Sample Paper (2023-24)

CLASS:10 th (Secondary)						Code: A		
Roll No.								
				<u> </u>	т			

गागत

MATHEMATICS

[Time Allowed :3 hours] [Maximum Marks:80]

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 21 तथा
 प्रश्न 38 हैं ।
- Please make sure that the printed pages in this question paper are 21 in number and it contains 38 questions.
- प्रश्न-पत्र के दाईं ओर दिए गए कोड नंबर को छात्र द्वारा उत्तर-पुस्तिका के पहले पृष्ठ पर लिखा जाना चाहिए ।
- The code No.on the right side of the question paper should be written by the candidate on the front page of the answer-book.
- किसी प्रश्न का उत्तर देना शुरू करने से पहले उसका क्रमांक लिखना होगा |
- Before beginning to answer a question, its Serial Number must be written.
- अपनी उत्तर पुस्तिका में खाली पृष्ठ/ पृष्ठ न छोईं I
- Don't leave blank page/pages in your answer-book.
- उत्तर-पुस्तिका के अतिरिक्त कोई अन्य शीट नहीं दी जाएगी ।
 अत: आवश्यकतान्सार ही लिखें व लिखा उत्तर न काटें ।
- Except answer-book, no extra sheet will be given. Write to the point and do not strike the written answer.
- परीक्षार्थी अपना रोल नंबर प्रश्न-पत्र पर अवश्य लिखें ।

- Candidates must write their Roll Number on the question paper.
- कृपया प्रश्नों का उत्तर देने से पहले यह सुनिश्चित केर लें कि
 प्रश्न-पत्र पूर्ण व सही है,परीक्षा के उपरांत इस संबंध में कोई भी
 दावा स्वीकार नहीं किया जाएगा ।
- Before answering the questions, ensure that you have been supplied the correct and complete question paper, no claim in this regard, will be entertained after examination.

सामान्य निर्देश:

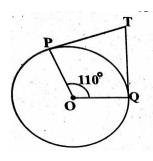
- 1. इस प्रश्न पत्र में 5 खंड क, ख, ग, घ और इ हैं।
- 2. खण्ड -क में 1 से 20 तक एक -एक अंक के प्रश्न हैं।1 से 18 तक बहुविकल्पीय(MCQs),एक शब्द उत्तरीय, रिक्त स्थान पूर्ति ,सत्य /असत्य प्रश्न तथा प्रश्न संख्या 19 और 20 अभिकथन-तर्क आधारित प्रश्न हैं।
- 3. खण्ड-ख में 21 से 25 तक अति लघु उत्तरीय(VSA) प्रकार के दो-दो अंकों के प्रश्न हैं।
- 4. खण्ड-ग में 26 से 31 तक लघु उत्तरीय(SA) प्रकार के तीन -तीन अंकों के प्रश्न हैं।
- 5. खण्ड-घ में 32 से 35 तक दीर्घ उत्तरीय(LA) प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं I
- 6. खंड- इ में प्रश्न संख्या 36 से 38 तक प्रकरण अध्ययन आधारित चार -चार अंकों के प्रश्न हैं। प्रत्येक प्रकरण अध्ययन में आंतरिक विकल्प दो -दो अंकों के प्रश्न में दिया गया है।
- 7. सभी प्रश्न अनिवार्य हैं। हालाँकि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में तथा खंड- ङ के 3 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।

General Instructions:

- 1. There are 5 sections A, B, C, D and E in this question paper.
- 2. **Section A** consists of one mark questions from 1 to 20. 1 to 18 are Multiple Choice Questions (MCQs), One Word Answer, Fill in the blank, True/False and question numbers 19 and 20 are Assertion-Reasoning based questions.
- 3. **Section-B** consists of Very Short Answer Type (VSA) questions of two marks each from **21 to 25**.
- 4. **Section-**C consists of short-answer (SA) type questions of three marks each from **26 to 31**.
- 5. **Section-D** consists of Long-Answer (LA) type questions of five marks each from **32 to 35**.
- 6. Question numbers **36 to 38 in Section-E** are case study based questions of four marks each. Internal choice is given in each case study question of two marks each.
- 7. All questions are compulsory. However, provision of internal choice has been made in 2 questions of Section-B, 2 questions of Section-C, 2 questions of Section-D and 3 questions of Section-E.

खण्ड-क

SECTION-A


खण्ड-क में 1 अंक के 20 प्रश्न हैं।

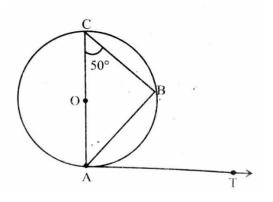
Section A consists of 20 questions of 1 mark each.

- 1. यदि दो धनात्मक पूर्णांक p और q को p=a b^2 और $q=a^3$ b के रूप में व्यक्त किया जाता है जहाँ; ; a, b अभाज्य संख्याएँ हैं, तो LCM(p, q) होगा :
- (a) ab (b) a^2b^2 (c) a^3b^2 (d) a^3b^3

1. If two positive integers p and q can be expressed as
$p=a \ b^2 \ and \ q=a^3 \ b$; a, b being prime numbers, then LCM(p, q) is :
(a) ab (b) a^2b^2 (c) a^3b^2 (d) a^3b^3
2.निम्नलिखित में से कौन सी अपरिमेय संख्या नहीं है?
(a)5 + $\sqrt{2}$ (b) 3- $\sqrt{3}$ (c) 2+ $\sqrt{9}$ (d) 4- $\sqrt{8}$
2. Which of the following is not an irrational number?
(a)5 + $\sqrt{2}$ (b) 3- $\sqrt{3}$ (c) 2+ $\sqrt{9}$ (d) 4- $\sqrt{8}$
3. यदि $2+\sqrt{3}$ बहुपद $p(x)=x^2-4x+1$ का एक शून्यक है, तो बहुपद का अन्य शून्यक है :
(a) $3 + \sqrt{2}$ (b) $2 - \sqrt{3}$ (c) $3 + \sqrt{3}$ (d) $2 + \sqrt{3}$
3.If $2+\sqrt{3}$ is one zero of the polynomial $p(x)=x^2-4x+1$, then other zero of the polynomial is
(a) $3 + \sqrt{2}$ (b) $2 - \sqrt{3}$ (c) $3 + \sqrt{3}$ (d) $2 + \sqrt{3}$
4. AP : 10 , 7 , 4 का कौन सा पद -32 है ?
(a) 12aı̈ (b) 13aı̈ (c) 14aı̈ (d) 15aı̈
4. Which term of AP: 10, 7, 4 is -32?
(a) 12^{th} (b) 13^{th} (c) 14^{th} (d) 15^{th}
5. k का मान जिसके लिए द्विघात समीकरण $2x^2 - k x + k = 0$ के बराबर मूल हैं:
(a) केवल 0 (b) 4 (c) केवल 8 (d) 0, 8
5. Values of k for which the quadratic equation $2x^2 - k x + k = 0$ has equal roots is (a) 0 only (b) 4 (c) 8 only (d) 0, 8

- 6. बिन्दुओं ($-4\sqrt{3}$,8) और ($-\sqrt{3}$,5) के बीच की दूरी है:
- (a) 4
- (b) 5
- (c) 6
- (d) $\sqrt{6}$
- 6. The distance between the points $(-4\sqrt{3}, 8)$ and $(-\sqrt{3}, 5)$ is:
- (a) 4
- (b) 5
- (c) 6 (d) $\sqrt{6}$
- 7. त्रिभुज ABC और DEF में, ∠B = ∠E, , ∠F = ∠C और AB = 3 DE है। तब , दो त्रिभ्ज हैं:
- (a) सर्वांगसम लेकिन समरूप नहीं (b) समरूप लेकिन सर्वांगसम नहीं
- (c) न तो सर्वांगसम और न ही समरूप (d) सर्वांगसम और समरूप
- 7.In triangles ABC and DEF, $\angle B = \angle E$, , $\angle F = \angle C$ and AB= 3 DE. Then, the two triangles are
- (a) congruent but not similar (b) similar but not congruent
- (c) neither congruent nor similar (d) congruent as well as similar
- 8.आकृति में, यदि TP और TQ केंद्र O वाले वृत्त पर दो स्पर्श रेखाएँ हैं तथा ∠POQ= 110⁰ हो, तो ∠PTQ का मान है:
- (a) 60°
- (b) 70°
- (c) 80^{0}
- (d) 90°

8.In Fig., if TP and TQ are the two tangents to a circle with centre


O so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to

- $(a)60^0$
- (b) 70°
- (c) 80°
- $(d)90^0$

9. आकृति में, AB वृत्त की जीवा है और AOC इसका व्यास है

और $\angle ACB = 50^{\circ}$. यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है तब $\angle BAT$ बराबर है:

- (a) 65°
- (b) 60°
- (c) 50°
- (d) 40^{0}

9.In Fig., AB is a chord of the circle and AOC is its diameter

such that $\angle ACB = 50^{\circ}$. If AT is

the tangent to the circle at the point A, then, ∠BAT is equal to

- (a) 65^0
- (b) 60° (c) 50°
- (d) 40°

10. (sin 30° + $\cos 30^{\circ}$) - ($\sin 60^{\circ}$ + $\cos 60^{\circ}$) का मान क्या है?

(a) -1 (b) 0

- (c) 1
- (d) 2

10. What is the the value of $(\sin 30^0 + \cos 30^0) - (\sin 60^0 + \cos 60^0)$?

- (a) -1
- (b) 0
- (c) 1
- (d) 2

11. यदि $\cos A = \frac{4}{5}$, तो $\tan A$ का मान क्या है ?

(a) 1	(b)	$\frac{3}{4}$	(c)	$\frac{1}{2}$		(d) $\frac{1}{4}$		
11.	If cos A =	$\frac{4}{5}$,then v	what is th	e value	of tan A	.?		
(a)	1 ((b) $\frac{3}{4}$		(c)	$\frac{1}{2}$		(d) $\frac{1}{4}$	
12.	यदि sin θ -	$\cos\theta = 0$	है, तो (sin	⁴ θ + c	os⁴θ) का ब	मान है:		
(a)	1	(b) $\frac{3}{4}$		(c)	$\frac{1}{2}$		(d) $\frac{1}{4}$	
12.	If $\sin\theta - \cos\theta$	$\cos\theta = 0,$	then the va	ilue of	$(\sin^4\theta + \cos^4\theta)$	$\cos^4 heta$) i	S	
(a)	1 (b) $\frac{3}{4}$		(c)	$\frac{1}{2}$		(d) $\frac{1}{4}$	
	एक घड़ी की न तक मिनट) पूर्वाहन से	10:25
(a)	44cm	(b) 88c	m (c) 1320	cm		(d) 176cm	
	The minute lating of the minute in the minut						istance cov	ered by
(a) 4	14cm	(b) 88cn	n (0	e) 132c	m	(d) 176	5cm	
14.	त्रिज्या R वाले	ा एक वृत	के कोण p (डिग्री में)	वाले त्रिज्य	ाखंड का	क्षेत्रफल है:	
(a)	$\frac{p}{180} \times 2\pi R$	(b)	$\frac{p}{180} \times \pi R^2$	(c)	$\frac{p}{360} \times 2\pi$	R	$(d)\frac{p}{720}\times 2$	πR^2
14.	Area of a sec	ctor of ar	ngle p (in c	legrees) of a circ	ele with	n radius R i	s:
(a)	$\frac{p}{180} \times 2\pi R$	(b)	$\frac{p}{180} \times \pi R^2$	(c)	$\frac{p}{360} \times 2\pi$	R	$(d)\frac{p}{720}\times 2$	πR^2

15. दो गोलों के आयतन का अनुपात 64:27 है। उनके पृष्ठीय क्षेत्रफलों का अनुपात है:

			_
(a)3:4	(b) 4:3	(c) 9:16	(d) 16:9
15.Volumareas is	nes of two sp	heres are in the	he ratio 64:27. The ratio of their surface
(a)3:4	(b) 4:3	(c) 9:16	(d) 16:9
16. यदि वि है :	केन्हीं ऑकड़ों व	ना ध्यक ३	भौर बहुलक क्रमशः 11 और 17 हैं, तो उनका माध्य

(c) 9 (d) 10 (a) 7 (b) 8

16. If the Median and the Mode of a data are 11 and 17 respectively, then its mean is

(a) 7 (b) 8 (c) 9 (d) 10

17. निम्नलिखित वितरण के लिए:

माध्यक वर्ग और बहुलक वर्ग की निचली सीमाओं का योग है:

वर्ग अंतराल	0-5	5-10	10-15	15-20	20-25
बारंबारता	10	15	12	20	9

(a)15 (b)25 (c)30(d) 35

17. For the following distribution:

Class	0-5	5-10	10-15	15-20	20-25
Frequency	10	15	12	20	9

the sum of lower limits of the median class and modal class is

(a)15(b)25(c)30(d) 35

18.निम्नलिखित में से कौन सी घटना की प्रायिकता नहीं हो सकती है?

- (a) $\frac{0.2}{3}$
- (b) 0 (c) $\frac{1}{0.1}$
- (d) 35%

18. Which of the following cannot be the probability of an event?

- (a) $\frac{0.2}{3}$
- (b) 0
- (c) $\frac{1}{0.1}$
- (d) 35%

प्रश्न 19 और 20 के लिए दिशा निर्देश: प्रश्न संख्या 19 और 20 में, अभिकथन (A) के बाद तर्क(R) का कथन है। (a), (b), (c) और (d) में से सही विकल्प चुनें जैसा कि नीचे दिया गया है:

- (a) अभिकथन (A) और तर्क (R) दोनों सही हैं और तर्क (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और तर्क (R) दोनों सही हैं और तर्क (R), अभिकथन(A) की सही व्याख्या नहीं है।
- (c) अभिकथन (A) सही है, परन्तु तर्क (R)) ग़लत है I
- (d) अभिकथन (A) ग़लत है, परन्त् तर्क (R) सही है।
- 19. अभिकथन(A): 2 एक परिमेय संख्या का एक उदाहरण है।

तर्क (R): सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय संख्याएँ होती हैं।

20. अभिकथन(A): बिंद् (0,4) y-अक्ष पर स्थित है।

तर्क (R): y-अक्ष पर किसी भी बिंदू का X-निर्देशांक शून्य होता है।

Direction for Questions 19 & 20: In question numbers 19 and 20, a statement of Assertion(A) is followed by a statement of Reason(R). Choose the correct options from (a),(b),(c) and (d) as given below:

(a)Both Assertion(A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).

- (b) Both Assertion(A) and Reason (R) are true but Reason (R) is the not correct explanation of Assertion(A).
- (c) Assertion(A) is true but Reason(R) is false.
- (d) Assertion(A) is false but Reason(R) is true.

19. **Assertion:** 2 is an example of a rational number.

Reason: The square roots of all positive integers are irrational numbers.

20. **Assertion:** The point (0,4) lies on y-axis.

Reason: The X-coordinate on the point on y-axis is zero.

खण्ड -ख

SECTION-B

खण्ड-ख में 2 अंकों के 5 प्रश्न हैं।

Section B consists of 5 questions of 2 marks each.

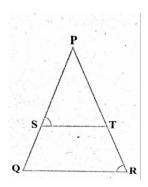
21. निम्नलिखित रैखिक समीकरणों के युग्म को हल कीजिए:

$$x - y = 3$$

$$\frac{x}{3} + \frac{y}{2} = 6$$

21. Solve the following pair of linear equations:

$$x - y = 3$$


$$\frac{x}{3} + \frac{y}{2} = 6$$

- 22. 6 मीटर लंबे एक ऊर्ध्वाधर खंभे की जमीन पर 4 मीटर लंबी छाया पड़ती है और उसी समय एक मीनार की छाया 28 मीटर लंबी होती है। मीनार की ऊँचाई ज्ञात कीजिए।
- 22. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

अथवा

OR

आकृति में, $\frac{PS}{SQ} = \frac{PT}{TR}$ और $\angle PST = \angle PRQ$ । सिद्ध कीजिए कि PQR एक समद्विबाहु त्रिभुज है।

In the fig., $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$. Prove that PQR is an isosceles triangle.

23.दो संकेन्द्रीय वृत्तों की त्रिज्याएँ 5 सेमी और 3 सेमी हैं। बड़े वृत्त की उस जीवा की लम्बाई जात कीजिए जो छोटे वृत्त को स्पर्श करती है।

- 23. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
- 24. निम्नलिखित का मान कीजिए:

$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

24. Evaluate the following:

$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

25. 15 सेमी त्रिज्या वाले एक वृत्त की जीवा केंद्र पर 60° का कोण अंतरित करती है। वृत्त के संगत लघु और दीर्घ खण्डों का क्षेत्रफल ज्ञात कीजिए।

$$(\pi=3.14$$
 और $\sqrt{3}$ =1.73 का प्रयोग करें)

25. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle.

(Use
$$\pi = 3.14$$
 and $\sqrt{3} = 1.73$)

अथवा

OR

एक वृत्त के चतुर्थांश का क्षेत्रफल ज्ञात कीजिए जिसकी परिधि 22 सेमी है।

Find the area of a quadrant of a circle whose circumference is 22 cm.

खण्ड -ग

SECTION-C

खण्ड -ग में 3 अंकों के 6 प्रश्न हैं।

Section C consists of 6 questions of 3 marks each.

- 26. सिद्ध कीजिए कि √3 एक अपरिमेय संख्या है।
- 26. Prove that $\sqrt{3}$ is irrational.

27.द्विघात बहुपद $6x^2$ -3 -7x के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच संबंध की पुष्टि कीजिए।

27. Find the zeroes of the quadratic polynomial $6x^2$ -3 -7x and verify the relationship between the zeroes and the coefficients.

28. मीना 2000 रुपये निकालने के लिए एक बैंक गई। उसने कैशियर से 50 रुपये और 100 रुपये के नोट देने को कहा। मीना को कुल 25 नोट मिले। ज्ञात कीजिए कि उसे 50 रुपये और 100 रुपये के कितने नोट मिले।

28.Meena went to a bank to withdraw Rs 2000. She asked the cashier to give her Rs 50 and Rs 100 notes only. Meena got 25 notes in all. find how many notes of Rs 50 and Rs 100 she received.

अथवा

OR

पाँच वर्ष बाद, जैकब की आयु उसके पुत्र की आयु की तीन गुनी हो जाएगी। पाँच वर्ष पहले, जैकब की आयु उसके पुत्र की आयु की सात गुनी थी। उनकी वर्तमान आयु कितनी है?

Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob's age was seven times that of his son. What are their present ages?

- 29. सिद्ध कीजिए कि एक वृत्त के परिगत समांतर चतुर्भुज एक समचतुर्भुज होता है।
- 29. Prove that the parallelogram circumscribing a circle is a rhombus.
- 30. यदि $\sin \theta + \cos \theta = \sqrt{3}$, तो सिद्ध कीजिए कि $\tan \theta + \cot \theta = 1$
- 30. If $\sin \theta + \cos \theta = \sqrt{3}$, then prove that $\tan \theta + \cot \theta = 1$

अथवा

OR

सिद्ध कीजिए कि 1+
$$\frac{\cot^2 \theta}{1+\csc \theta}$$
 = $\csc \theta$

Prove that
$$1 + \frac{\cot^2 \theta}{1 + \csc \theta} = \csc \theta$$

- 31. ताश के पत्तों की 52 गड्डी में से सभी गुलाम, बेगम और बादशाह को हटा दिया जाता है। शेष कार्डों को अच्छी तरह से फेंटा जाता है और फिर याद्दिछक रूप से एक कार्ड निकाला जाता है। इक्का को मान 1 देकर, अन्य कार्डों को भी इसी प्रकार के मान देते हुए, प्रायिकता ज्ञात कीजिए कि कार्ड का मान है:
 - (i) 7 (ii) 7 से अधिक (iii) 7 से कम
- 31. All the jacks, queens and kings are removed from a deck of 52 playing cards. The remaining cards are well shuffled and then one card is drawn at random. Giving ace a value 1 similar value for other cards, find the probability that card has a value
- (i) 7 (ii) greater than 7 (iii) less than 7

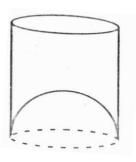
खण्ड-घ

Section -D

Section D consists of 4 questions of 5 marks each.

खण्ड-घ में 5 अंकों के 4 प्रश्न हैं।

- 32. एक ट्रेन 63 किमी की दूरी के लिए एक निश्चित औसत गित से यात्रा करती है और फिर 72 किमी की दूरी अपनी मूल गित से 6 किमी/घंटा की अधिक औसत गित से यात्रा करती है। यिद उसे पूरी यात्रा पूरी करने में 3 घंटे लगते हैं, तो उसकी मूल औसत गित क्या है?
- 32.A train travels at a certain average speed for a distance of 63km and then travels a distance of 72km at an average speed of 6 km/h more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?


अथवा

OR

एक मोटर बोट जिसकी स्थिर जल में गित 18 किमी/घंटा है ,धारा के विपरीत 24 किमी जाने में धारा के अनुकूल उसी स्थान पर लौटने की तुलना में 1 घंटा अधिक लेती है। धारा की गित ज्ञात कीजिए।

A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24Km upstream than to return downstream to the same spot. Find the speed of the stream.

- 33. सिद्ध कीजिए कि यदि त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को अलग-अलग बिन्दुओं पर प्रतिच्छेद करने वाली रेखा खींची जाए, तो अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।
- 33. Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.
- 34. एक जूस बेचने वाला अपने ग्राहक को गिलास में परोस रहा था जैसा चित्र में दिखाया गया है। बेलनाकार कांच का आंतरिक व्यास 5 सेमी था लेकिन कांच के नीचे एक अर्धगोलार्द्ध उठा हुआ भाग था जिसने कांच की क्षमता को कम कर दिया। यदि कांच की ऊँचाई 10 सेमी थी, तो कांच की आभासी और वास्तविक क्षमता ज्ञात कीजिए। $[\pi = 3.14]$ का प्रयोग कीजिए]

34. A juice seller was serving his customer using glasses as shown in the figure. The inner diameter of the cylindrical glass was 5 cm but bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass . If the height of the glass was 10cm, find the apparent and actual capacity of the glass. [Use $\pi = 3.14$]

OR

अथवा

एक तंबू एक बेलन के आकार का है जिस पर शंक्वाकार शीर्ष लगा है। यदि बेलनाकार भाग की ऊंचाई और व्यास क्रमशः 2.1 मीटर और 4 मीटर है, और शीर्ष की तिरछी ऊंचाई 2.8 मीटर है, तो तंबू बनाने के लिए इस्तेमाल किए गए कैनवास का क्षेत्रफल ज्ञात करें। साथ ही, 500 रुपये प्रति वर्ग मीटर की दर से तम्बू के कैनवास की लागत ज्ञात कीजिए। (ध्यान दें कि तम्बू के आधार को कैनवास से नहीं ढका जाएगा।)

A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m, find the area of the canvas used for making the tent. Also, find the cost of canvas of the tent at the rate of Rs 500per m². (Note that the base of the tent will not be covered with canvas.)

35. निम्नलिखित आँकड़ों का माध्यक 525 है। x और y का मान ज्ञात कीजिए, यदि कुल बारंबारता 100 है।

35. The median of the following data is 525.find the values of x and y, if total frequency is 100.

Class Interval	Frequency
वर्ग अंतराल	बारंबारता
0-100	2
100-200	5
200-300	X
300-400	12
400-500	17
500-600	20
600-700	y
700-800	9
800-900	7
900-1000	4

खण्ड-ङ

Section-E

Case study based questions

36.राहुल एक कार खरीदना चाहता है और अपनी कार के लिए एक बैंक से ऋण लेने की योजना बना रहा है। वह 1,18,000 रुपये का अपना कुल ऋण चुकाता है, जो हर महीने 1000 रुपये की पहली किश्त से शुरू होता है। यदि वह किश्त में हर महीने 100 रुपये की वृद्धि करता है।

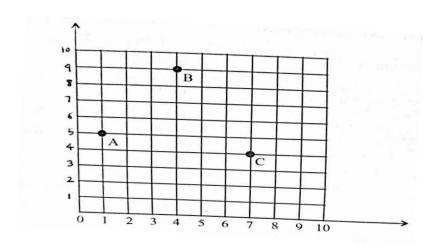
36.Rahul wants to buy a car and plans to take loan from a bank for his car.He repays his total loan of Rs 1,18,000 by paying every month starting with the first instalment of Rs 1000.If he increases the instalment by Rs 100 every month.

उपरोक्त जानकारी के आधार पर, निम्नलिखित प्रश्नों के उत्तर दें:

- (i) उसके द्वारा 30वीं किश्त में भ्गतान की गई राशि ज्ञात कीजिए।
- (ii) उसके द्वारा 30 किश्तों में भ्गतान की गई राशि ज्ञात कीजिए।
- (iii) 30वीं किस्त के बाद भी उसे कितनी राशि का भ्गतान करना है?

या

यदि कुल किश्तें 40 हैं तो अंतिम किश्त में भुगतान की गई राशि ज्ञात कीजिए। Based on the above information ,answer the following questions:


- (i) Find the amount paid by him in 30th instalment.
- (ii)Find the amount paid by him in 30 instalments.
- (iii) What amount does he still have to pay after 30th instalment?

OR

If total instalments are 40 then amount paid in the last instalment.

37. एक सोसाइटी के रेजिडेंट वेलफेयर एसोसिएशन (RWA) ने एक सोसाइटी के पार्क में तीन बिजली के खंभे A,B और C लगाए। इन तीन खंभों के बावजूद, पार्क के कुछ हिस्सों में अभी भी अंधेरा है। इसलिए RWA एक और बिजली का खंभा D लगाने का फैसला किया।

37.Resident welfare Association (RWA) of a society put up three electric poles A,B and C in a society's park. Despite these three poles, some parts of the park are still in dark. So, RWA decides to have one more electric pole D in the park.

उपरोक्त जानकारी के आधार पर, निम्नलिखित प्रश्नों के उत्तर दें:

- (i) खंभें C की स्थिति ज्ञात कीजिए।
- (ii) पार्क के कोने O से खंभा B की दूरी ज्ञात कीजिए।
- (iii) चौथे खंभे D की स्थिति ज्ञात कीजिए ताकि चार बिंदु A,B,C और D एक समांतर चतुर्भुज बना लें।

या

खम्भों A और C के बीच की दूरी ज्ञात कीजिए।

Based on the above information ,answer the following questions:

- (i) Find the position of the pole C.
- (ii) Find the distance of the pole B from corner O of the park.
- (iii) Find the position of the fourth pole D so that four points A,B,C and D form a parallelogram.

OR

Find the distance between poles A and C.

38. दसवीं कक्षा के छात्रों के एक समूह ने एक शैक्षिक यात्रा पर इंडिया गेट का दौरा किया। शिक्षक और छात्रों की इतिहास में भी रुचि थी। शिक्षक ने बताया कि इंडिया गेट, आधिकारिक नाम दिल्ली मेमोरियल, जिसे मूल रूप से अखिल भारतीय युद्ध स्मारक कहा जाता है, नई दिल्ली में स्मारकीय बलुआ पत्थर का मेहराब, ब्रिटिश भारत के सैनिकों को समर्पित है, जो 1914 और 1919 के बीच लड़े गए युद्धों में मारे गए थे। शिक्षक ने यह भी कहा कि भारत गेट, जो राजपथ (पहले किंग्सवे कहा जाता था) के पूर्वी छोर पर स्थित है, जिसकी ऊंचाई लगभग 138 फीट (42 मीटर) है।

38.A group of students of class X visited India Gate on an educational trip. The teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumental sandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formely called the Kingsway), is about 138 feet (42 metres) in height.

उपरोक्त जानकारी के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (i) यदि वे स्मारक से 42 मीटर की दूरी पर खड़े हैं तो उन्नयन कोण क्या है?
- (ii) वे मीनार को 60° के कोण पर देखना चाहते हैं। इसलिए, वे उस दूरी को जानना चाहते हैं जहां उन्हें खड़ा होना चाहिए और इसलिए दूरी ज्ञात करें।
- (iii) यदि सूर्य की ऊँचाई 60°पर है, तो उस ऊर्ध्वाधर मीनार की ऊँचाई ज्ञात कीजिए जिसकी छाया 20 मीटर लंबी होगी।

या

एक छड़ और उसकी छाया की लम्बाई का अनुपात 1:1 है। सूर्य का उन्नयन कोण ज्ञात कीजिए।

Based on the above information answer the following questions:

- (i)What is the angle of elevation if they are standing at a distance of 42 m away from the monument?
- (ii) They want to see the tower at an angle of 60°. So, they want to know the distance where they should stand and hence find the distance.
- (iii)If the altitude of the Sun is at 60°, then find the height of the vertical tower that will cast a shadow of length 20m.

OR

The ratio of the length of a rod and its shadow is 1:1. Find the angle of elevation of the Sun.

	Marking Scheme Class X, Maths , 2023-24(English Medium)					
Q. no.	Expected solutions	marks				
	Section-A					
1	(c) LCM(p, q)= $a^3 b^2$	1				
2	(c) $2+\sqrt{9}$	1				
3	(b) 2-√3	1				
4	(d) 15 th	1				
5	(d) 0,8	1				
6	(c) 6	1				
7	(b) similar but not congruent	1				
8	(b) 70 ⁰	1				
9	(c) 50°	1				
10	(b) 0	1				
11	$tanA = \frac{3}{4}$	1				
12	(c) $\frac{1}{2}$	1				
13	(c) 132 cm	1				
14	$(d)\frac{p}{720^{\circ}} \times 2 \pi R^2$	1				
15	(d) 16:9	1				
16	Mode = 3Median – 2Mean (b) 8	1				
17	(b) 25	1				
18	(c) $\frac{1}{0.1}$	1				
19	(c) Assertion (A) is true but Reason (R) is false.	1				

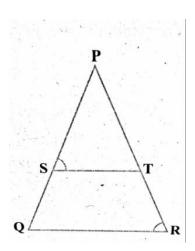
20	(a)Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1
Q. no.	solution	marks
	Section-B	
21	Solve the following pair of linear equations: $x - y = 3$ $\frac{x}{3} + \frac{y}{2} = 6$ Solution:	
	$x - y = 3 \Rightarrow x - y = 3$ (1)	
	$\frac{x}{3} + \frac{y}{2} = 6 \Rightarrow 2x + 3y = 36(2)$	1/2
	Eq (2) - 2× Eq (1) \Rightarrow 2x + 3y - (2x - 2y)	1/2
	$\Rightarrow 5y = 30$ $\Rightarrow y = 6$	1/2
	Putting value of $y=6$ in eq (1), we get $x=9$	1/2
22	A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower. Solution:	
	A	

Let x be the height of the Tower

 $\frac{1}{2}$

Two Triangles are similar as at the same time $\angle E = \angle B$

 $\frac{1}{2}$


$$\therefore \frac{6}{4} = \frac{x}{28}$$

 $\frac{1}{2}$

Or
$$x = 42 \text{ m}$$

1/2

OR

In the fig., $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$. Prove that PQR is an isosceles triangle.

Solution:

$$\frac{PS}{SQ} = \frac{PT}{TR}$$

(Given)

So, ST \parallel QR

(Converse of BPT)

 $\frac{1}{2}$

$$\therefore \angle PST = \angle PQR$$
(1) (Corresponding Angles)

 $\frac{1}{2}$

Also
$$\angle PST = \angle PRQ$$
(2) (Given)

1/2

$$\therefore \angle PRQ = \angle PQR$$

[From (1) and (2)]

	So PQ = PR (sides opposite to equal angles) Hence PQR is an isosceles Triangle	1/2
23	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.	
	Solution:	
	S ch 3 cm B	1/2
	At heart of the state of the st	
	OA=5cm,OP=3cm	
	OT \(\perp \) AB	1/2
	Therefore AP = $\sqrt{5^2 - 3^2} = \sqrt{16} = 4$	1/2
	∴ AB= 2AP	1/2
24	Evaluate the following:	
	$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{2}$	
	$\sin^2 30^\circ + \cos^2 30^\circ$	
	Solution:	
	$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{3\cos^2 3\cos^2 3\cos^2 3\cos^2 3\cos^2 3\cos^2 3\cos^2 3\cos^2 $	
	$\sin^2 30^\circ + \cos^2 30^\circ$	

	$= \frac{5(\frac{1}{2})^2 + 4(\frac{2}{\sqrt{3}})^2 - (1)^2}{(\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}$	1
	$= \frac{\frac{5}{4} + \frac{16}{3} - 1}{\frac{1}{4} + \frac{3}{4}}$	1/2
	$=\frac{67}{12}$	1/2
25.	A chord of a circle of radius 15 cm subtends an angle of 60^{0} at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use $\pi = 3.14$ and $\sqrt{3} = 1.73$) Solution:	
	Area of minor segment= $\frac{\theta}{360^{\circ}} \times \pi r^2 - \frac{1}{2} \times r^2 \sin \theta$	1/2
	$= \frac{60}{360} \times 3.14 \times (15)^2 - \frac{1}{2} \times (15)^2 \sin 60^\circ$	
	$= 3.14 \times 225 \times 6 - \frac{1}{2} \times 225 \times \frac{\sqrt{3}}{2}$	1/2
	$=117.75 - 97.312$ $= 20.4375 \text{ cm}^2$	1/2
	Area of major segment = Area of circle – Area of minor segment = $3.14 \times (15)^2 - 20.4375$	

	= 706.5- 20.4375	
	$= 686.0625 \text{ cm}^2$	1/2
	OR	
	Find the area of a quadrant of a circle whose circumference is 22 cm.	
	Solution: Cicumference of circle = $2 \pi r = 22$	1/2
		/2
	$\Rightarrow r = \frac{7}{2} \text{ cm}$	1/2
	$\therefore \text{ Area of quadrant} = \frac{1}{4} \times \pi r^2$	1/2
	$= \frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$ $= \frac{77}{8} \text{ cm}^2$	1/2
	Section-C	
26.	Prove that $\sqrt{3}$ is irrational.	
	Solution:	
	Let, if possible, $\sqrt{3}$ be a rational no.	1/2
	$\therefore \sqrt{3} = \frac{p}{q}, \text{ where p and q are co-prime integers and } q \neq 0.$	1/2
	$\Rightarrow 3 = \frac{p^2}{q^2}$ $\Rightarrow p^2 = 3 q^2 \dots (i)$	
	$\Rightarrow p^2 = 3 q^2 \dots (i)$	
	\Rightarrow 3 divides p ² \Rightarrow 3 divides p also.	1/2

Let $p = 3m$,(ii) where m is any integer.	
$\Rightarrow p^2 = 9m^2(iii)$	1/2
From (i) and (iii) $3q^2 = 9m^2$	
⇒ $q^2 = 3m^2$ ⇒ 3 divides q^2 ⇒ 3 divides q also. ⇒ $q = 3n$ (iv)	1/2
From (i) and (iv), p and q have 3 as common factor. ∴ p and q are not co-prime.	
Hence our supposition is wrong. $\therefore \sqrt{3}$ is an irrational number.	1/2
Find the zeroes of the quadratic polynomial 6x ² -3 -7x and verify the relationship between the zeroes and the coefficients. Solution:	
Given polynomial is $6x^2 - 7x - 3 = (2x - 3)(3x + 1)$	1
For zeroes, $2x - 3 = 0$, $3x + 1 = 0$ $\Rightarrow x = \frac{3}{2}, x = -\frac{1}{3}$	
\Rightarrow Zeroes of polynomial are $\frac{3}{2}$, $-\frac{1}{3}$	
2, 3	

	Product of zeroes = $\frac{3}{2} \times \frac{-1}{3} = -\frac{1}{2} = -\frac{3}{6} = \frac{constant\ term}{coefficient\ of\ x^2}$	1/2
28	Meena went to a bank to withdraw Rs 2000. She asked the cashier to give her Rs 50 and Rs 100 notes only. Meena got 25 notes in all. Find how many note Rs 50 and Rs 100 she received. Solution:	
	Let the number of Rs. 50 and Rs. 100 notes be 'x' and 'y' respectively.	1/2
	$\Rightarrow 50x + 100y = 2000$ $\Rightarrow x + 2y = 40 \dots (1)$	1/2
	Also, Meena got 25 notes in all. $\Rightarrow x + y = 25 \dots (2)$	1/2
	$(1) - (2) \Rightarrow x+2y-(x+y) = 40-25$	
	$\Rightarrow x+2y-x-y=40-25$	1/2
	⇒ y = 15	1/2
	Putting $y = 15$ in eq (1), we get $x = 10$	1/2
	OR	
	Five years hence, the age of jacob will be three times that of his son. Five years ago, Jacob's age was seven times that of his son. What are their present ages?	

Solution:	
Let Jacob's age be x years and his son's age be y years.	1/2
Five years hence(later),	
x+5=3 (y+5)	1/2
$\Rightarrow x + 5 = 3 y + 15$	
\Rightarrow x - 3 y = 10(1)	
Also, five years ago(before),	
x-5 = 7 (y-)5	
$\Rightarrow x-5 = 7y - 35$	1/2
$\Rightarrow x-7y = -30(2)$	
Subtracting equation (2) from (1),	
x - 3y = 10	
-x + 7y = 30 (: eq.(2) changes its sign)	
4y = 40	
$\because 4 \text{ y} = 40$	
$\therefore y = 10$	1/2
Put $y = 10$ in eq. (1),	
$x - 3(10) = 10 \Rightarrow x - 30 = 10$	1/2
$\Rightarrow x = 40$	
Thus, present age of Jacob=x=40 years and	1/
present age of Jacob's son=y=10 years.	1/2
Prove that a parallelogram circumscribing a circle is a rhombus.	

	Solution: DRC OQ	
	A P B	1/2
	Given :- ABCD be a parallelogram circumscribing a circle with centre O. To Prove :- ABCD is a rhombus.	1/2
	 Proof:- We know that the tangents drawn to a circle from an exterior point are equal is length. ∴ AP = AS, BP = BQ, CR = CQ and DR = DS. 	17
	AP+BP+CR+DR = AS+BQ+CQ+DS	1/2
	(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ) ∴ AB+CD=AD+BC	1/2
	or 2AB = 2AD (since AB = DC and AD=BC of parallelogram ABCD)	1/2
	∴ AB = BC = DC = AD Therefore, ABCD is a rhombus.	1/2
30	If $\sin \theta + \cos \theta = \sqrt{3}$, then prove that $\tan \theta + \cot \theta = 1$	
	Solution:	
	$\sin \theta + \cos \theta = \sqrt{3}$ squaring on both sides	
	$\Rightarrow (\sin \theta + \cos \theta)^2 = 3$	1/2

$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \qquad (\because \sin^2\theta + \cos^2\theta = 1)$ $2\sin\theta\cos\theta = 3 - 1$ $2\sin\theta\cos\theta = 2$ Divide both sides by 2 $\frac{1}{2}$ $\sin\theta\cos\theta = 1 = \sin^2\theta + \cos^2\theta$ $1 = (\sin^2\theta + \cos^2\theta)/\sin\theta\cos\theta$ $1 = \tan\theta + \cot\theta = 1$ $1/2$ OR $1/2$ OR $1 + \frac{\cot^2\theta}{1 + \csc^2\theta - 1}$ $1 + \frac{\cot^2\theta}{1 + \csc\theta}$ $1 = 1 + \frac{(\cos^2\theta - 1)}{(1 + \csc\theta)}$ $1 = \frac{(\cos^2\theta - 1)}{(1 + \cos^2\theta)}$	$\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$	1/2
$2\sin\theta\cos\theta = 2$ Divide both sides by 2 $\sin\theta\cos\theta = 1 = \sin^2\theta + \cos^2\theta$ $1/2$ $1 = (\sin^2\theta + \cos^2\theta)/\sin\theta\cos\theta$ $1/2$ $1 = \tan\theta + \cot\theta = 1$ $1/2$ OR $LHS = 1 + \frac{\cot^2\theta}{1 + \csc\theta}$ $= 1 + \frac{\csc^2\theta - 1}{1 + \csc\theta}$ $= 1 + \frac{(\cos^2\theta - 1)}{(1 + \csc\theta)}$ $[\because \cot^2\theta = \csc^2\theta - 1]$ $= 1 + \frac{(\cos^2\theta + 1)(\csc\theta - 1)}{(1 + \csc\theta)}$	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \qquad (\because \sin^2\theta + \cos^2\theta = 1)$	
Divide both sides by 2 $ \sin \theta \cos \theta = 1 = \sin^2 \theta + \cos^2 \theta $ $ 1 = (\sin^2 \theta + \cos^2 \theta) / \sin \theta \cos \theta $ $ = \tan \theta + \cot \theta = 1 $ OR $ LHS = 1 + \frac{\cot^2 \theta}{1 + \csc^2 \theta} $ $ = 1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta} [\because \cot^2 \theta = \csc^2 \theta - 1] $ $ = 1 + \frac{(\csc \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)} $	$2\sin\theta\cos\theta = 3 - 1$	1/2
$\sin \theta \cos \theta = 1 = \sin^2 \theta + \cos^2 \theta$ $1 = (\sin^2 \theta + \cos^2 \theta) / \sin \theta \cos \theta$ $1/2$ $= \tan \theta + \cot \theta = 1$ OR $LHS = 1 + \frac{\cot^2 \theta}{1 + \csc \theta}$ $= 1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta}$ $= 1 + \frac{(\cos \cot^2 \theta) / (\csc \theta - 1)}{(1 + \csc \theta)}$	$2\sin\theta\cos\theta=2$	
$\sin \theta \cos \theta = 1 = \sin^2 \theta + \cos^2 \theta$ $1 = (\sin^2 \theta + \cos^2 \theta) / \sin \theta \cos \theta$ $1/2$ $= \tan \theta + \cot \theta = 1$ OR $LHS = 1 + \frac{\cot^2 \theta}{1 + \csc \theta}$ $= 1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta} [\because \cot^2 \theta = \csc^2 \theta - 1]$ $= 1 + \frac{(\cos \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)}$	Divide both sides by 2	
$1 = (\sin^2 \theta + \cos^2 \theta) / \sin \theta \cos \theta$ $= \tan \theta + \cot \theta = 1$ OR $LHS = 1 + \frac{\cot^2 \theta}{1 + \csc \theta}$ $= 1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta} \qquad [\because \cot^2 \theta = \csc^2 \theta - 1]$ $= 1 + \frac{(\csc \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)}$	$\sin \theta \cos \theta = 1 = \sin^2 \theta + \cos^2 \theta$	1/2
$LHS = 1 + \frac{\cot^{2}\theta}{1 + \cos c\theta}$ $= 1 + \frac{\csc^{2}\theta - 1}{1 + \csc\theta} \qquad [\because \cot^{2}\theta = \csc^{2}\theta - 1]$ $= 1 + \frac{(\cos \cot\theta + 1)(\csc\theta - 1)}{(1 + \csc\theta)}$	$1 = (\sin^2 \theta + \cos^2 \theta) / \sin \theta \cos \theta$	1/2
LHS= $1 + \frac{\cot^2 \theta}{1 + \cos e c \theta}$ $= 1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta} \qquad [\because \cot^2 \theta = \csc^2 \theta - 1]$ $= 1 + \frac{(\csc \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)}$	$= \tan \theta + \cot \theta = 1$	1/2
$=1 + \frac{\csc^2 \theta - 1}{1 + \csc \theta} \qquad [\because \cot^2 \theta = \csc^2 \theta - 1]$ $= 1 + \frac{(\csc \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)}$	OR	
$=1 + \frac{\csc^{2}\theta - 1}{1 + \csc\theta} \qquad [\because \cot^{2}\theta = \csc^{2}\theta - 1]$ $= 1 + \frac{(\csc\theta + 1)(\csc\theta - 1)}{(1 + \csc\theta)}$		
$=1+\frac{(\cos \theta+1)(\csc \theta-1)}{(1+\cos \theta)}$	LHS= 1+ $\frac{\cot^2 \theta}{1 + \cos e c \theta}$	
	$=1+\frac{\csc^2\theta-1}{1+\csc\theta} \qquad [\because \cot^2\theta=\csc^2\theta-1]$	1
	$-1 \pm \frac{(\cos \theta + 1)(\csc \theta - 1)}{(\cos \theta + 1)(\cos \theta + 1)}$	
	$(1+cosec\theta)$	1

= 1 + (0)	cosec θ -	1)
=	cosec θ	=RHS

1

Hence proved

31

All the jacks, queens and kings are removed from a deck of 52 playing cards. The remaining cards are well shuffled and then one card is drawn at random. Giving ace a value 1 similar value for other cards, find the probability that the card has a value. (i) 7 (ii) greater than 7 (iii) less than

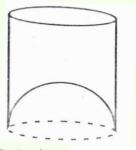
Solution:

In out of 52 playing cards, 4 jacks, 4 queens and 4 kings are removed, then total no. of remaining cards $= 52 - 3 \times 4 = 40$

(i) no. of favourable outcomes to card value 7= 4 because card value 7 may be of a spade, a diamond, a club or a heart

∴ P(card value7) =
$$\frac{\text{no.of favourable outcomes to the event}}{\text{Total no.of possible outcomes}} = \frac{4}{40} = \frac{1}{10}$$

1


(ii)Cards having value greater than 7are from 8, 9 or 10⇒

	∴ no. of favourable outcomes = 3x4 =12	
	∴ P(card having value greater than 7) = $=\frac{12}{40} = \frac{3}{10}$	1
	(iii) Cards having value less than 7are from 1,2,3,4,5or 6	
	∴ no. of favourable outcomes = 6×4 = 24	
	∴ P(card having value less than 7) = $\frac{24}{40} = \frac{3}{5}$	1
32	SECTION-D	
	A train travels at a certain average speed for a distance of 63km and then travels a distance of 72km at an average speed of 6 km/h more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?	
	Solution:	
	Let original speed of the train be x km/h.	1/2
	Then, time taken to travel $63 \text{ km} = 63/x \text{ hours}$	
	New speed = $(x + 6)$ km/hr	1
	Time taken to travel 72 km = $72/(x + 6)$ hours	1
	ATQ	1
	$\frac{63}{x} + \frac{72}{x+6} = 3$	1
	$\frac{63x + 378 + 72x}{x^2 + 6x} = 3$ $135x + 378 = 3x^2 + 18x$	

	(y + 42)(y + 2) = 0
	(x - 42)(x + 3) = 0
	x = -3 or x = 42
	As the speed cannot be negative, $x = 42$
	Thus, the average speed of the train is 42 km/hr.
	OR
	oat whose speed is 18 km/h in still water takes 1 hour more to apstream than to return downstream to the same spot. Find the ne stream.
Solution	
Let the spec	ed of the stream be x km/h.
∴ The spee	d of the boat upstream = $(18 - x)$ km/h
And the spo	eed of the boat downstream = $(18 + x) \text{ km/h}$
We know the	hat time = distance/speed
	$xen to go upstream = \frac{24}{18-x} hours$
	taken to go downstream = $\frac{24}{18+x}$ hours

	$\Rightarrow 24 (18 + x) - 24 (18 - x) = (18 - x) (18 + x)$	1/2
	$\Rightarrow x^2 + 48x - 324 = 0$	
		1/2
	$\Rightarrow (x + 54)(x - 6) = 0$	
		1/2
	$\Rightarrow x = 6 \text{ or } -54$	
	Since x is the speed of the stream, it cannot be negative.	
33	\therefore x = 6 gives the speed of the stream as 6 km/h. Prove that if a line is drawn parallel to one side of a triangle intersecting	
	the other two sides in distinct points, then the other two sides are divided in the same ratio.	
	Solution:	
	Given: In ΔABC, DE BC	1/2
	M N	
	B	1/2
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$	1/2
	Construction : Draw EM⊥AB and DN⊥AC. Join B to E and C to D	1/2

$\frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta BDE} = \frac{\frac{1}{2} \times \text{AD} \times \text{EM}}{\frac{1}{2} \times \text{DB} \times \text{EM}} = \frac{\text{AD}}{\text{DB}} (i)$	1/2
In ΔADE and ΔCDE	
$\frac{\text{Area of}\Delta ADE}{\text{Area of }\Delta CDE} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times EC \times DN} = \frac{AE}{EC} \qquad(ii)$	1/2
Since, DE BC [Given]	
∴ ar(ΔBDE) = ar(ΔCDE)	1
From eq. (i), (ii) and (iii)	
$: \frac{AD}{DB} = \frac{AE}{EC}$ Hence proved.	1
A juice seller was serving his customer using glasses as shown in the figure. The inner diameter of the cylindrical glass was 5 cm but bottom the glass had a hemispherical raised portion which reduced the capac of the glass . If the height of the glass was 10cm, find the apparent and	

Solution:

The inner radius of the glass = $\frac{5}{2}$ cm = 2.5 cm Height of the glass = 10 cm

1/2

The apparent capacity of the glass = $\pi r^2 h$

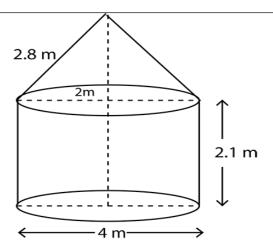
 $=3.14\times2.5\times2.5\times10 \text{ cm}^3=196.25 \text{ cm}^3$

 1^{1}_{2}

2 2

Volume of hemisphere = $\frac{2}{3}\pi r^3 = \frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \text{ cm}^3 = 32.71 \text{ cm}^3$

 1^{1}_{2}


The actual capacity of the glass = apparent capacity of glass - volume of the hemisphere

=(196.25-32.71) cm³

 $=163.54 \text{ cm}^3$

 1^1_2

OR

A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m, find the area of the canvas used for making the tent. Also, find the cost of canvas of the tent at the rate of Rs 500per m². (Note that the base of the tent will not covered with canvas.)

Solution:

Radius of base of cylindrical portion = 2 m, Height of the cylindrical portion = 2.1 m slant height of conical top = 2.8 m

Curved surface area of cylindrical portion = $2\pi rh$

$$=2\pi\times2\times2.1$$

 $=8.4 \, \pi \, \text{m}^2$

Curved surface area of conical portion = πrl

$$=\pi \times 2 \times 2.8$$

 $=5.6\pi m^2$

Total curved surface area= Area of canvas used = $2\pi rh + \pi rl$

$$= 8.4\pi + 5.6\pi$$

 $=14\times22/7=44\text{m}^2$

1

1

1

1

 $Cost of canvas = Rate \times Surface area$

 $=500\times44 = Rs.22000$

The median of the following data is 525.find the values of x and y, if total frequency is 100.

Class Interval	Frequency
वर्ग अंतराल	बारंबारता
0-100	2
100-200	5
200-300	X
300-400	12
400-500	17
500-600	20
600-700	y
700-800	9
800-900	7
900-1000	4

Solution:

Class Interval	Frequency	Cummulative Frequency
वर्ग अंतराल	बारंबारता	
0-100	2	2
100-200	5	7
200-300	X	7 + x
300-400	12	19 + x
400-500	17	36 + x
500-600	20	56 + x
600-700	у	56 + x + y
700-800	9	65 + x + y
800-900	7	72 + x + y
900-1000	4	76 + x + y

1

1

1

$$n = 100 \implies \frac{n}{2} = 50$$

So, $76 + x + y = 100 \implies x + y = 24$ ----(1)

	Median = 525 :: Median class = $500 - 600$	
	So, $l = 500$, $f = 20$, $c f = 36 + x$, $h = 100$	1
	$Median = 1 + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$	
	$\Rightarrow 525 = 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100$	1
	$\Rightarrow 525 - 500 = (14 - x) \times 5$	
	$\Rightarrow 25 = 70 - 5x$	
	$\Rightarrow 5x = 70 - 25 = 45 \Rightarrow x = 9$	1/2
	From (1), we get $9 + y = 24$	
	y = 24 - 9 = 15	1/2
	SECTION-E	
36	Rahul wants to buy a car and plans to take loan from a bank for his car.	
	He repays his total loan of Rs 1,18,000 by paying every month starting	
	with the first instalment of Rs 1000. If he increases the instalment by Rs	
	100 every month. Based on the above information ,answer the following questions:	
	(i) Find the amount paid by him in 30 th instalment.	
	(ii)Find the amount paid by him in 30 instalments.	
	(iii) What amount does he still have to pay after 30th instalment?	

OR

If total instalments are 40 then amount paid in the last instalment SOLUTION

(i) Monthly instalment paid by Rahul are 1000, 1100, 1200, ... 30 terms

$$a = 1000$$
, $d = 100$, $an = ?$, $n = 30$

$$a_{30} = a + (29)d = 1000 + (29)100$$

$$= 3900$$

So, the amount paid by him in 30th instalment = \ge 3900.

(ii) Total amount of all 30 instalments paid = 1000 + 1100 + 1200 + ... + 3900

1

1

1

Here,
$$a = 1000$$
, $d = 100$, $n = 30$

$$\therefore S_{n} = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_{30} = \frac{30}{2} [2 \times 1000 + (30-1)100]$$

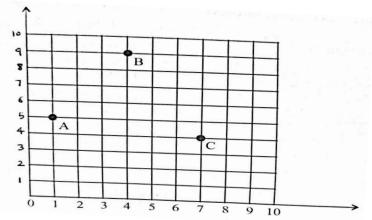
(iii)So, the loan amount left after 30th instalment

Hence, he still has to pay ₹44500 after 30th instalment.

OR

$$a_{40} = a + 39 d$$

=1000+39(100)


=4900

Amount paid in last instalment = ₹ 4900

1

1

Resident welfare Association (RWA) of a society put up three electric poles A,B and C in a society's park. Despite these three poles, some parts of the park are still in dark. So, RWA decides to have one more electric pole D in the park.

Based on the above information ,answer the following questions:

- (i) Find the position of the pole C.
- (ii) Find the distance of the pole B from corner O of the park.
- (iii) Find the position of the fourth pole D so that four points A,B,C and D form a parallelogram.

OR

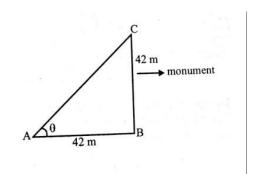
Find the distance between poles A and C.

SOLUTION

(i) Position of point C(7,4)

1

(ii) Distance of note P(10) from corner O(00)	
(ii) Distance of pole B(4,9) from corner O(0,0) = $\sqrt{(4-0)^2 + (9-0)^2} = \sqrt{97}$ units	1
(iii) A(1,5),B(4,9) ,C(7,4) are three vertices of parallelogram ABCD and let D(x,y) be the fourth vertex Mid-point of diagonal AC = Mid-point of BD	1
$(\frac{7+1}{2}, \frac{5+4}{2}) = (\frac{x+4}{2}, \frac{9+y}{2})$	
$\Rightarrow x=4 ,y=0$ $\therefore D(4,0)$	1
OR	
Distance between Pole A and C = $\sqrt{(7-1)^2 + (4-5)^2}$	1
$=\sqrt{36+1}=\sqrt{37}$	1
A group of students of class X visited India Gate on an educational trip. The teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumental sandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formely called the Kingsway), is about 138 feet (42 metres) in height.	
Based on the above information answer the following questions: (i)What is the angle of elevation if they are standing at a distance of 42 m	


away from the monument?

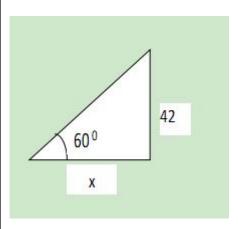
- (ii) They want to see the tower at an angle of 60° . So, they want to know the distance where they should stand and hence find the distance.
- (iii) If the altitude of the Sun is at 60°, then find the height of the vertical tower that will cast a shadow of length 20m.

OR

The ratio of the length of a rod and its shadow is 1:1. Find the angle of elevation of the Sun .

SOLUTION:

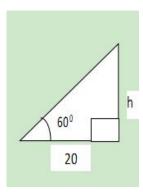
 $\tan\theta = \frac{42}{42} = 1$


 $\tan\theta = \frac{42}{42} = 1$

 $\Rightarrow \theta = 45^{\circ}$

1/2

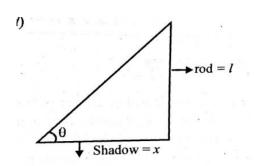
(ii)


$$\tan 60^{\circ} = \frac{42}{x}$$

$$\sqrt{3} = \frac{42}{x} \Rightarrow x = \frac{42}{\sqrt{3}} \Rightarrow x = 14\sqrt{3} \text{ m}$$

 $\frac{1}{2}$

 $\frac{1}{2}$



$$\frac{h}{20} = \tan 60^{\circ}$$

$$\Rightarrow h = 20\sqrt{3} \ m$$

OR

$$\tan\theta = \frac{l}{x}$$

______^

$$\Rightarrow \tan\theta = 1 \Rightarrow \theta = 45^{\circ}$$