 90° with BC.



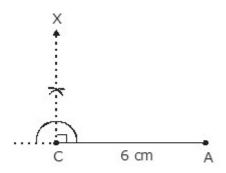
Step 3: Take C as a center and radius of 6cm draw an arc intersecting BX at A

Step 4: Now, join AC

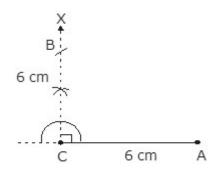
Hence, $\triangle ABC$ is the required triangle.

3. Construct an/isosceles right-angled triangle ABC, where m \angle ACB = 90° and AC = 6cm.

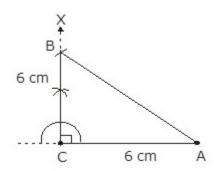
Answer:


Here,

According to the question,


Step 1: Draw a line segment AC of 6cm

Step 2: Now, From C construct a ray CX making an angle of 90° with AC.



Step 3: Take C as a centre and radius of 6cm draw an arc intersecting CX at B

Step 4: Now, join AB

Hence, $\triangle ABC$ is the required triangle.

