
Number Systems 

 

History and Evolution of Irrational Numbers 

The existence of irrationality in numbers was accepted by Indian mathematicians as far 
back as 7th century BC when Manava, an author of the Indian geometric text Sulbasutras, 
discovered (while finding the hypotenuse of a right-angled triangle) that it is not possible 
to accurately calculate the square roots of numbers like 2 and 8. It is, however, the 
Pythagorean school of Greek mathematicians, or the Pythagoreans, who are credited with 
discovering irrational numbers sometime in 400 BC. In 5th century AD, the great Indian 
mathematician Aryabhata suggested that the value of π is incommensurable. Later, in the 
1700s, a Swiss mathematician named Lambert and a French mathematician named 
Legendre proved π to be irrational.  

In this way, a long line of mathematicians helped shed light on the concept of irrational 
numbers. These mathematicians questioned the rationality of those numbers that cannot 
be written in the form of a ratio of integers.The Pythagoreans were the first to actually 

prove a number to be irrational and this number was . The set of all irrational numbers 
is denoted by . 

Go through this lesson to get a basic idea about the irrationality of numbers. 

Whiz Kid 

Golden ratio 

Two quantities are said to be in the golden ratio if the ratio of the sum of those quantities to 
the larger quantity is the same as the ratio of the larger quantity to the smaller one. Let us 
understand this concept. 

Say a and b are two line segments that are in the golden ratio.  

 

Therefore,  



The golden ratio is represented by the Greek letter ‘ ’ (phi), where , 
an irrational number. 

The golden ratio is also known as ‘the golden mean’ and ‘the golden section’. This ratio is 
used not only in mathematics but also in biology, art, music, architecture and in various 
other branches of science. 

Did You Know? 

Pi is a constant value that is equal to the ratio of the circumference of a circle to its 
diameter. It is an irrational number represented by the Greek letter ‘π’. This symbol was 
proposed by a Welsh mathematician named William Jones in 1706. The value of pi is 

approximately equal to . 

The Great Pyramid of Giza was constructed with a perimeter of about 1760 cubits and a 

height of about 280 cubits. The ratio of the perimeter to the height, i.e.,  is 
approximately equal to 6.285, which is almost equal to 2π. This is cited by some as the 
proof that the people who built the pyramid knew about the special ratio represented by π.  

Since π is closely related to the circle, it is found in many geometric and trigonometric 
formulae. It is also used in many other scientific formulae such as in thermodynamics, the 
number theory, mechanics and electromagnetism. 

Know Your Scientist 

 Aryabhata (476 AD−550 AD) was the first Indian mathematician and 
astronomer. Belonging to the Indian classical age, he is primarily known for the invention 
of zero. His works Aryabhatiya and Arya-sidhanta are incomparable sources of astronomy 
and mathematics. Some of the concepts put forth by Aryabhata helped in the evolution of 
modern mathematics and astronomy. These include the place value system, the 
approximation of pi, the formula for the area of a triangle, the solution of indeterminate 
equations, the summation of series of cubes and squares, and the explanations for the 
motion of solar systems, solar and lunar eclipses and sidereal periods. 



 

Know More 

1. No rational number (e.g. 5) is irrational and no irrational number (e.g. ) is rational as the 
properties of one are different from those of the other. 

2. There are no smallest or largest numbers in the groups of rational and irrational numbers. 

Did You Know? 

The need for numbers 

Initially, humans used to keep count of different things by using pebbles, sticks or fingers. 
Later, they began using tally marks for counting purposes. The system of tally marks is not 
based on the concept of place value. This made the counting and representation of large 
numbers difficult. Thus grew the need for simpler counting systems and, with the passage 
of time, the Roman, Hindu-Arabic and other numeral systems came into being.  

Solved Examples 

Easy 

Example 1: Check whether the given numbers are rational or irrational. 

i)  

ii) 0 

iii)  

iv)  

v) 5.012896896896… 

vi) 7.1931931934… 

vii) 0.0787887888… 

Solution: 



i)  

 

= 7  

=  

This number is of the form , where p = 7 and q = 1 are integers and q ≠ 0. 

Hence, is a rational number. 

ii) 0 =  

This number is of the form , where p = 0 and q = 1 are integers and q ≠ 0. 

Hence, 0 is a rational number. 

iii)  

This number is of the form , where p = 7 and q = 9 are integers and q ≠ 0. 

Hence, is a rational number. 

iv)  

This number is of the form , where p = 17 and q = 1 are integers and q ≠ 0. 



Hence, is a rational number. 

v) 5.012896896896… 

This decimal number is non-terminating and repeating (i.e., the group of digits 896 repeats 
after the decimal point). Hence, it is a rational number. 

vi) 7.1931931934… 

This decimal number appears to be non-terminating and repeating, but it is in fact non-
terminating and non-repeating. The group of digits ‘193’ repeats twice after the decimal 
point and then a new set of digits ‘1934’ can be seen. There is no one digit or group of digits 
that keeps repeating itself after the decimal point. Hence, this number is irrational. 

vii) 0.0787887888… 

This decimal number is non-terminating and non-repeating. In it, the 8s between the 7s 
keep increasing by one. Hence, this number is irrational. 

Medium 

Example 1: 

Consider the given set of numbers. 

 

In set A, there are a rational numbers and b irrational numbers. Show that a2 − b2 = a + b. 

Solution: 

2.6666… is non-terminating and repeating (i.e., the digit ‘6’ is repeated after the decimal 
point). Hence, it is a rational number. 

 is of the form , where p = 2157 and q = 625 are integers and q ≠ 0. Hence, it is a 
rational number. 

0.181881888… is non-terminating and non-repeating. In it, the 8s between the 1s keep 
increasing by one. Hence, it is an irrational number.  



 is of the form , where p = 35 and q = 16 are integers and q ≠ 0. Hence, it is a rational 
number. 

0.14201421… is non-terminating and non-repeating. Hence, it is an irrational number. 

 , which is of the form , where p = 1 and q = 4 are integers and q ≠ 0. 
Hence, it is a rational number. 

We know that π is an irrational number. 

Thus, in set A, we have a = 4 and b = 3. 

a2 − b2 = (a + b) (a − b)  

⇒ a2 − b2 = (a + b) (4 − 3) 

⇒ a2 − b2 = (a + b) (1) 

⇒ a2 − b2 = (a + b) 

Decimal Expansions of Rational Numbers 

The Need for Converting Rational Numbers into Decimals  

A carpenter wishes to make a point on the edge of a wooden plank at 95 mm from any end. 
He has a centimeter tape, but how can he use that to mark the required point?  

 

Simple! He should convert 95 mm into its corresponding centimeter value, i.e., 9.5 cm and 
then measure and mark the required length on the wooden plank.  

This is just one of the many situations in life when we face the need to convert numbers 
into decimals. In this lesson, we will learn to convert rational numbers into decimals, 
observe the types of decimal numbers, and solve a few examples based on this concept.  



Two rational numbers and are equal if and only if ad = bc. 

Take, for example, the rational numbers and . Let us see if they are equal or not. 

Here, a = 2, b = 4, c = 3 and d = 6 

Now, we have: 

ad = 2 × 6 = 12 

bc = 4 × 3 = 12 

Since ad = bc, we obtain = .  

Rational Numbers as Division of Integers 

We know that the form  represents the division of integer p by the integer q. By solving 

this division, we can find the decimal equivalent of the rational number .  Now, let us 

convert the numbers , and into decimals using the long division method. 



            

While the remainder is zero in the division of 5 by 8, it is not so in case of the other two 
divisions. Thus, we can get two different cases in the decimal expansions of rational 
numbers.  

Observing the Decimal Expansions of Rational Numbers 

We can get the following two cases in the decimal expansions of rational numbers.  

Case I: When the remainder is zero 

In this case, the remainder becomes zero and the quotient or decimal expansion terminates 
after a finite number of digits after the decimal point. For example, in the decimal 

expansion of , we get the remainder as zero and the quotient as 0.625. 

Case II: When the remainder is never zero 

In this case, the remainder never becomes zero and the corresponding decimal expansion 

is non-terminating. For example, in the decimal expansions of and , we see that the 
remainder never becomes zero and their corresponding quotients are non-terminating 
decimals. 

When we divide 4 by 3 and 2 by 7, we get 1.3333… and 0.285714285714… as the 
respective quotients. In these decimal numbers, the digit ‘3’ and the group of digits 



‘285714’ get repeated. Therefore, we can write and

. Here, the symbol  indicates the digit or group of digits 
that gets repeated. 

Solved Examples 

Example 1: Write the decimal expansion of  and find if it is terminating or non-
terminating and repeating. 

Solution:Here is the long division method to find the decimal expansion of . 

 

Hence, the decimal expansion of is 49.48. Since the remainder is obtained as zero, the 
decimal numberis terminating. 

Example 2: 

Write the decimal expansion of  and find if it is terminating or non-terminating and 
repeating. 

Solution: 

Here is the long division method to find the decimal expansion of . 



 

Hence, the decimal expansion of is 87.33.... Since the remainder 9 is obtained again 
and again, the decimal numberis non-terminating and repeating. The decimal number can 

also be written as .  

Medium 

Example 1: 

Find the decimal expansion of each of the following rational numbers and write the nature 
of the same. 

1.  

2.  

3.  

4.  

Solution: 



 

We have  = 0.64356435... =  

The group of digits ‘6435’ repeats after the decimal point. Hence, the decimal expansion of 
the given rational number is non-terminating and repeating. 

 

We have  = 2.3075 



Hence, the given rational number has a terminating decimal expansion. 

 

We have  = 0.3737... =  

The pair of digits ‘37’ repeats after the decimal point. Hence, the decimal expansion of the 
given rational number is non-terminating and repeating. 

 

We have  = 0.67 

Hence, the given rational number has a terminating decimal expansion. 

Decimal Expansion of Irrational Numbers 

Facing Irrational Numbers in Life 

Anu has a piece of land in the backyard of her house. She calls a mason and tells him to 
construct a square-shaped kitchen garden covering an area of 7m2.  



 

After a quick mental calculation, the mason replies that he cannot construct the garden as 
per Anu’s specification. Why do you think the mason says this? 

To answer this question, let us first see the calculation performed by the mason in his head. 

Anu wants a square garden with an area of . 

Area of a square = Side × Side 

 

 

Now, we can find only an approximate value of as it is an irrational number. We cannot 
ascertain the exact value of an irrational number as its decimal expansion is non-
terminating and non-repeating. This is why the mason says that it is not possible to obtain 
a square garden as per Anu’s specification. 

Let us learn more about irrational numbers and the method to find their decimal 
expansions. 

Did You Know? 

In the 1870s, two mathematicians named Cantor and Dedekind stated that every real 
number is represented by a unique point on the number line and every point on the 
number line represents a unique real number. 

Know Your Scientist 



Georg Ferdinand Ludwig Philipp Cantor (1845−1918) was a German 
mathematician. He is best known for the invention of ‘the set theory’, which went on to 
become ‘the fundamental theory of mathematics’. Apart from being a teacher and 
researcher, he was also an outstanding violinist.  

  

  

 

Julius Wilhelm Richard Dedekind (1831−1916) was a German mathematician. He is best 
known for his work in abstract algebra, algebraic number theory and, especially, the 
foundation of real numbers.  

Irrationality of Square Roots of Non Perfect Square Numbers 

We know that the decimal expansion of an irrational number is non-terminating and non-
repeating. 

Take, for example, the irrational number . Let us find its decimal expansion. 



 

The decimal expansion of is 1.41421.... It is clearly non-terminating and non-repeating. 

So, is an irrational number.  

Decimal expansions of  few more numbers are given below: 

  

In all cases, we found an irrational number.  

It can be observed that 2, 7, 10 and 65 all are non perfect squares and their square roots 
are irrational numbers. 

  

So, it can be concluded that the square roots of non perfect square numbers are 
irrational numbers.  

Solved Examples 

Easy 

Example 1: Prove that is an irrational number. 

Solution: 



 

The decimal expansion of is 1.7320508…. It is clearly non-terminating and non-

repeating. So, is an irrational number. 

Irrationality of nth Root of Numbers 

Till now we have studied that the square root of a non-perfect square number is irrational. 
But what about numbers in which the root is of an order greater than 2? Take, for example, 

the number . In this number, the order of the root is 3. Since it is not possible to find the 

cube root of 6 as a terminating or repeating decimal number, is an irrational number. 

We can conclude similarly about other numbers like and .  

The irrationality of such numbers can be stated as follows: 

The number is irrational if it is not possible to represent a in the form bn, 
where b is a factor of a. 

Know Your Scientist 



Plato (428/427 BC−348/347 BC) was classical Greek philosopher and 
mathematician. He was the founder of the Academy in Athens, which 
was the first institution of higher learning in the western world. 
Plato’s dialogues have been used in various subjects, including 
philosophy, logic, ethics, rhetoric and mathematics. 

  

  

Solved Examples 

Example 1: Among the numbers , , and , which is/are irrational? 

Solution: 

We know that is an irrational number when ‘a’ is not a perfect square. 

Among the given numbers, 4 is a perfect square. So, is a rational number. 

On the other hand, 5 and 7 are not perfect squares. Thus, and are irrational numbers.  

is also irrational as 12 cannot be written in the form b6 where b is a factor of 12. 

Representing Rational Numbers in Non-terminating Recurring Decimal Form 

Rational numbers have terminating decimal expansions, but they can be represented in the 
form of non-terminating recurring decimal numbers as well. 

For example,  is a rational number as it is written in the form of  where q ≠ 0. 

Now,  = 2.5 which is a terminating decimal number. 2.5 can also be written as 2.5000... 
or . 

Thus, we get non-terminating recurring decimal form for the rational number . 

Similarly, we can represent each rational number in non-terminating recurring decimal 
form. 

Conversely, it can be said that every number in the non-terminating recurring decimal form 
is a rational number.  



Solved Examples 

Easy 

Example 1:  

Represent the following rational numbers in non-terminating recurring decimal form. 

a.  

b. 2.007 

c. 0.02 

Solution: 

a. The given number is . It can be written in the non-terminating recurring decimal form 
as follows: 

   = 3.75 = 3.75000... =  

b. The given number is 2.007. It can be written in the non-terminating recurring decimal 
form as follows: 

   2.007 = 2.007000... =  

c. The given number is 0.02. It can be written in the non-terminating recurring decimal 
form as follows: 

   0.02 = 0.02000... =  

Conversion of Decimals into Rational Numbers 

The Need for Converting Decimals into Fractions 

In daily life, situations can arise wherein we have to separate a part of a whole for some 
purpose. Say, for example, a farmer wishes to give (0.3333…)th part of his three-hectare 
land to his eldest son. 



 

Now, 0.3333… is not a terminating decimal. It is not possible to measure this decimal part 
of three hectares. However, if this non-terminating decimal is expressed as 

a fraction , then the calculation becomes a lot easier and more accurate. It is now 
clear that the farmer wants to give his eldest son one-third of his land, i.e., one hectare out 
of the three hectares of land. 

In this lesson, we will learn how to convert decimals into fractions. 

Converting a Terminating Decimal into a Fraction 

Solved Examples 

Example 1: Express the number 2.25 in the form .  

Solution: 

Let x = 2.25 

There are two digits after the decimal point; so, we can write: 

x =   

On simplification, we obtain: 

 

Thus, the number 2.25 can be written in the form  as . 



Converting a Non-Terminating Repeating Decimal into a Fraction 

Solved Examples 

Easy 

Example 1: Express each of the following decimals as a fraction or a rational number. 

1.  

2.  

Solution: 

1. Let x =  

⇒ x = 0.7777... … (1) 

We have only one repeating digit after the decimal point. On multiplying equation 1 with 
101 = 10, we get: 

10x = 7.7777 … (2)  

On subtracting equation 1 from equation 2, we get: 

9x = 7 

 

 

2. Let x =  

⇒ x = 0.292929... … (1) 

We have two repeating digits after the decimal point. On multiplying equation 1 with 
102 = 100, we get: 

100x = 29.2929… … (2) 

On subtracting equation 1 from equation 2, we get: 



99x = 29 

 

 

Hard 

Example 1: Find the rational forms of the following numbers. 

1.  

2.  

Solution: 

1. Let x =  

x = 2.35961961... … (1) 

On multiplying both sides of equation 1 with 100, we obtain: 

100x = 235.961961961... … (2) 

On multiplying both sides of equation 2 with 1000, we obtain: 

100000x = 235961.961961961... … (3) 

On subtracting equation 2 from equation 3, we obtain: 

99900x = 235726 

 

Thus, the rational form of  is . 

2. Let x =  



x = 0.0595959... … (1) 

On multiplying both sides of equation 1 with 10, we obtain: 

10x = 0.595959... … (2) 

On multiplying both sides of equation 2 with 100, we obtain: 

1000x = 59.595959... … (3) 

On subtracting equation 2 from equation 3, we obtain: 

990x = 59 

 

Thus, the rational form of  is . 

Finding Irrational Numbers between Given Rational Numbers 

Real Numbers between Any Two Numbers 

Consider the given number line. 

 

This number line shows integers from −10 to 10. While there are clearly 19 integers 
between −10 and 10, the number of fractions between the two integers is infinite. So, we 
can say that there are infinite real numbers between any two numbers. Real numbers 
include both rational and irrational numbers. So we can say that there are infinite rational 
and irrational numbers between any two numbers.  

In this lesson, we will learn to find irrational numbers between any two rational or 
irrational numbers. 

Finding Irrational Numbers between Pairs of Rational Numbers 

We know that between any two numbers, there are infinite rational and irrational 
numbers.  

Let us learn to find irrational numbers between any two rational numbers. Here are the 
steps to do the same. 



Step 1: Find the decimal representation (up to 2 or 3 places of decimal) of the two given 
rational numbers. Let those decimal representations be a and b, such that a < b. 

Step 2: Choose the required non-terminating and non-repeating decimal numbers (i.e., 
irrational numbers) between a and b. 

Similarly, we can find irrational numbers between other pairs of rational numbers. 

Finding Irrational Numbers between Pairs of Rational Numbers 

Solved Examples 

Example 1: Find an irrational number between 0.12 and 0.15. 

Solution: 

Step 1: The rational numbers are already in the decimal form. 

Let a = 0.12 and b = 0.15. 

We can see that a < b. 

Step 2:There is an infinite number of irrational numbers between a and b. 

Clearly, the non-terminating and non-repeating number 0.12101001000… lies between 
0.12 and 0.15. Hence, it is the required irrational number. 

Example 1: Find five irrational numbers between and . 

Solution: Step 1: The decimal expansion of  is 0.333… 

The decimal expansion of is 0.4 or 0.400. 

We can see that 0.333 < 0.4. 

Step 2: Five irrational numbers between 0.333 and 0.400 are listed below. 

0.34560561562563… 

0.3574744744474444… 



0.369874562301… 

0.3710110111011110… 

0.39919293… 

Representation of Rational Numbers on Number Line Using Successive Magnification 

Introduction to Magnification 

There are several things around us which are so small that they cannot be seen clearly with 
the naked eye; for example, the eyes of ants and small insects. These minute items can only 
be observed with the help of a lens that makes them appear bigger to the eye.  

 

This process of making a thing seem bigger without actually changing its physical size is 
known as magnification. Generally, a magnifying glass is used for such enlargement. 

Similarly, on the number line, there are infinite smaller numbers lying between any two 
numbers. These smaller numbers can be of two, three or more decimal places. To see or 
mark such numbers clearly, we use the process called successive magnification of the 
number line. Here, we use a virtual (imaginary) magnifying glass to enlarge the smaller 
divisions on the number line 

In this lesson, we will learn to represent rational numbers on the number line using the 
successive magnification method. 

Successive Magnification of the Number Line 

Watch this video to understand the need for the successive magnification of the number 
line. 

Representing Numbers Using the Successive Magnification Method 

Solved Examples 



Medium 

Example 1: Visualize  on the number line, up to five decimal places. 

Solution: 

can be expressed up to five decimal places as 6.28585. Here are the steps to visualize 
this number on the number line.  

Step 1: 6.28585 lies between 6 and 7. Divide the number line between 6 and 7 into ten 
equal parts and magnify the distance between them. 

Step 2: 6.28585 lies between 6.2 and 6.3. Divide the number line between 6.2 and 6.3 into 
ten equal parts and magnify the distance between them. 

Step 3: 6.28585 lies between 6.28 and 6.29. Divide the number line between 6.28 and 6.29 
into ten equal parts and magnify the distance between them. 

Step 4: 6.28585 lies between 6.285 and 6.286. Divide the number line between 6.285 and 
6.286 into ten equal parts and magnify the distance between them. 

Step 5: 6.28585 lies between 6.2858 and 6.2859. Divide the distance between 6.2858 and 
6.2859 into ten equal parts and magnify the distance between them. We can now mark 
6.28585 on the number line. 

The figures obtained at the end of each step are shown. 



 

Representation of Irrational Numbers on Number Line 

Square Root Spiral  

Consider the given square root spiral. 

 

This spiral is obtained by geometrical representation of square roots of successive natural 
numbers 1, 2, 3…, and so on. We can construct this square root spiral if we know how to 

represent irrational numbers of the form  on the number line, where n is any positive 
integer. Since irrational numbers are non-terminating and non-repeating, they are 
represented on the number line by a special method involving Pythagoras theorem. 



In this lesson, we will learn to represent irrational numbers of the form  on the number 
line. 

Know Your Scientist 

 

Pythagoras (570 BC−495 BC) was a great Greek mathematician and philosopher, often 
described as the first pure mathematician. He was born on the island of Samos and is best 
known for the Pythagoras theorem about right-angled triangles. He also made influential 
contributions to philosophy and religious teaching. 

Representing Irrational Numbers of the Form on the Number Line  

Concept Builder 

Pythagoras theorem 

In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of 
the other two sides. 

Consider the following right-angled triangle PQR. 

 

ΔPQR is right-angled at Q, i.e., ∠PQR = 90°. By Pythagoras theorem, we have: 



Hypotenuse2 = Base2 + Perpendicular2 

⇒ PR2 = RQ2 + PQ2 

Solved Examples 

Example 1: Represent on the number line. 

Solution: 

Here are the steps to represent on the number line.  

Step 1: Draw a line and mark the integers −2, −1, 0, 1, 2, etc. on it, so that the distance 
between any two consecutive integers is one unit. 

Step 2: Mark points O and A at 0 and 1 respectively. From A, draw a line segment AB of unit 
length and perpendicular to OA. Join O to B to get ΔOBA. Thus, by Pythagoras theorem, we 

have OB = . 

Step 3: From B, draw a line segment BC of unit length and perpendicular to OB. Join O to C 

to get ΔOCB. Thus, by Pythagoras theorem, we have OC = . 

Step 4: From C, draw a line segment CD of unit length and perpendicular to OC. Join O to D 

to get ΔODC. Thus, by Pythagoras theorem, we have OD = . 

Step 5: From D, draw a line segment DE of unit length and perpendicular to OD. Join O to E 

to get ΔOED. Thus, by Pythagoras theorem, we have OE = . 

Step 6: Now, taking O as the centre and OE as the radius, draw an arc that cuts the number 

line at point F. This point represents the irrational number on the number line. 

The figure for the construction is shown below.  

 



Geometrical Representation of  when (n − 1) is a Perfect Square 

We have seen that to represent the square root of a number on the number line, the square 
root of its predecessor is used as the base of a right-angled triangle. So, if the number(n − 1) 

is a perfect square, then we can directly find its square root and use it to represent on 

the number line. Let us represent  on the number line using this method. 

We have = 2. So, we will consider a base of 2 units on the number line. To 
represent this base, mark points 0 and 2 as O and A respectively. From A, draw a 
perpendicular AB of unit length. Join O to B to get ΔOBA. Then, taking O as the centre and 
OB as the radius, draw an arc cutting the number line at point P. Point P represents the 

irrational number on the number line. 

 

Let us verify our construction. 

Using Pythagoras theorem in ΔOBA, we obtain: 

OB2 = OA2 + AB2  

⇒ OB2 = 22 + 12 = 4 + 1  

⇒ OB =  

∴OP = OB =  (∵ OP and OB are radii of the same arc)  

In this way, we can represent other irrational numbers on the number line.  

Geometrical Representation of  when (n − 1) is a Perfect Square  

Solved Examples 

Example 1:Represent  on the number line and justify the construction. 

Solution: 



We know that 17 = 42 + 12. So, mark points 0 and 4 as O and A respectively. From A, draw a 
perpendicular AB of 1 unit. Join O to B to get ΔOBA. Then, take O as the centre and OB as the 
radius, and draw an arc that intersects the number line at point P. This point represents

on the number line. The construction is shown below. 

 

The construction can be verified as is shown. 

We have OA = 4 units and AB = 1 unit. Using Pythagoras theorem in ΔOAB, we have: 

OB2 = OA2 + AB2 

⇒ OB2 = 42 + 12 

⇒ OB2 = 16 + 1 = 17 

⇒ OB =  

∴OP = OB =  (∵ OP and OB are radii of the same arc)  

Geometrical Representation of the Square Root of a Given Positive Real Number 

Difficulty in Representing  for a Positive Real Number on the Number Line  

Suppose we have to represent  on the number line. We know that  is irrational 
since we cannot find a terminating or repetitive decimal number x such that x2 = 5.6.  

We know how to represent , for any integer n, on the number line. For this, we 

locate  first and then . So, to locate  on the number line by the same method, 

we have to first locate . Now,  is also an irrational number; to locate it on the 

number line, we have to first locate , which is again an irrational number. It is clear 

that this method is not helpful in locating irrational numbers like on the number line. 
We use another method to represent such numbers on the number line. Go through this 
lesson to learn about the same. 



Concept Builder 

Square and square root 

When a number is multiplied with itself, the obtained product is the square of the original 
number. Say, x is any number and x × x = y. In this case, the number y is the square of x. In 
exponential form, x × x is written as x2. This is called ‘square of x’, ‘x square’ or ‘x raised to 
the power 2’. 

Now, we have assumed that x2 = y. So, x will be equal to the square root of y, which is 

represented as . Here, is the symbol of square root. Finding the square root of a 
number means representing the number as the product of another number multiplied with 
itself. It is the reverse of finding the square of a number. We have assumed y to be the 

product of x × x; so, = x.  

Locating  on the Number Line 

Concept Builder 

Pythagoras theorem 

In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of 
the other two sides. 

Consider the following right-angled triangle PQR. 

 

ΔPQR is right-angled at Q, i.e., ∠PQR = 90°. By Pythagoras theorem, we have: 

Hypotenuse2 = Base2 + Perpendicular2 

⇒ PR2 = RQ2 + PQ2 

Know More 



Square root 

 The square root of every non-negative real number is a unique non-negative real number. 

 The square root of 0 is 0. 

 The square root of a negative real number is not a real number.  

Solved Examples 

Medium 

Example 1:Represent on the number line and justify the construction. 

Solution: Here are the steps to locate  on the number line. 

Step 1: Draw a line and mark a point A on it. Mark points B and C such that AB = 6.7 units 
and BC = 1 unit. 

Step 2: Find the midpoint of AC and mark it as M. Taking M as the centre and MA as the 
radius, draw a semicircle. 

Step 3: From B, draw a perpendicular to AC and let it meet the semicircle at point D. Taking 
B as the centre and BD as the radius, draw an arc that intersects the line at point E. 

 

Now, the distance BE is  units. 

Verification of construction: 

We have AB = 6.7 units and BC = 1 unit 



∴ AC = AB + BC = 6.7 units + 1 unit = 7.7 units 

∴ MA =  

MB = AB − MA = 6.7 units − 3.85 units = 2.85 units  

Also, MA = MD = 3.85 units (∵ MA and MD are the radii of the same circle) 

On applying Pythagoras theorem in ΔMBD, we obtain: 

BD2 = MD2 − MB2 = = 3.852 − 2.852 = 14.8225 − 8.1225 = 6.7 

⇒ ∴ BD = units 

Hence, we get 

BE = BD = units (∵ BE and BD are the radii of the same circle)  

Thus, our construction is justified.  

Operations on Irrational Numbers 

Mathematical Operations and Irrational Numbers  

We have learnt to perform addition, subtraction, multiplication and division on integers, 
decimals and fractions. We can also perform these operations on irrational numbers of the 

form , where n is a positive real number. 

Performing mathematical operations on irrational numbers is similar to performing these 
operations on algebraic expressions. For example, to add the algebraic expressions 
2xy + 3y2 and x2y − 4xy, we first check and add the like terms and then write the unlike 
terms as they are. In our example, 2xy and −4xy are like terms as they have the common 
algebraic part xy.  

So, (2xy + 3y2) + (x2y − 4xy) = (2xy − 4xy) + 3y2 + x2y = − 2xy + 3y2 + x2y 

Irrational numbers are also categorized as like and unlike irrational numbers. We can add 
or subtract like irrational numbers only. 

In this lesson, we will learn how to perform the four mathematical operations on irrational 
numbers. 



Like terms: The terms or numbers whose irrational parts are the same are known as like 

terms. For example, and are like terms because the irrational parts in these 

numbers are the same, i.e., . 

Unlike terms: The terms or numbers whose irrational parts are not the same are known as 

unlike terms. For example, and are unlike terms because the irrational parts in 

these numbers are different, i.e., and . 

Sometimes, two numbers may appear to have different irrational parts, but on 

simplification they are found to be the same. For example, and seem to have 

different irrational parts, i.e., and . However, on simplifying , we get

. Thus, we see that the two numbers have the same irrational part, i.e.,

.  

Arithmetic Operations between Rational and Irrational Numbers 

We have learnt to perform operations between fractions and integers, decimals and whole 
numbers and different types of numbers. Now, let us try to perform the same between 
rational and irrational numbers. 

Let us take the rational number 4 and the irrational number . On applying the four 

operations on these numbers, we get 4 + , 4 − , 4 ×  and . 

Since  has a non-terminating and non-repeating decimal expansion, the decimal 

expansions of 4 + , 4 − , 4 ×  and will also be non-terminating and non-
repeating. Hence, these numbers will also be irrational. 

So, we can conclude that: 

 The sum or difference of a rational and an irrational number is always irrational. 

 The product or quotient of a non-zero rational number and an irrational number is always 
irrational. 

Solved Examples 



Example 1:Check whether π + 8 and  are irrational numbers or not. 

Solution: 

We know that π is an irrational number and 8 is a rational number. The sum of a rational 
and an irrational number is always irrational. Hence, π + 8 is an irrational number. It can be 
proved as follows: 

π = 3.1415… 

⇒ π + 8 = 3.1415… + 8 = 11.1415… 

11.1415… is a non-terminating and non-repeating decimal number, so it is irrational. 

We know that  is an irrational number and 4 is rational number. The product of a non-

zero rational number and an irrational number is always irrational. Thus,  is 

an irrational number. Similarly,  is an irrational number as it is the difference 

between a rational and an irrational number. Finally,  is an irrational number as it 
is the quotient of a non-zero rational number and an irrational number.  

Performing Operations on Irrational Numbers  

The decimal expansion of an irrational number is non-terminating and non-repeating. For 
this reason, unlike irrational terms cannot be added or subtracted. 

Suppose and are two unlike irrational numbers. The arithmetic operations between 
them are shown as follows: 

 Addition =  

 Subtraction =   

 Multiplication =   

 Division =  

Suppose and  are two like irrational numbers. The arithmetic operations between 
them are shown as follows: 



 Addition =   

 Subtraction =  

 Multiplication =  

 Division =  

Solved Examples 

Easy 

Example 1: 

1. Divide  by . 

2. Multiply  with . 

Solution: 

 

 

Example 2: 

1. Prove that . 



 Subtract  from . 

  

Solution: 

 

 

Example 1:Simplify  . 

Solution: 



 

Concept Builder 

There is an order in which calculations should be performed while simplifying an 
expression. This order of performing operations is called BODMAS, with each letter in this 
word standing for a particular operation.  

B O D M A S 

Brackets Of Division Multiplication Addition Subtraction 

While simplifying an expression, we should first remove the ‘brackets’. Next, weshould 
perform operations involving ‘of’, e.g., one fourth of 16, 20% of 100, etc. Then, we should 
carry out ‘division’, ‘multiplication’, ‘addition’ and ‘subtraction’, in that order. 

All expressions are solved using the BODMAS rule. Take, for example, the expression 
36 ÷ 12 + 7 × 2 − 7. We simplify this expression as follows: 

36 ÷ 12 + 7 × 2 − 7 

= 3 + 7 × 2 − 7 (Division)  

= 3 + 14 − 7 (Multiplication)  

= 17 − 7 (Addition)  

= 10 (Subtraction)  

Solved Examples 



Easy 

Example 1:Multiply with . 

Solution: 

 

Example 2:Simplify . 

Solution: 

 

Medium 

Example 1:Simplify . 

Solution: 



 

Example 2:Simplify . 

Solution: 

 

 

Closure Property of Irrational Numbers 

Introduction to Closure Property 



In order to study the closure property of irrational numbers, we first need to know the 
meaning of the term ‘closure property’. For this purpose, let us consider the two integers 
−5 and 8. The sum of these integers is 3 and the difference when 8 is subtracted from −5 is 
−13. You can see that the sum and the difference are both integers. What this tells us is that 
adding or subtracting two integers always gives an integer as the result. In other words, the 
sum or difference of integers is closed to be an integer. Thus, we can say that:integers are 
‘closed’ with respect to addition and subtraction, or integers satisfy the closure property 
under addition and subtraction.  

In this lesson, we will discuss the closure property of irrational numbers under different 
algebraic operations such as addition, subtraction, multiplication and division. 

Know More 

Division by 0: 

Division means to divide the dividend (numerator) into as many equal parts as the divisor 
(denominator). For example, 4 ÷ 2 means that we need to divide the number 4 into two 
equal parts. 

Division by 0 means dividing a whole into zero equal parts. There may be infinite number 
of ways in which we can divide that whole into unequal parts or zero equal parts. Thus, 
division by 0 is not defined.  

Solved Examples 

Example 1: State two irrational numbers whose: 

1. sum is a rational number 
2. sum is an irrational number 

Solution: 

1. Let us consider the two irrational numbers and . 

The sum of these two numbers is found as follows: 

 

2. Let us consider the two irrational numbers  and . 



The sum of these two numbers is found as follows: 

 

Example 2: State two irrational numbers whose: 

1. difference is a rational number 
2. difference is an irrational number 

Solution: 

1. Let us consider the two irrational numbers and . 

The difference between these two numbers is found as follows: 

 

2. Let us consider the two irrational numbers and . 

The difference between these two numbers is found as follows:  

 

Medium 

Example 1: State two irrational numbers whose: 

1. product is a rational number 
2. product is an irrational number 



Solution: 

1. Let us consider the two irrational numbers and . 

The product of these two numbers is found as follows: 

 

2. Let us consider the two irrational numbers and . 

The product of these two numbers is found as follows: 

 

Example 2: State two irrational numbers whose: 

1. quotient is a rational number 
2. quotient is an irrational number 

Solution: 

1. Let us consider the two irrational numbers and . 

The quotient of these two numbers is found as follows: 



 

2. Let us consider the two irrational numbers and . 

The quotient of these two numbers is found as follows: 

 

Simplifying Expressions Involving Irrational Numbers Using Identities 

Consider the expression . 

To solve this expression, we need to multiply each term in the first bracketed pair with 
each term in the second bracketed pair. Let us solve this expression. 

 

Is there an easier way to simplify the given expression? Yes, there is. We can solve such 

expressions using the identity: . 

On using this identity, we get the same value as obtained via the longer method. 

 



There are other identities related to the square roots of positive real numbers. Let us first 
learn some of these identities and then we will apply them to solve problems. 

Identities Related to the Square Roots of Positive Real Numbers 

Here are some identities that help us solve problems involving irrational numbers. 

If we consider x, y, p and q to be positive real numbers, then 

  

  

  

  

  

  

  

  

Concept Builder 

Important algebraic identities 

Here are some important algebraic identities that help us solve various types of problems.  

 (a + b)2 = a2 + 2ab + b2 

 (a − b)2 = a2 − 2ab + b2 

 (a + b) (a − b) = a2 − b2 



 (x + a) (x + b) = x2 + (a + b) x + ab 

 (a + b)3 = a3 + b3 + 3ab(a + b) 

 (a − b)3 = a3 − b3 − 3ab(a − b) 

Solved Examples 

Easy 

Example 1: Simplify the following expressions using identities. 

1.  

2.  

3.  

4.  

5.  

6.  

Solution: 

1.  

This expression is of the form , where x = 13 and y = 10. 

On using the identity , we obtain: 

= 13 − 10 = 3 

2.  



This expression is of the form , where x = 3 and y = 5. 

On using the identity , we obtain: 

= 32 − 5 = 9 − 5 = 4 

3.  

This expression is of the form , where x = 31 and y = 5. 

On using the identity , we obtain: 

= 31 − 52 = 31 − 25 = 6 

4.  

This expression is of the form , where x = 11 and y = 17. 

On using the identity , we obtain: 

= 11 + 17 − = 28 −  

5.  

This expression is of the form , where x = 6 and y = 11. 

On using the identity , we obtain: 

= 6 + 11 +  = 17 +  



6.  

This expression is of the form , where p = 2, q = 3, x = 7 and y = 23. 

On using the identity , we obtain: 

= =  

Example 1:The diagonals of a rhombus measure units and units. 
Find the area of the rhombus. 

Solution: 

Area of a rhombus =  × Diagonal 1 × Diagonal 2 

 

Example 2:Simplify the irrational number . 

Solution: 

 



Example 1:Simplify the expression . 

Solution: 

 

Example 2:The length and breadth of a rectangle are units and units. 
Find the perimeter and area of the rectangle.  

Solution:  

Length (l) of the rectangle = units  

Breadth (b) of the rectangle = units 

Perimeter of the rectangle is given as: 

 

Area of the rectangle is given as: 



  

Rationalizing the Denominators 

Rationalization 

So far we have studied different operations on rational and irrational numbers, such as 
addition and subtraction. Now, what if we have to add two irrational fractions whose 

denominators are irrational numbers, say of the form and ? In such cases, we 
have to first rationalize the denominators, i.e., we have to make the denominators rational 
quantities (even if the numerators remain in the irrational form). 

What does rationalization mean? Rationalization is the process in which an irrational 
fraction having a surd in the denominator is rewritten to obtain a rational number in the 
denominator. The surd may be a monomial or a binomial having a square root. 

In this lesson, we will learn to: 

 Rationalize the denominator of an irrational fraction 

 Solve expressions using the rationalization method 

Rationalizing the Denominator 

Let us understand the method of rationalizing the denominator of an irrational fraction by 

taking the example of . 

We know that . 

, which is a rational number 

So, we can write the expression  as: 



 

Thus, we get a rational number as the denominator. 

Let us now understand what is meant by ‘conjugate of a number’. 

When a number is represented as the sum or difference of a rational number and an 
irrational number or two irrational numbers, the conjugate of that number just differs by 

the sign in between. For example, the conjugate of  is  and that of is

 or √3–√2. While solving irrational fractions having such denominators, we 
multiply and divide the fractions by the conjugates of the denominators. 

Solving an Expression Using the Rationalization Method 

Solved Examples 

Example 1: Rationalize the denominator of . 

Solution: We know that , which is a rational number. 

So, we multiply and divide  by . 

 

Thus, we obtain a rational number as the denominator. 

Example 2:Rationalize the denominator of . 



Solution: To rationalize the denominator, we multiply and divide by the conjugate 

of . 

The conjugate of is . 

 

Example 1:Simplify the expression . 

Solution:  

Let  

Where,  

,  and  

To solve such an expression, we have to first rationalize the denominator of each term. 

 



 

 

On substituting the values of a, b and c, we obtain: 

 

Example 2: Evaluate . 

Solution:  

Let us first simplify the denominator of the given expression. 

 



 

Example 1:Prove that . 

Solution: 

 



 

Example 2:If , then find the value of 4x3 + 2x2 − 8x + 7. 

Solution:  

 

 

Laws of Rational Exponents of Real Numbers 

Exponents or Indices 

The term ‘exponent’ refers to the number of times a quantity is multiplied with itself. It is 
also called ‘index’ or ‘power’. The exponential form of any number is xy, where x is the base 
and y is the exponent. It is read as ‘yth power of x’ or ‘x raised to the power y’.  

Till now, we have studied the laws of exponents for numbers having non-zero integers as 
the base and the integral exponent. For example, consider the expression 115 ÷ 113. It can 
be simplified using the law of exponents ap ÷ aq = a(p − q) as follows: 115 ÷ 113 = 11(5 − 3) = 112 



But what about numbers whose base is any real number or whose exponent is any rational 
number?  

Can we simplify them using the same laws? Go through this lesson to find out how to 
simplify such expressions. 

Numbers with Fractional Indices 

While studying about the exponents, we come across few numbers having fractional 

indices. For example, , ,  etc. 

Do you know what these numbers mean? 

We know that the square root of a number is represented with the index  as well as with 

the symbol . 

For example, the square root of 16 can be represented as  and . 

Similarly, the square root of any real number a can be represented as  and . 

So, there are two ways to represent the square roots of numbers. 

In the same manner, we can represent the cube root, fourth root, fifth root,..., nth root of 

a real number with the symbol  as well as with fractional indices. 

For example, the cube root of 8 can be represented as  and . The fourth root of 81 can 

be represented as  and . 

Similarly, the nth root of a number can also be represented as . 

Solved Examples 

Easy 

Example 1: Find the values of the following index numbers. 

i.  

ii.  



iii.  

iv.  

Solution: 

i.  means the cube root of 27. 

Therefore, 

 

ii.  means fourth root of 256. 

Therefore, 

 

iii.  means square root of 576. 

Therefore, 

 

iv.  means sixth root of 4096. 

Therefore, 



 

Laws of Exponents for Real Numbers 

Consider two real numbers a and b and two rational numbers m and n. The laws of 
exponents involving these real bases and rational exponents can be written as follows: 

  

  

  

  

  

  
 a0=1 

Solved Examples 

Example 1: Simplify the following expressions. 

1.  

2.  

Solution:  



 

 

Example 2:Simplify the expression . 

Solution: 



 

Example 3: Simplify . 

Solution:  

 

Example 1:Find the values of x and y in the expression . 

Solution: It is given that  

 

On equating the exponents of 3 and 7 on both sides of the above equation, we get: 

x + 1 = 3 and 2y − 1 = 1 

⇒ x = 3 − 1 = 2 and 2y = 1 + 1 = 2 

⇒ x = 2 and y = 1 

Thus, the values of x and y are 2 and 1 respectively. 



Example 1:Simplify the expression . 

Solution: 

 

Example 2:Prove that . 



Solution: 

 

 

 


