chemical Bonding and redox Reactions

Chemical Bonding

An ion is an electrically charged species. A positively charged An ion is called cation, while a negatively charged ion is called

- . A cation contains less electrons than a normal atom while an anion contains more electron than a normal atom. eg, cation Na+, H+, Mg2+ and anion CI-, F-, I-.
- . The metal atom lose electrons to form cations and non-metal atom, accept electrons to form anions.
- . There is no change in atomic number or number of protons when an atom forms ion.

Isoelectronic species

Species having the same number of electrons but different nuclear charge are known as isoelectronic species. They also have same bond order.

Types of Chemical Bond

Electrovalent bond or Ionic bond

The bond is formed by the transfer of electrons from one atom to another.

- These bonds are formed between metals and non-metals.
- Properties of electrovalent compounds are
- (a) These are usually crystalline solids.
- (b) These have high melting point.
- (c) These conduct electricity when dissolved in water and also soluble in water.
- (d) These are insoluble in organic solvents like alcohol etc.
- (e) If the electronegativity difference of two atoms is 1.7, the bond between them is fifty per cent ionic.

Some Electrovalent Compounds

Name	Formula	lons present		
Aluminium oxide (Alumina)	Al ₂ O ₃	Al ³⁺ , O ²⁻		
Ammonium chloride	NH ₄ Cl	NH ⁴ ₄ and Cl ⁻		
Calcium chloride	CaCl ₂	Ca ²⁺ and Cl ⁻		
Calcium nitrate	Ca(NO ₃) ₂	Ca ²⁺ and NO ₃ ⁻		
Copper sulphate	CuSO ₄	Cu ²⁺ and SO ₄ ²⁻		

		lons present		
Name	Formula	Line 27 (1971) C.		
Magnesium chloride Magnesium oxide Potassium chloride Sodium chloride Sodium hydroxide	MgCl ₂ MgO KCl NaCl NaOH	Mg ²⁺ and Cl ⁻ Mg ²⁺ and O ²⁻ K ⁺ and Cl ⁻ Na ⁺ and Cl ⁻ Na ⁺ and OH ⁻		

Covalent bond

This bond is formed by the sharing of electrons between two

- · When a non-metal combines with another non-metal, a covalent bond is formed.
- The bond formed between the atoms of the same elements is also a covalent bond.
- · Covalents bonds are of three types
- Single covalent bond (by sharing of one pair of electrons)
- Double covalent bond (by sharing of two pairs of electrons)
- Triple covalent bond (by sharing of three pairs of electrons)
- Properties of covalent compounds are
- These are usually liquids or gases, having usually low melting point and boiling point.
- These do not conduct electricity and are insoluble in water but dissolve in organic solvents.
- These show stereoisomerism because covalent bond is directional in nature.

Some Covalent Compounds

Name .	Formula	Elements present		
Alcohol (Ethanol) Ammonia Acetylene (Ethyne) Carbon dioxide Carbon disulphide Carbon tetrachloride Cane sugar Ethane Ethylene Glucose Methane	C ₂ H ₅ OH NH ₃ C ₂ H ₂ CO ₂ CS ₂ CCI ₄ C ₁₂ H ₂₂ O ₁₁ C ₂ H ₆ C ₂ H ₄ C ₆ H ₁₂ O ₆ CH ₄	C, H and O N and H C and H C and O C and S C and Cl C, H and O C and H C and H C, H and O C and H C, H and O C and H		

CDS Pathfinder 632

Coordinate bond

This type of bond is formed by one sided sharing of one pair of electrons between two atoms.

- The atom having completed octet which provides the electron pair for sharing is known as donor.
- The other atom which accept the electron pair is called the acceptor atom.

Hydrogen bond

This bond is electrostatic force of attraction between hydrogen atom covalently bonded to a highly electronegative atom and any other electronegative atom which is present in the same or different molecules.

- It is mainly of two types:
- Intermolecular H-bonding (e.g., H₂O, HF, NH₃ molecule)
- Intramolecular H-bonding (e.g., o-nitrophenol)
- Molecules having O—H, N—H or H—F bond show abnormal properties due to H-bond formation.

Oxidation and Reduction

Oxidation

 The process which involves gain of oxygen or loss of hydrogen or loss of one or more electrons

(de-electronation) from an atom, ion or molecule is called oxidation e.g., $Mg \longrightarrow Mg^{2+} + 2e^{-}$

positive valency of an element increases by its oxidation.

Reduction

- · The process which involves the gain of hydrogen or one or more electrons (electronation) or loss of oxygen by an atom, ion or molecule is called reduction. e.g. $S + 2e^- \rightarrow S^{2-}$
- · Reduction involves decrease in the positive valency of an element.

Oxidising Agent (Oxidant)

- · It is a substance which accepts electron in the chemical reaction i.e., electron acceptors are oxidising agent.
- All the positively charged species behave like oxidising agents.
- Oxidising agents are Lewis acids.

Reducing Agent (Reductant)

- The substance which donates electron in a chemical reaction is called reducing agent, i.e., electron donors are reducing agents.
- All the negatively charged species behave like reducing agents. Reducing agents are Lewis base.

	Reducing agents	Both oxidising and reducing agents
Oxidising agents	Na. Al. Fe. Zn. LiH, NaH, (COOH) ₂ etc. H	H ₂ O ₂ , SO ₂ , HNO ₂ , NaNO ₂ , O ₃ , Na ₂ SO ₃ etc.
KMnO ₄ , Cr ₂ O ₇ ²⁻ , H ₂ SO ₄ , HNO ₃ , O ₂ , CO ₂ etc.	Paria Remisi	6 in sampounds is

Redox Reactions

The reactions which involve oxidation and reduction as its two half-reactions, are called redox reactions.

 When the same element is oxidised or reduced, the reaction is called disproportionation reaction.

Oxidation States

It is the real or imaginary charge which an atom appears to have in its combined state.

 Oxidation state of an element may be positive, negative, zero or fractional.

Rules for determining oxidation state

The oxidation state of an element in its free or uncombined state is zero. Oxidation state of O in O2 and O3 is zero.

- Oxidation state of hydrogen in most of its compounds is plus one (+1).
- Oxidation state of oxygen in most of its compounds is minus two (-2).
- Oxidation state of elements of IA, IIA and IIIA sub-group elements in their compounds are +1, +2 and +3 respectively.
- Oxidation state of any ion is equal to its charge.
- The algebraic sum of oxidation states of all the elements in the neutral molecule is zero.
- The algebraic sum of the oxidation states of all elements present in polyatomic ion is equal to the charge on the ion.
- Oxygen shows positive oxidation state in OF₂.
- Oxidation state of fluorine (F) is always 1.

Exercise

	which of the following is a	covalent compound?	16	0-13-11 1-3-11 1	0.00120			
	WACL.	J) C ₂ H ₂	16.	Oxidation is defined (a) loss of electrons (c) gain of protons	(b) gain of d) loss of		
	(c) gain of protons	d) loss of proton	17.	A redox reaction is (a) proton transfer red (c) a reaction in solut				on reaction fer reaction
	(c) gain of electrons	d) None of these	18.	The conversion of su (a) oxidation (c) Both (a) and (b)	(b	H ₂₂ O ₁₁ - o) reduction d) None of	ion	
8	(c) coordinate bond	неа (b) covalent bond (d) hydrogen bond	19.	Which one of the fol act as an oxidising a (a) H ₂ (c) SO ₂	lowing r agent?		g agen	
511	(c) non-polar solvent	i (b) polar solvent (d) organic solvent	20.	Oxidation number of	(b) +3		
h.		(b) C—C (d) All are equally strong	21.	(c) $+\frac{1}{3}$ Reduction involves	(d	$-\frac{1}{3}$		100
7.	Hydrogen bonding is maxir			(a) gain of electrons (b) addition of oxyger (c) increase in oxidati (d) loss of electrons		er		
8.	NaCl has (a) covalent bond (c) coordinate bond	(b) ionic bond (d) None of these	22.	Which of the followi 1. The process of electrons.				
	Molten NaCl is a good con the presence of (a) free electrons (c) free molecules	ductor of electricity due to (b) free ions (d) None of these	1	The process of electrons. The process of electrons. The process of received and the process of the proces	reductio	on lead	s to	a gain o
0.	The compound which conta (a) CH ₄ (c) CaCl ₂	(b) N ₄	x.e	(a) Only 1 (c) 2 and 3		b) Only 4 d) 1 and		r electrons.
1.	With reference to ionic following statements.	(d) CCI ₄ compounds, consider the	Ŕ	'Loss of electrons' is (a) reduction (c) redox reaction		as b) oxidati d) expans		
	 Ionic compounds are in Ionic compounds in t conductor of electricity. Which of these statements 	he solid state are good	24.	Reducing agent can (a) accept protons (c) accept electrons	((b) donate (d) donate		
2	(a) Only 1 (c) Both 1 and 2	(b) Only 2 (d) Neither 1 nor 2	25.	 Match Column I (Frocks) with Column correct answer using 	ı II (De	scription	n) and	i select th
۷.	Which one has hydrogen to (a) HCI (c) HF	oonding? (b) HBr (d) HI		Columns.			lumn	
	(a) Hydrogen	which one has the same		B. Hydration	 Decor contai Miner Cause rock. 	ining lin rals in re	ne, pot ocks ru	assium etc. 1st.
	When iron is rusted, it is (a) oxidised (c) evaporated	(b) reduced		D. Oxidation Codes	4. Decor preser	nposition nt in ma	n of fe ny ign	ldspars leous rock.
15,	Starch iodide paper is used (a) iodine (c) oxidising agent	to test for the presence of (b) iodide iron (d) reducing agent		A B C (a) 1 3 4 2	0 2 (b 4 (d	A B b) 4 2 l) 4 3	1	D 3 2

634 **CDS Pathfinder**

(a) + 1(c) -1

(b) +2(d) -2

27. Consider the following statements.

Phosphorous exhibits oxidation states of 3 and 5.

 Iron exhibits oxidation state of +2 and +3. Which of the statement given above is/are correct?

(a) Only 1

(b) Only 2

(c) Both 1 and 2

(d) Neither 1 nor 2

Answers

- (-1)	- 0.3		7 32 34243	THE PARTY	7.400	CHIEF WOR	2000 (1980 pt)		
1. (0)	2. (D)	3. (c)	4. (a)	5. (b)	6. (C)	7. (a)	8. (b)	9. (b)	10 (c)
11. (a)	2. (b) 12. (c)	13. (b)	14. (a)	15. (c)	16. (a)	17. (d)	18. (a)	19. (c)	30. (d)
21. (a)	22. (c)	23. (b)	24. (d)	25. (a)	26. (a)	27. (c)	21.73	10. 1-7	20. (0)

Hints and Solutions

19. SO₂ can act as a reducing agent as well as an oxidising agent.

It reduces ferric sulphate to ferrous sulphate.

$$Fe_2(SO_4)_3 + SO_2 + 2H_2O \longrightarrow 2FeSO_4 + 2H_2SO_4$$

It also oxidises H2S to S.

$$2H_2S + SO_2 \longrightarrow 2H_2O + S$$

.1

20. Let the oxidation states of N in N3H is x.

N₃H

3x + (+1) = 0