OBJECTIVE - I

1.	 A perpendicular material is place in a magnetic fields. Consider the following statemetns; (A) If the magnetic field is increased, the magnetization is increased. (B) If the temperature is increased, the magnetization is increased (A) Both A and B are true (B*) A is true but B is false 				
Sol	(C) B is true but A is fa	llse (D)	Both A and B are false		
501.	A paramagnetic material is placed in a magnetic field. P If the magnetic field is increased, the magnetization is increased. $\therefore \text{ Magnetiazation } \vec{I} = \frac{\text{Magnetic Moment}}{\text{volume}} = \frac{\vec{M}}{V}$				
	Þ If the temperaBecause susceptibility	the temperature is increaed, the magnetization is decreased. Sceptibility of a paramagnetic substance is inversely proportional to the absolute temperatue.			
	$x = \frac{c}{T}$				
	after curie temperature susceptibility varies with temperature as $X = \frac{C^1}{T - T_C}$				
2.	A paramagnetic material is kept in a magnetic field. The field is increased till the magnetization becomes constant. If the temperature is now decreased, the magnetization				
Sol.	(A) will increase C	(B) decrease	(C*) ramain constant	(D) may increase of decrease	
3.	A ferromagnetic mater	ial is placed in an external	magnetic field. The magnetic of	lomains	
	(A) increase in size (C*) may increase or decrease is size		(B) decrease in size (D) have no relation with the field		
Sol.	C A formamatic motori	alian lagadin a automal mu	anatic field. The Magnetic dor	noine marinenaes en deeneese in size	
4.	A ferromagnetic material is placed in a external magnetic field. The Magnetic domains may increase or decrease in size. A long, straight wire carries a current i. The magnetizing field intensity H is measured at a point P close to the wire. A long, cylindrical iron rod is brought close to the wire so that the point P is at the centre of the rod. The value of H at P will				
Sol	(A) increase many time (C*) remain almost con	es nstant	(B) decrease many times(D) become zero	3	
	$\vec{H} = \frac{\vec{B}}{\mu_0} = \frac{1}{4\pi} \frac{id\vec{l} \times \vec{r}}{r^3}$				
-	The value of H at P wil	ll remain almost constant.			
5.	(A) paramagnetic mate	rials only	(B*) diamagnetic materi	al only	
Sol.	B	rials only	(D) paramagnetic and fe	rromagnetic materials	
6.	The magnetic susceptibility is negative for diamagnetic malerials only. The desirable properties for making permanent magnets are				
	(A*) high retentivity a	nd high coercive force (B)	high retentivity and low coerd	cive force	
Sol.	(C) low retentivity and high coercive forceAPermanent magnetis are High retentivity and High		(D) low retentivity and I h coercive force.	ow coercive force	
-	Electrometric	de of ooft imm have	ft iron has		
1.	(A) high retentivity and high coercive force (B) high retentivity and low coercive force				
a •	(C) low retentivity and	high corecive force	(D*) low retentivity and	low coercive force	
Sol.	D Electro magnets are made of soft iron because soft iron has Low retentivity and Low coercive force.				

OBJECTIVE - II

1.	Pick the correct options				
	(A*) All electrons have magnetic moment	(B*) All protons have magnetic moment			
	(B) All nuclei have magnetic moment	(D) All atoms have magnetic moment			
Sol.	AB	• • • • • •			
	All the electrons have magnetic moment & All the protons have magnetic moment.				
2.	The permaent magnetic moment of the atoms of a material is not zero. The material				
	(A) must be paramagnetic	(B) must be diamagnetic			
	(C) must be ferromagnetic	(D*) may be paramagnetic			
Sol.	D				
3.	The permanent magnetic of the atoms of a material is not zero. The material				
	(A) must be paramagnetic	(B*) must be diamagnetic			
	(C) must be ferromagnetic	(D) may be paramagnetic			
Sol.	В				
	The permanent magnetic moment of the atoms of a material is zero. The material muist be diamagnetic.				
4.	Which of the following pairs has quantities of the same dimension ? (A) magnetic field B and magnetizing field intensity H				

- (B) magnetic field B and intensity of magnetization I
- (C*) magnetic field intensity H and intensity of magnetization I
- (D*) longitudinal strain and magnetic susceptibility

Sol. CD

$$\Rightarrow \qquad \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{I}$$

Same dimension substance are added and subtracted and after addup & subtracte up gie the same dimension. So that dimension of the Magnetic field intensity H and intensity of magnetization 'I' is same.

Þ Longitudinal stramond Magnetic susceptibility are dimansion Less quantity.

- 5. When a ferromagnetic material goes through a hysteresis loop, the magnetic susceptibility
- (A) has a fixed value (B^*) may be zero (C^*) may be infinity (D^*) may be negative

Sol. BCD

When a ferromagnetic material goes through a Hysteresis loop, the Magnetic susceptibility may be zero, may be infinity or may be negative.

6. Mark out the correct options.

- (A*) Diamagnetism occurs in all materials
- $(B) \ Diamagnetism \ result \ from \ the \ partial \ alignment \ of \ perpmanent \ magnetic \ moment.$
- (C) The magnetizing field intensity H is always zero in free space
- (D^*) The magnetic field of induced magnetic moment is opposite to the applied field.

Sol.

D

- Þ Diamagnetism occurs in all materials.
- P The Magnetic field of Induced magnetic moment is opposite to the applied field.