

DPP No. 71

Total Marks : 48

Max. Time : 48 min.

Topic : Binomial Theorem

Type of Questions		М.М.,	Min.
Single choice Objective (no negative marking) Q.1, to12 and 15	,16 (3 marks, 3 min.)	[42,	42]
Assertion and Reason (no negative marking) Q.13,14	(3 marks, 3 min.)	[6,	6]

SPECIAL DPP ON BINOMIAL THEOREM (QUESTION ASKED IN AIEEE)

- The coefficient of x^5 in $(1 + 2x + 3x^2 +)^{-3/2}$ is : 1. (1) 21 (3) 26 (4) none of these (2)25The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is : 2. (3) 34 (1) 32(2)33(4) 35. If x is positive, the first negative term in the expansion of $(1+x)^{\frac{1}{5}}$ is : 3. (1) 7th term (2) 5th term (3) 8th term (4) 6th term. 4. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same, if α equals : (2) $\frac{10}{3}$ $(3) - \frac{3}{10}$ (4) $\frac{3}{5}$ $(1) - \frac{5}{3}$ The coefficient of x^n in the expansion of $(1 + x) (1 - x)^n$ is-5. (2) (–1)ⁿ (1 – n) (3) $(-1)^{n-1}(n-1)^2$ (4) $(-1)^{n-1} n$ (1)(n-1)If $s_n = \sum_{r=0}^n \frac{1}{nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{nC_r}$, then $\frac{t_n}{s_n}$ is equal to-6. (1) $\frac{n}{2}$ (2) $\frac{n}{2} - 1$ (3) n - 1(4) $\frac{2n-1}{2}$ 7. If the coefficients of r^{th} , $(r + 1)^{th}$ and $(r + 2)^{th}$ terms in the binomial expansion of $(1 + y)^{m}$ are in AP, then m and r satisfy the equation : (1) $m^2 - m(4r - 1) + 4r^2 + 2 = 0$. (2) $m^2 - m(4r + 1) + 4r^2 - 2 = 0$. (3) $m^2 - m(4r+1) + 4r^2 + 2 = 0$. (4) $m^2 - m(4r - 1) + 4r^2 - 2 = 0$.
- 8. The value of ${}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3$ is : (1) ${}^{56}C_4$ (2) ${}^{56}C_3$ (3) ${}^{55}C_3$ (4) ${}^{55}C_4$

If x is so small that x³ and higher powers of x may be neglected, then $\frac{(1+x)^{3/2} - (1+\frac{1}{2}x)^3}{(1-x)^{1/2}}$ may be approximated as : 9.

(1)
$$\frac{x}{2} - \frac{3}{8}x^2$$
 (2) $-\frac{3}{8}x^2$ (3) $3x + \frac{3}{8}x^2$ (4) $1 - \frac{3}{8}x^2$

If the expansion in powers of x of the function $\frac{1}{(1-ax)(1-bx)}$ is 10. $a_{1} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots$, then a_{n} is :

(1)
$$\frac{a^n - b^n}{b - a}$$
 (2) $\frac{a^{n+1} - b^{n+1}}{b - a}$ (3) $\frac{b^{n+1} - a^{n+1}}{b - a}$ (4) $\frac{b^n - a^n}{b - a}$

For natural numbers m, n if $(1 - y)^m (1 + y)^n = 1 + a_1y + a_2y^2 + \dots$ and $a_1 = a_2 = 10$, then (m, n) is : 11.

(2) (45, 35) (3) (35, 45) (1)(35, 20)(4) (20, 45)

The sum of the series ${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}$ is 12.

(1)
$$-{}^{20}C_{10}$$
 (2) $\frac{1}{2} {}^{20}C_{10}$ (3) 0 (4) ${}^{20}C_{10}$

13. Statement-1 :
$$\sum_{r=0}^{n} (r+1)^{n} C_{r} = (n+2) 2^{n-1}$$

Statement-2 : $\sum_{r=0}^{n} (r+1)^{n} C_{r} x^{r} = (1+x)^{n} + nx (1+x)^{n-1}$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

14. Let
$$S_1 = \sum_{j=1}^{10} j(j-1) {}^{10}C_j$$
, $S_2 = \sum_{j=1}^{10} j {}^{10}C_j$ and $S_3 = \sum_{j=1}^{10} j^2 {}^{10}C_j$.

Statement -1 : $S_3 = 55 \times 2^9$. **Statement -2 :** $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$.

(1) Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement -1.

- (2) Statement-1 is true, Statement-2 is false.
- (3) Statement -1 is false, Statement -2 is true.
- (4) Statement -1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1.
- The coefficient of x^7 in the expansion of $(1 x x^2 + x^3)^6$ is : 15. (1) 144 (2) – 132 (3) – 144 (4) 132
- If n is a positive integer, then $(\sqrt{3} + 1)^{2n} (\sqrt{3} 1)^{2n}$ is : 16.
 - (1) an irrational number

- (2) an odd positive integer (4) a rational number other than positive integers
- (3) an even positive integer

Answers Key

1.	(4)	2. (2)	3. (3)	4. (3)
5.	(2)	6. (1)	7. (2)	8. (1)
9.	(2)	10. (3)	11. (3)	12. (2)
13.	(1)	14. (2)	15. (3)	16. (1)