Q.No. 1 – 5 Carry One Mark Each

1.	While trying to collect an envelope from under the table, Mr. X fell down and					
	Ι		II	III		
	was losing conscious	sness.				
	IV					
	Which one of the abo	ove underlined parts of	the sentence is NOT ap	propriate?		
	(A) I	(B) II	(C) III	(D) IV		
Answe	er: (D)					
2.	If she experiment.	how to calibrate	e the instrument, she	done the		
	(A) knows, will have	;	(B) knew, had			
	(C) had known, could	d have	(D) should have known	n, would have		
Answe	er: (C)					
3.	Choose the word that is opposite in meaning to the word "coherent".					
	(A) sticky	(B) well-connected	(C) rambling	(D) friendly		
Answe	er: (C)					
4.		Which number does not belong in the series below?				
т.	Which number does	not belong in the series	s below?			
ч.	Which number does 2, 5, 10, 17, 26, 37, 5	e	s below?			
т.		e	s below? (C) 64	(D) 26		

5. The table below has question-wise data on the performance of students in an examination. The marks for each question are also listed. There is no negative or partial marking in the examination.

No	Marks	Answered Correctly	Answered Wrongly	Not Attempted
1	2	21	17	6
2	3	15	27	2
3	2	23	18	3

What is the average of the marks obtained by the class in the examination?

(A) 1.34 (B) 1.74 (C) 3.02 (D) 3.91

Answer: (C) Exp: Total question $44 \times 2=88$ $44 \times 3=132$ $\frac{144}{132} = \frac{88}{308}$ Total marks obtained= (21×2) + (15×3) + (23×2) =133
Total Number of students=44 Average = $\frac{133}{44} = 3.02$

Q.No. 6 – 10 Carry One Mark Each

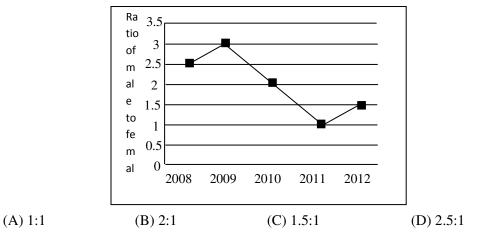
- 6. A dance programme is scheduled for 10.00 a.m. Some students are participating in the programme and they need to come an hour earlier than the start of the event. These students should be accompanied by a parent. Other students and parents should come in time for the programme. The instruction you think that is appropriate for this is
 - (A) Students should come at 9.00 a.m. and parents should come at 10.00 a.m.
 - (B) Participating students should come at 9.00 a.m. accompanied by a parent, and other parents and students should come by 10.00 a.m.
 - (C) Students who are not participating should come by 10.00 a.m. and they should not bring their parents. Participating students should come at 9.00 a.m.
 - (D) Participating students should come before 9.00 a.m. Parents who accompany them should come at 9.00 a.m. All others should come at 10.00 a.m.

Answer: (B)

7. By the beginning of the 20th century, several hypotheses were being proposed, suggesting a paradigm shift in our understanding of the universe. However, the clinching evidence was provided by experimental measurements of the position of a star which was directly behind our sun.

Which of the following inference(s) may be drawn from the above passage?

- (i) Our understanding of the universe changes based on the positions of stars
- (ii) Paradigm shifts usually occur at the beginning of centuries
- (iii) Stars are important objects in the universe
- (iv) Experimental evidence was important in confirming this paradigm shift


(A) (i), (ii) and (iv) (B) (iii) only (C) (i) and (iv) (D) (iv) only Answer: (D)

- Allswei. (D)
- 8. The Gross Domestic Product (GDP) in Rupees grew at 7% during 2012-2013. For international comparison, the GDP is compared in US Dollars (USD) after conversion based on the market exchange rate. During the period 2012-2013 the exchange rate for the USD increased from Rs. 50/ USD to Rs. 60/ USD. India's GDP in USD during the period 2012-2013

(A) increased by 5 %	(B) decreased by 13%
(C) decreased by 20%	(D) decreased by 11%

Answer: (D) Exp: Per 100 Rs final value 107 Rs $\Rightarrow \operatorname{Per} \frac{100}{50} \operatorname{Dollars} \text{ final value } \frac{107}{60}$ for 100 dollars____? $=\frac{100\times50}{100}\times\frac{107}{60}=89.16$ Discrased by 11%.

9. The ratio of male to female students in a college for five years is plotted in the following line graph. If the number of female students in 2011 and 2012 is equal, what is the ratio of male students in 2012 to male students in 2011?

Answer: (C)

Exp: Take number of female students in 2011=100

> \therefore Number of male in 2011=100 No. of female in 2012=100 No. of male in 2012=150 ratio = $\frac{150}{100}$

10. Consider the equation: $(7526)_8 - (Y)_8 = (4364)_8$, where $(X)_N$ stands for X to the base N. Find Υ.

(B) 1737 (C) 3142 (A) 1634 (D) 3162 Answer: (C) ()1 Exp:

$$(7526)_{8} - (y)_{8} = (4364)_{8}$$

$$\Rightarrow y_{8} = (7526)_{8} - (4364)_{8}$$

$$7 \stackrel{4}{\not{5}} \stackrel{(8+2=10)}{2} 6$$

$$\frac{4 \quad 3 \quad 6 \quad 4}{3 \quad 1 \quad 4 \quad 2}$$

When we have base 8, we borrow 8 instead of 10 as done in normal subtraction

Q.No. 1 - 25 Carry One Mark Each

1. Two matrices A and B are given below:

$$\mathbf{A} = \begin{bmatrix} \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{s} \end{bmatrix}; \qquad \qquad \mathbf{B} = \begin{bmatrix} \mathbf{p}^2 + \mathbf{q}^2 & \mathbf{pr} + \mathbf{qs} \\ \mathbf{pr} + \mathbf{qs} & \mathbf{r}^2 + \mathbf{s}^2 \end{bmatrix}$$

If the rank of matrix A is N, then the rank of matrix B is

(A) N / 2 (B) N - 1 (C) N (D) 2 N

Answer: (C)

Exp: Rank of a matrix is unaltered by the elementary transformations i.e., Row/column operations (Here B is obtained from A by applying row/column operations on A)
Since rank of A is N
∴ rank of B is also N

2. A particle, starting from origin at t = 0 s, is traveling along x-axis with velocity

$$v = \frac{\pi}{2} \cos\left(\frac{\pi}{2}t\right) m/s$$

At t = 3 s, the difference between the distance covered by the particle and the magnitude of displacement from the origin is _____.

Answer: 2

Exp: At t=3s, the distance covered by the particle is 1+1+1=3m and displacement from the origin is -1

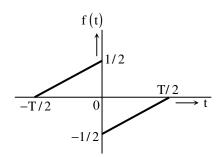
:. difference between the distance covered by the particle and the magnitude of displacement from the origin is 3-|-1|=2

3. Let, $\nabla(f v) = x^2 y + y^2 z + z^2 x$; where f and v are scalar and vector fields respectively. If v = yi + zj + xk, then $v = \nabla f$ is

(A)
$$x^2y + y^2z + z^2x$$
 (B) $2xy + 2yz + 2zx$ (C) $x + y + z$ (D) 0

Answer: (A)

Exp:
$$\nabla .(f \vec{v}) = f(\nabla . \vec{v}) + \nabla f . \vec{v}$$
(1)
Now $\nabla . \vec{v} = 0 + 0 + 0 = 0$
 \therefore (1) becomes $x^2y + y^2z + z^2x = f(0) + \vec{v} . \nabla f$
 $\therefore \vec{v} . \nabla f = x^2y + y^2z + z^2x$


4. Lifetime of an electric bulb is a random variable with density $f(x) = kx^2$, where x is measured in years. If the minimum and maximum lifetimes of bulb are 1 and 2 years respectively, then the value of k is _____.

Answer: 0.43

Exp: $f(x) = kx^2$, 1 < x < 2 and f(x) = 0, otherwise since f(x) is a p.d.f

$$\therefore \int_{1}^{2} f(x) dx = 1 \Rightarrow k \left[\frac{x^{3}}{3} \right]_{1}^{2} = 1$$
$$\Rightarrow k = \frac{3}{7} = 0.428 \approx 0.43$$

5. A function f(t) is shown in the figure.

The Fourier transform $F(\omega)$ of f(t) is

(A) real and even function of $\boldsymbol{\omega}$

(C) imaginary and odd function of $\boldsymbol{\omega}$

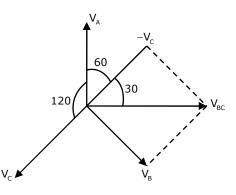
- (B) real and odd function of $\boldsymbol{\omega}$
- (D) imaginary and even function of $\boldsymbol{\omega}$

Answer: (C)

Exp; Since f(t) is odd and real

f(t) = -f(-t)

 $\oint F(\omega)$ is imaginary and odd [symmetry property of fourier Transform]


- 6. The line A to neutral voltage is $10 \ge 15^{\circ}$ V for a balanced three phase star-connected load with phase sequence ABC. The voltage of line B with respect to line *C* is given by
 - (A) $10\sqrt{3} \angle 105^{\circ} V$ (B) $10 \angle 105^{\circ} V$

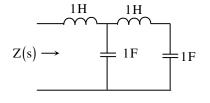
(C)
$$10\sqrt{3} \angle -75^{\circ}$$
 V (D) $-10\sqrt{3} \angle -75^{\circ}$ V

Answer: (C)

Exp: $V_L = \sqrt{3} V_{ph}$

$$= \sqrt{3} \times 10 = 10\sqrt{3}$$

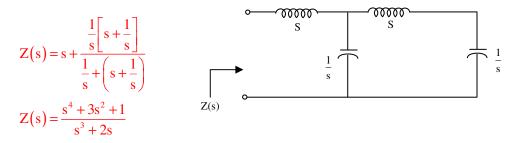
If $V_A = 10|\underline{0}$
then $V_{BC} = 10\sqrt{3}|\underline{-90}$
given $V_A = 10|\underline{15^\circ}$
 $\therefore \qquad V_{BC} = 10\sqrt{3}|\underline{-90} + \underline{15} = 10\sqrt{3}|\underline{-75}$


 $90^{\circ}V$

7. A hollow metallic sphere of radius r is kept at potential of 1 Volt. The total electric flux coming out of the concentric spherical surface of radius R(>r) is

(A) $4\pi\varepsilon_0 r$ (B) $4\pi\varepsilon_0 r^2$ (C) $4\pi\varepsilon_0 R$ (D) $4\pi\varepsilon_0 R^2$

Answer: (A)


8. The driving point impedance Z(s) for the circuit shown below is

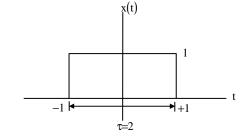
(A)
$$\frac{s^4 + 3s^2 + 1}{s^3 + 2s}$$
 (B) $\frac{s^4 + 2s^2 + 4}{s^2 + 2}$ (C) $\frac{s^2 + 1}{s^4 + s^2 + 1}$ (D) $\frac{s^3 + 1}{s^4 + s^2 + 1}$

Answer: (A)

Exp: S-Domain representation of the given circuit.

9. A signal is represented by

$$\mathbf{x}(\mathbf{t}) = \begin{cases} 1 & |\mathbf{t}| < 1\\ 1 & |\mathbf{t}| < 1 \end{cases}$$


The Fourier transform of the convolved signal y(t)=x(2t)*x(t/2) is

(A)
$$\frac{4}{\omega^2} \sin\left(\frac{\omega}{2}\right) \sin(2\omega)$$
 (B) $\frac{4}{\omega^2} \sin\left(\frac{\omega}{2}\right)$
(C) $\frac{4}{\omega^2} \sin(2\omega)$ (D) $\frac{4}{\omega^2} \sin^2 \omega$

Answer: (A)

Exp:

$$x(t) = \operatorname{rect}\left(\frac{t}{\tau}\right) = \operatorname{rect}\left(\frac{t}{2}\right)$$

$$\because \operatorname{rect}\left(\frac{t}{\tau}\right) \xrightarrow{F} \tau \,\operatorname{sa}\left(\frac{\omega\tau}{2}\right)$$

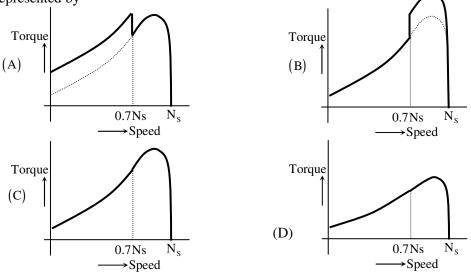
$$x(f) = \operatorname{rect}\left(\frac{t}{2}\right) \xrightarrow{F} 2 \,\operatorname{sa}(\omega) = \frac{2\sin\omega}{\omega}$$

By using the scaling property of Fourier transforms,

$$F\{x(2t)\} = F\left[\operatorname{rect}(t)\right] = 2 \times \frac{1}{2} \operatorname{sa}\left(\frac{\omega}{2}\right) = \frac{\sin\left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)}$$

Similarly, $F\left\{x\left(\frac{t}{2}\right)\right\} = F\left[\operatorname{rect}\left(\frac{t}{4}\right)\right] = 2 \times 2\operatorname{sa}(2\omega) = \frac{4\sin 2\omega}{2\omega}$
The convolved signal $y(f) = x(2t) \times x\left(\frac{t}{2}\right)$
 $\therefore F\left[y(t)\right] = Fx(2t) F\left[x\left(\frac{t}{2}\right)\right] = \left[\frac{\sin\left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)}\right] \left[\frac{4\sin 2\omega}{2\omega}\right] = \frac{4}{\omega^2} \sin\left(\frac{\omega}{2}\right) \sin(2\omega)$

10. For the signal $f(t) = 3 \sin 8\pi t + 6 \sin 12\pi t + \sin 14\pi t$, the minimum sampling frequency (in Hz) satisfying the Nyquist criterion is _____.


Answer: 14 sample / sec

- Exp: Maximum frequency content in 7Hz \Rightarrow Nyquist rate = 2×7=14 sample/sec
- 11.In a synchronous machine, hunting is predominantly damped by
(A) mechanical losses in the rotor
(C) copper losses in the stator(B) iron losses in the rotor
(D) copper losses in the rotor

Answer: (D)

Exp: In a synchronous machine the hunting will be damped by the copper losses in the rotor

12. A single phase induction motor is provided with capacitor and centrifugal switch in series with auxiliary winding. The switch is expected to operate at a speed of 0.7 Ns, but due to malfunctioning the switch fails to operate. The torque-speed characteristic of the motor is represented by

Answer: (C)

In $1-\phi$ induction motor the centrifugal switch is expected to operate at $0.7 N_s$ but it fails to Exp: operate.

Then there is no increase in the torque after $0.7 N_s$ Hence (C) is correct

13. The no-load speed of a 230 V separately excited dc motor is 1400 rpm. The armature resistance drop and the brush drop are neglected. The field current is kept constant at rated value. The torque of the motor in Nm for an armature current of 8 A is ______.

Answer: 12.5Nm

Given, V = 230 V, N = 1400 rpmExp:

$$R_a = 0$$
 $I_a = 8A$
:. Torque, $T = \frac{V.I_a}{W} = \frac{230 \times 8}{\frac{2\pi \times 1400}{60}} = 12.5 \text{ Nm}$

- 14. In a long transmission line with r, l, g and c are the resistance, inductance, shunt conductance and capacitance per unit length, respectively, the condition for distortionless transmission is
 - (A) rc = lg (B) $rc = \sqrt{l/c}$ (C) rg = lc(D) $g = \sqrt{c/1}$

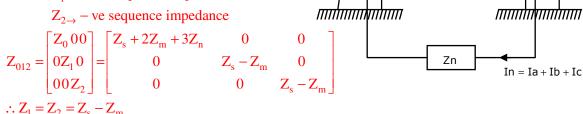
Answer: (A)

Exp For distortionless transmission line,
$$\frac{R}{L} = \frac{G}{C} \Rightarrow \boxed{RC = GL}$$

15. For a fully transposed transmission line

(A) positive, negative and zero sequence impedances are equal

- (B) positive and negative sequence impedances are equal
- (C) zero and positive sequence impedances are equal
- (D) negative and zero sequence impedances are equal


Answer: (B)

Let

Where $Z_n \rightarrow$ neutral impedance Exp:

- $Z_s \rightarrow Self$ impedance
- $Z_m \rightarrow$ mutual impedance
- $Z_0 \rightarrow$ zero sequence impedance

$$Z_1 \rightarrow +ve$$
 sequence impedance
 $Z_2 \rightarrow ve$ sequence impedance

2s

2s

2s

2m

V,

2m

2m

 V_{c}


16. A 183-bus power system has 150 PQ buses and 32 PV buses. In the general case, to obtain the load flow solution using Newton-Raphson method in polar coordinates, the minimum number of simultaneous equations to be solved is ______.s

Answer: 332

Exp: No of load |PQ| buses = 150

No of generator |PV buses =32 Minimum no of simultaneous equations = $2 \times 150 + 32 = 332$

17. The signal flow graph of a system is shown below. U(s) is the input and C(s) is the output

Assuming, $h_1 = b_1$ and $h_0 = b_0 - b_1 a_1$, the input-output transfer function, $G(s) = \frac{C(s)}{U(s)}$ of the

system is given by

(A)
$$G(s) = \frac{b_0 s + b_1}{s^2 + a_0 s + a_1}$$

(B) $G(s) = \frac{a_1 s + a_0}{a^2 + b_1 s + b_0}$
(C) $G(s) = \frac{b_1 s + b_0}{a^2 + a_1 s + a_0}$
(D) $G(s) = \frac{a_0 s + a_1}{a^2 + b_0 s + b_1}$

Answer: (C)

Exp: From the signal flow graph, $G(s) = \frac{C(s)}{U(s)}$

By mason's gain relation,

Transfer function
$$= \frac{P_1 \Delta_1 + P_2 \Delta_2 + ...}{\Delta}$$

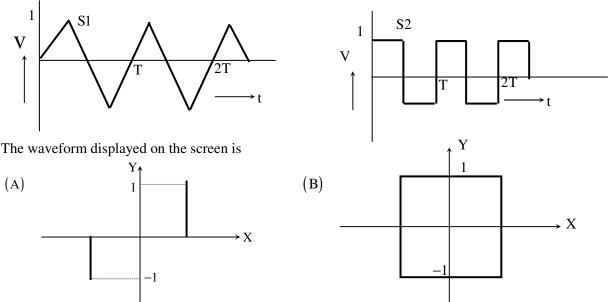
 $P_1 = \frac{h_1}{S}; P_2 = \frac{h_0}{s_2}$
 $\Delta_1 = \left[1 + \frac{a_1}{s}\right]; \Delta_2 = 1; \quad \Delta = 1 + \frac{a_1}{s} + \frac{a_0}{s^2}$
Transfer function $= \frac{\frac{h_1}{s} \left[1 + \frac{a_1}{s}\right] + \frac{b_0}{s^2}}{1 + \frac{a_1}{s} + \frac{a_0}{s^2}} = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$

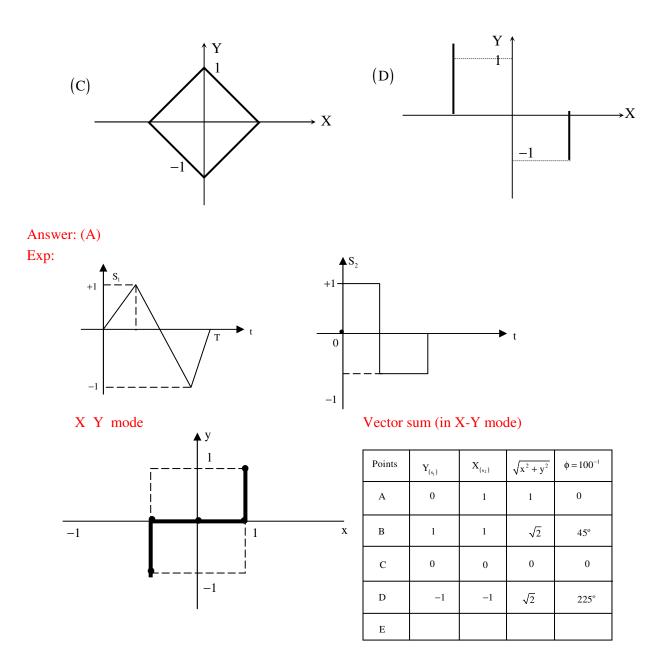
18. A single-input single-output feedback system has forward transfer function G(s) and feedback transfer function H(s) It is given that |G(s).H(s)|<1. Which of the following is true about the stability of the system?

(A) The system is always stable

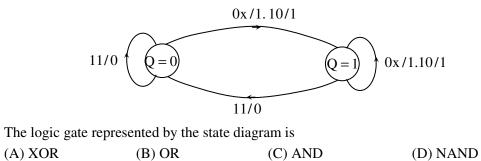
- (B) The system is stable if all zeros of G(s).H(s) are in left half of the s-plane
- (C) The system is stable if all poles of G(s).H(s) are in left half of the s-plane
- (D) It is not possible to say whether or not the system is stable from the information given

Answer: (A)


- 19. An LPF wattmeter of power factor 0.2 is having three voltage settings 300 V, 150 V and 75 V, and two current settings 5 A and 10 A. The full scale reading is 150. If the wattmeter is used with 150 V voltage setting and 10 A current setting, the multiplying factor of the wattmeter is _____.
- Answer: 2
- Exp: In LPF wattmeter, T_d on the moving system is small owing to low power factor even when the current and potential coils are fully excited. Also the errors introduced due to inductance of pressure coil tend to be large at low power factors. So for calculating multiplying factor for a low p.f. wattmeter, p.f. mentioned on the wattmeter should be taken into account. Therefore,

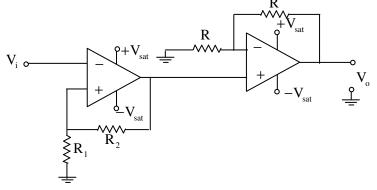

Multiplying Factor = (Current range used*Voltage range used*p.f)/Power at FSD

Given, Power at Full scale reading = 150


Current Range used = 10 A Voltage Range used = 150 V Power Factor = 0.2 Therefore, m = $\frac{10 \times 150 \times 0.2}{150}$ = 2

20. The two signals S1 and S2, shown in figure, are applied to Y and X deflection plates of an oscilloscope.

21. A state diagram of a logic gate which exhibits a delay in the output is shown in the figure, where X is the don't care condition, and Q is the output representing the state.



Answer	: (D)
Exp:	True Table

Α	В	Y	Q
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

If you will observe this true table corresponding to state diagram, then if any input is 0 output is 1 and if all the inputs are one output is zero it means it corresponds to NAND gate.

22. An operational-amplifier circuit is shown in the figure.

The output of the circuit for a given input v_i is

$$(A) - \left(\frac{R_2}{R_1}\right) v_t \qquad (B) - \left(1 + \frac{R_2}{R_1}\right) v_t \qquad (C) \left(1 + \frac{R_2}{R_1}\right) v_t \qquad (D) + V_{sat} \text{ or } - V_{sat}$$

Answer: (D)

Exp: Output of first Op-Amp is $+V_{sat}$

2nd Op-Amp circuit is non-inverting amplifier

$$\therefore \mathbf{V}_0 = \left(1 + \frac{\mathbf{R}}{\mathbf{R}}\right) \mathbf{V}_{\text{sat}} > \mathbf{V}_{\text{sat}}$$
$$\therefore \mathbf{V}_0 = \pm \mathbf{V}_{\text{sat}}$$

23. In 8085A microprocessor, the operation performed by the instruction LHLD $2100_{\rm H}$ is

(A) (H) $\leftarrow 2I_{H}$, (L) $\leftarrow 00_{H}$ (B) (H) $\leftarrow M(2I00_{H}), (L) \leftarrow M(2101_{H})$ (C) (H) $\leftarrow M(2I01_{H}), (L) \leftarrow M(2100_{H})$ (D) (H) $\leftarrow 00_{H}, (L) \leftarrow 21_{H}$

Answer: (C)

Exp: Instruction given is:

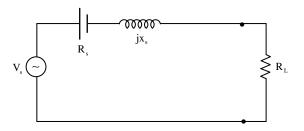
LHLD 2100H

The operation performed by this instruction is load HL register pair from the specified address in the instruction, directly. HL register pair is required 2-Byte data, but in 8085 at one address it contains only one-byte data, so this instruction will access two memory locations.

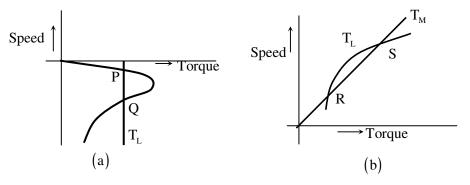
So, first byte address (i.e., 2100H) is mentioned in instruction itself and by default second byte data is accessed from the next location (i.e., 2101H). Lower address data will be copied to lower byte (i.e., $(L) \leftarrow M(2100H)$) and higher address data will be copied to higher byte (i.e., $(H) \leftarrow M(2101H)$)

- 24. A non-ideal voltage source V_s has an internal impedance of Z_s If a purely resistive load is to be chosen that maximizes the power transferred to the load, its value must be
 - (A) 0

(B) real part of Z_s


(D) complex conjugate of Z_s

Answer: (C)


Exp: For minimum power transferred to the load, Its value must be $R_L = |Z_s|$

 $R_{\rm L} = \sqrt{R_{\rm S}^2 + X_{\rm S}^2}$

(C) magnitude of Z_s

25. The torque-speed characteristics of motor (T_M) and load (T_L) for two cases are shown in the figures (a) and (b). The load torque is equal to motor torque at points P, Q, R and S

The stable operating points are

(A) P and R (B) P and S (C) Q and R (D) Q and S

Answer: (B)

Exp: From the given torque speed characteristics of motor (T_m) and $load(T_L)$ at the points 'P' and 'S' the motor stable. Since at low value of slip the motor is stable.

Q.No. 26 - 55 Carry Two Marks Each

26. Integration of the complex function $f(z) = \frac{z^2}{z^2 - 1}$, in the counterclockwise direction, around |z - 1| = 1, is

(A) $-\pi i$ (B) 0 (C) πi (D) $2\pi i$

Answer: (C)

Exp:

Z = -1,1 are the simple poles of f(z) and z = 1 lies inside C : |z-1| = 1

$$\therefore \oint_{C} f(z) dz = 2\pi i \times \left[\operatorname{Res}_{z=1} f(z) \right]$$
$$= 2\pi i \times \left[\operatorname{Lt}_{z \to 1} (z-1) f(z) \right]$$
$$= 2\pi i \times \left[\operatorname{Lt}_{z \to 1} \frac{z^{2}}{z+1} \right] = \pi i$$

27. The mean thickness and variance of silicon steel laminations are 0.2 mm and 0.02 respectively. The varnish insulation is applied on both the sides of the laminations. The mean thickness of one side insulation and its variance are 0.1 mm and 0.01 respectively. If the transformer core is made using 100 such varnish coated laminations, the mean thickness and variance of the core respectively are

(A) 30 mm and 0.22 (B) 30 mm and 2.44

(C) 40 mm and 2.44 (D) 40 mm and 0.24

Answer: (D) [Key form IIT website]

Exp: mean thickness of silicon steel laminations= 0.2 mm

variance of silicon steel lamination = 0.02

Vanish insulation applied both sides of laminations

Mean thickness of one side insulation=0.1 mm

variance of one side insulation=0.01

Transformer core made with 100 vanish coated laminations

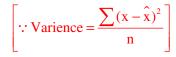
Mean thickness of two side insulation applied to core

=2×0.1=0.2mm

: mean thickness of one lamination

= mean thickness of silicon steel + mean thickness of two side insulation

= 0.2 + 0.2 = 0.4 mm


100 laminations are using so

Mean thickness of core=0.4×100=40 mm

To find thickness of each lamination

From variance

$$\frac{(d_1 - 0.2)^2 + (d_2 - 0.2)^2 + \dots + (d_{100} - 0.2)^2}{100} = 0.02$$

All have same thickness $\therefore \frac{100 \times (d-0.2)^2}{100} = 0.02$ (d-0.2)=0.1414 Each lamination d=0.3414mm Thickness Similarly $\frac{(x_1 - 0.1)^2 + ... + (x_{100} 0.1)^2}{100} = 0.01$ Each side lamination is equal (Assume) $\frac{100 \times (x-0.1)^2}{100} = 0.01$ x - 0.1 = 0.1 Each side x=0.2 mm Insulation thickness Two side insulation thickness = 0.4 mm Each lamination (insulation = 0.3414 + 0.4+ si steel) thickness = 0.7414 mm

Variance of overall core

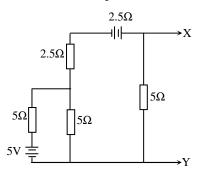
$$=\frac{100\times(0.7414-0.4)^2}{100}=0.1166$$

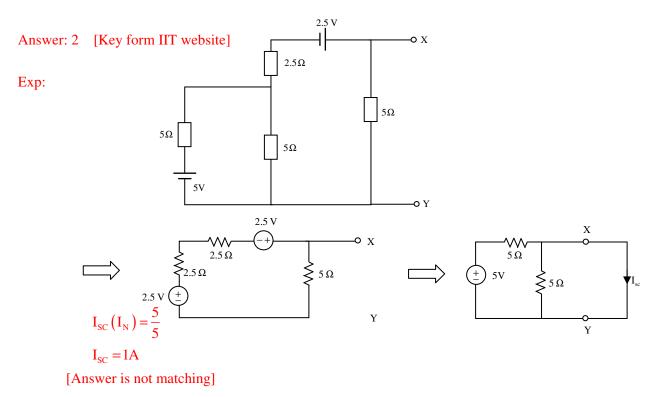
... mean thickness & variance of the core=40mm and 0.1166 [No option is matching]

28. The function $f(x) = e^x - 1$ is to be solved using Newton-Raphson method. If the initial value of x0 is taken as 1.0, then the absolute error observed at 2^{nd} iteration is _____.

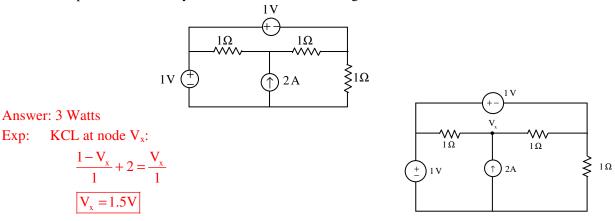
Answer: 0.06

Exp: Clearly, x = 0 is a root of the equation $f(x) = e^x - 1 = 0$

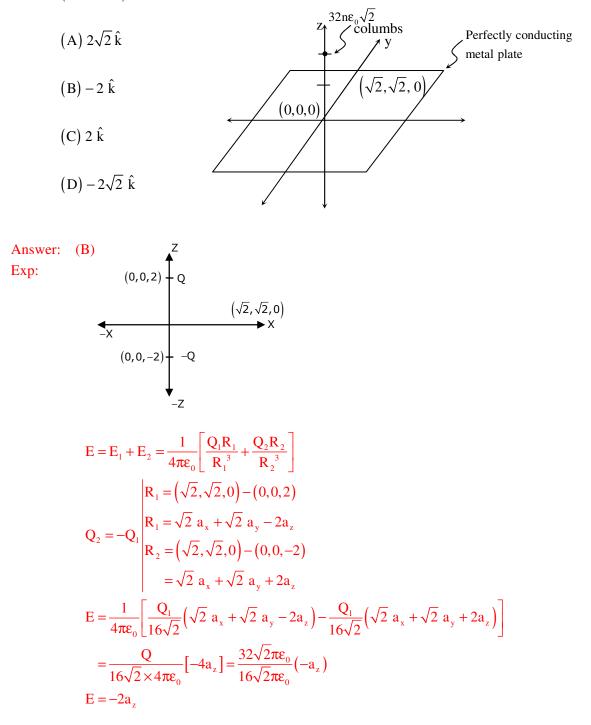

$$f'(x) = e^x$$
 and $x_0 = 1.0$


Using Newton raphson method, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{(e-1)}{e} = \frac{1}{e}$

and
$$x_2 = x_1 - \frac{f(x_1)}{f^1(x_1)} = \frac{1}{e} - \frac{\left(e^{\frac{1}{e}} - 1\right)}{e^{\frac{1}{e}}} = \frac{1}{e} + \frac{1}{e^{\frac{1}{e}}} - 1 = 0.37 + 0.69 - 1 = 0.06$$


 \therefore absolute error at 2nd iteration is |0 - 0.06| = 0.06

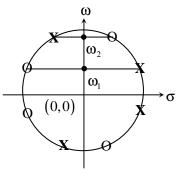
29. The Norton's equivalent source in amperes as seen into the terminals X and Y is _____.



30. The power delivered by the current source, in the figure, is _____.

Power delivered by current source is $= 2 \times 1.5 = 3$ watts

31. A perfectly conducting metal plate is placed in x-y plane in a right handed coordinate system. A charge of $+32\pi\epsilon_0\sqrt{2}$ columbs is placed at coordinate (0, 0, 2). ϵ_0 is the permittivity of free space. Assume $\hat{1}, \hat{j}, \hat{k}$ to be unit vectors along x, y and z axes respectively. At the coordinate . $(\sqrt{2}, \sqrt{2}, 0)$, the electric field vector \vec{E} (Newtons/Columb) will be


- 32. A series RLC circuit is observed at two frequencies. At $\omega_1 = 1 \text{ k rad/s}$, we note that source voltage $V_1 = 100 \angle 0^0 \text{ V}$ results in current $I_1 = 0.03 \angle 31^0$ A. At $\omega_2 = 2 \text{ krad/s}$, the source voltage $V_2 = 100 \angle 0^\circ \text{ V}$ results in a current $I_2 = 2 \angle 0^\circ \text{ V}$ A. The closest values for R,L,C out of the following options are
 - (A) $R = 50\Omega; L = 25 \text{ mH}; C = 10\mu\text{F};$ (B) $R = 50\Omega; L = 10 \text{ mH}; C = 25\mu\text{F};$ (C) $R = 50\Omega; L = 50 \text{ mH}; C = 5\mu\text{F}; a$ (D) $R = 50\Omega; L = 5 \text{ mH}; C = 50\mu\text{F};$

Answer: B

Exp: Given
$$V_1 = 100 [\underline{0}^{\circ}V; I_1 = 0.03]\underline{31}^{\circ}$$
 at $\omega_1 = 1000 \text{ r/sec}$
 $V_2 = 100[\underline{0}^{\circ}V; I_2 = 2]\underline{0}^{\circ}$ at $\omega_2 = 2000 \text{ r/sec}$
i.e. $R = \frac{\vartheta_2}{I_2} = \frac{100}{2} \Rightarrow 50\Omega$
 $Z = \frac{V_1}{I_1} \Rightarrow \frac{100[\underline{0}^{\circ}}{0.03]\underline{31}^{\circ}} \Rightarrow R + j(X_L - X_C)$
 $\phi = 31^{\circ} \Rightarrow \tan^{-1}\left(\frac{X_L - X_C}{R}\right)$
 $\Rightarrow \tan 31^{\circ} = \left(\frac{X_L - X_C}{R}\right)$
 $\tan 31^{\circ} = \frac{\left(\omega_1 L - \frac{1}{\omega_1 C}\right)}{R}$
 $\Rightarrow \left[\omega_1 L - \frac{1}{\omega_1 C}\right] = 0.600 \times 50 \Rightarrow \left[\omega_1 L - \frac{1}{\omega_1 C}\right] = 30.04 \text{ q} \qquad \dots(1)$
 $\omega_2 L - \frac{1}{\omega_2 C} = 0 \qquad \dots(2)$
 $\omega_1 = 1000 \text{ r/sec} ; \omega_2 = 2000 \text{ r/sec}$
from 1 and 2, C = 25 \mu F
 $L = 10 \text{ mH}$

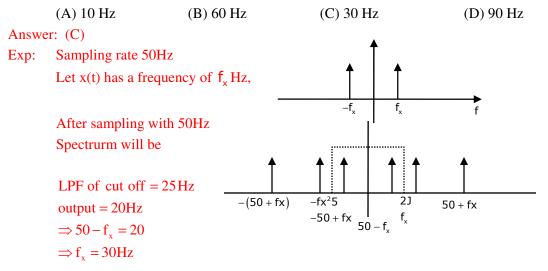
- 33. A continuous-time LTI system with system function $H(\omega)$ has the following pole-zero plot. For this system, which of the alternatives is TRUE?
 - (A) $|H(0)| > |H(\omega)|; |(\omega)| > 0$
 - (B) $|H(\omega)|$ has multiple maxima, at ω_1 and ω_2
 - (C) $|H(\omega)| < |H(\omega)|; |(\omega)| > 0$
 - (D) $|H(\omega)| = \cos \tan t; -\infty < \omega < \infty$

Answer: (D)

The transfer function can be written as Exp:

The transfer function can be written as

$$H(s) = K \frac{(s - z_{1})(s - z_{1} *)(s - z_{2})(s - z_{2} *)}{(s - p_{1})(s - p_{1} *)(s - p_{2})(s - p_{2} *)}$$

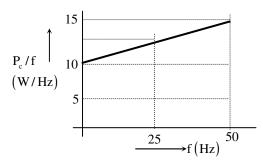

$$|H(j\omega)|$$

$$= K \frac{\sqrt{\omega^{2} + |z_{1}|^{2}} \sqrt{\omega^{2} + |z_{1}|^{2}} \sqrt{\omega^{2} + |z_{2}|^{2}} \sqrt{\omega^{2} + |z_{2}|^{2}} \sqrt{\omega^{2} + |z_{2}|^{2}}}{\sqrt{s^{2} + |p_{1}|^{2}} \sqrt{\omega^{2} + |p_{2}|^{2}} \sqrt{\omega^{2} + |p_{2}|^{2}}}$$
from figure $|z_{1}| = |p_{2}|$

$$|z_{2}| = |p_{1}|$$

$$\Rightarrow (H(j\omega)) = K[constant]$$

34. A sinusoid x(t) of unknown frequency is sampled by an impulse train of period 20 ms. The resulting sample train is next applied to an ideal lowpass filter with a cutoff at 25 Hz. The filter output is seen to be a sinusoid of frequency 20 Hz. This means that x(t) has a frequency of


35. A differentiable non constant even function x(t) has a derivative y(t), and their respective Fourier Transforms are $X(\omega)$ and $Y(\omega)$. Which of the following statements is TRUE?

(A) $X(\omega)$ and $Y(\omega)$ are both real. (B) $X(\omega)$ is real and $Y(\omega)$ is imaginary.

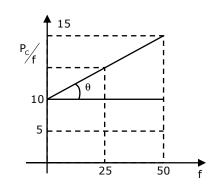
(C) $X(\omega)$ and $Y(\omega)$ are both imaginary. (D) $X(\omega)$ is imaginary and $Y(\omega)$ is real.

Exp:
$$y(t) = \frac{d}{dt}x(t)$$

 \downarrow
 $Y(\omega) = j\omega \times (\omega)$
 \Rightarrow if $X(\omega)$ is real, $Y(\omega)$ is imaginary

36. An open circuit test is performed on 50 Hz transformer, using variable frequency source and keeping V/f ratio constant, to separate its eddy current and hysteresis losses. The variation of core loss/frequency as function of frequency is shown in the figure

The hysteresis and eddy current losses of the transformer at 25 Hz respectively are

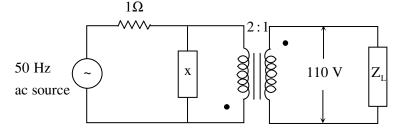

(B) 250 W and 62.5W

(D) 312.5 W and 250 W

- (A) 250 W and 2.5 W
- (C) 312.5 W and 62.5 W

Answer: (B)

Exp: Given 50Hz transformer Here $\frac{-v}{f}$ ratio maintains constant $\therefore W_n = Af; W_e = B - f^2$ where, A = 10 & $B = \tan \theta = \frac{5}{50} = 0.1$ $\therefore W_n$ at 25Hz = 10×25 = 250 W W_e at 25Hz = 0.1×(25)² = 62.5 W


37. A non-salient pole synchronous generator having synchronous reactance of 0.8 pu is supplying 1 pu power to a unity power factor load at a terminal voltage of 1.1 pu. Neglecting the armature resistance, the angle of the voltage behind the synchronous reactance with respect to the angle of the terminal voltage in degrees is _____.

Answer: 33.61° Exp: Given, P = 1 P.u; $V_t = 1.1$ P.u; $X_s = 0.8$ P.u $P_f = 1.$ $\therefore I_a = \frac{P}{V \cos \phi} = \frac{1}{1.1 \times 1} = 0.91$ $\therefore E = \sqrt{(V \cos \phi + I_a R_a)^2 + (V \sin \phi + I_a X_s)^2}$ $E = \sqrt{(1.1 \times 1 + 0)^2 + (0 + 0.91 \times 0.8)^2} = 1.314$ V \therefore From power equation, $P = \frac{EV}{X_s} \sin \delta$ $\Rightarrow 1 = \frac{1.314 \times 1.1}{0.8} \sin \delta \Rightarrow \boxed{\delta = 33.61^\circ}$

- 38. A separately excited 300 V DC shunt motor under no load runs at 900 rpm drawing an armature current of 2 A. The armature resistance is 0.5Ω and leakage inductance is 0.01 H. When loaded, the armature current is 15 A. Then the speed in rpm is _____
- Answer: 880 rpm
- Exp: Given $300V_1$ N₁ = 900 rpm

 $R_{a} = 0.5Ω$ Ia₁ = 2A; Ia₂ = 15A ∴ Eb₁ = 300 - 2×0.5 = 299V Eb₂ = 300 - 15×0.5 = 292.5V ∴ $\frac{N_{2}}{N_{1}} = \frac{Eb_{2}}{Eb_{1}} \Rightarrow N_{2} = 900 \times \frac{2925}{29} = 880 \text{ rpm}$

39. The load shown in the figure absorbs 4 kW at a power factor of 0.89 lagging.

Assuming the transformer to be ideal, the value of the reactance X to improve the input power factor to unity is _____.

Answer: 24

Exp: Given, $V_2 = 110$ Load power, $P_2 = 4 \text{ kW}$ $pf = \cos \theta_2 = 0.89$ $I_2 = \frac{\text{load power}}{V_2 \times \cos \theta_2} = \frac{4000}{110 \times 0.89} = 40.858 \text{ A}$ primary current, $I_1 = \text{K } I_2$ $= \left(\frac{N_2}{N_1}\right)I_2 = \frac{1}{2} \times 40.858$ = 20.429 Ato improve input power factor units, Reactive power $= \phi = \frac{V_1^2}{X}$ $\therefore \text{ Reactance, } X = \frac{V_1^2}{\phi} = \frac{220^2}{220 \times 20.429 \times \sin(27)} = 23.6\Omega.$ 40. The parameters measured for a 220V/110V, 50 Hz, single-phase transformer are:

Self inductance of primary winding = 45 mH Self inductance of secondary winding = 30 mH Mutual inductance between primary and secondary windings = 20 mH

Using the above parameters, the leakage (L_{l1}, L_{l2}) and magnetizing (L_m) inductances as referred to primary side in the equivalent circuit respectively, are

(A) 5mH, 20mH and 40mH	(B) 5mH, 80mH and 40mH

(C) 25mH, 10mH and 20mH (D) 45mH, 30mH and 20mH

Answer: (B)

Exp: Given, 220/110v, 50Hz.

 $L_1 = 45 \text{mH}, L_2 = 30 \text{mH}$

M=20 mH.

Leakage inductancy are,

 $Ll_1 = L_1 - 2(m) = 45 - 2(20)$

$$=5 \text{ mH}$$

 $Ll_2 = L_2 - 2(m)$

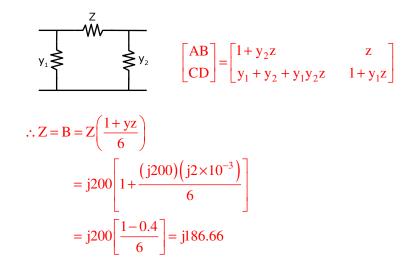
 $= 30 - 2(20) = 10 \,\mathrm{mH}$

But refered to primary,

$$Ll_{2}^{'} = \frac{30}{\left(\frac{1}{2}\right)^{2}} - 2(20)$$
$$= 120 - 40 = 80 \text{mH}$$

41. For a 400 km long transmission line, the series impedance is $(0.0 + j0.5)\Omega/km$ and the shunt admittance is $(0.0 + j5.0) \mu mho/km$. The magnitude of the series impedance (in O) of the equivalent p circuit of the transmission line is _____.

Answer: 186.66

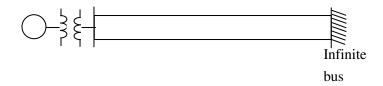

Exp: For a long transmission line,

$$\begin{bmatrix} AB \\ CD \end{bmatrix} = \begin{bmatrix} 1 + \frac{yz}{2} & z \begin{bmatrix} 1 + \frac{yz}{6} \end{bmatrix} \\ y \begin{bmatrix} 1 + \frac{yz}{6} \end{bmatrix} & 1 + \frac{yz}{2} \end{bmatrix}$$

Where z= total series impedance = $j0.5\Omega / km \times 400 km = j200\Omega$

$$y = j5s \ 10^{-6} \ / \ km = j5 \times 10^{-6} \times 400s = j2 \times 10^{-3} \ simen$$

ABCD parameters of a π circuit is



42. The complex power consumed by a constant-voltage load is given by $(P_1 + jQ_1)$ where, $1kW \le P_1 \le 1.5kW$ and $0.5kVAR \le Q_1 \le 1kVAR$

A compensating shunt capacitor is chosen such that $|Q| \le 0.25$ kVAR where Q is the net reactive power consumed by the capacitor-load combination. The reactive power (in kVAR) supplied by the capacitor is _____.

Answer: 0.75

- Exp: Net reactive power consumed by capacitor-load combination is 0.25 KVAR.
 Reactive power required for load is 1KVAR
 Reactive power supplied by capacitor is 0.75 KVAR.
- 43. The figure shows the single line diagram of a single machine infinite bus system.

The inertia constant of the synchronous generator H =5 MW-s/MVA. Frequency is 50 Hz.

Mechanical power is 1 pu. The system is operating at the stable equilibrium point with rotor angle δ equal to 30°. A three phase short circuit fault occurs at a certain location on one of the circuits of the double circuit transmission line. During fault, electrical power in pu is P_{max} sin δ If the values of δ and $d\delta/dt$ at the instant of fault clearing are 45° and 3.762 radian/s respectively, then P_{max} (in pu) is _____.

Answer: 0.24

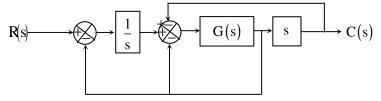
Exp: Given, $H = 5 MW - \frac{S}{MVA}$ f = 50 Hz $P_m = 1pu$ $\delta_0 = 30^\circ$

At the instant of fault clearing,

$$\delta = 45^{\circ}; \frac{d\delta}{dt} = 3.762 \text{ rad/s}$$

$$\therefore \frac{d^{2}\delta}{dt^{2}} = \frac{1}{M} [p_{m} - p_{3}]$$

$$\frac{d\delta}{dt} = \left[\frac{2}{M} \int_{\delta_{0}}^{\delta} (p_{m} - p_{e}) ds\right]^{\frac{1}{2}} \left[\frac{d}{dt} \left(\frac{ds}{dt}\right)^{2} = 2\left(\frac{d\delta}{dt}\right) \left(\frac{d^{2}\delta}{dt^{2}}\right)\right]$$


$$= \left[\frac{2}{H/\pi f} \int_{30}^{45} (1 - p_{max} \sin \delta) ds\right]^{\frac{1}{2}}$$

$$3.762 = \left[\frac{2 \times \pi \times 50}{5} (\delta + p_{max} \cos \delta)_{30}^{45}\right]^{\frac{1}{2}}$$

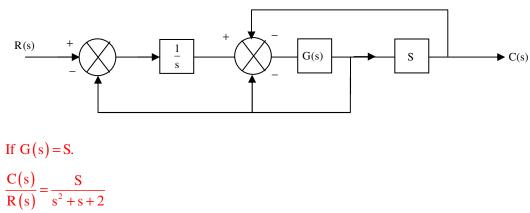
$$\Rightarrow 14.152 = 20\pi \{(45^{\circ} - 30^{\circ}) + p_{max} (\cos 45^{\circ} - \cos 30^{\circ})\}$$

$$\Rightarrow p_{max} = 0.24 \text{ p.u}$$

44. The block diagram of a system is shown in the figure

If the desired transfer function of the system is

(B) s


$$\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})} = \frac{\mathrm{s}}{\mathrm{s}^2 + \mathrm{s} + 1}$$

then G(s) is

(C) 1/s (D)
$$\frac{-s}{s^3 + s^2 - s - 2}$$

Answer: (B)

Exp:

45. Consider the system described by following state space equations

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}; \ \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

If *u* is unit step input, then the steady state error of the system is

(A) 0 (B)
$$1/2$$
 (C) $2/3$ (D) 1

Answer: (A)

Exp: Transfer function
$$\Rightarrow C[SI - A]^{-1}$$
.B.

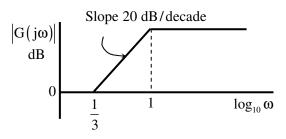
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{S} & -1 \\ 1 & (\mathbf{s}+1) \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Transfer function $=\frac{1}{s^2 + s + 1}$

$$\frac{G(s)}{1+G(s)} = \frac{1}{s^2 + s + 1}$$
$$\Rightarrow G(s) = \frac{1}{s^2 + s}$$

Steady state error for unit step

$$e_{ss} = \frac{A}{1 + K_{p}}$$


$$e_{ss} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

$$e_{ss} = \frac{1}{1 + \lim_{s \to 0} \frac{1}{s^{2} + s}}$$

$$e_{ss} = \frac{1}{1 + \infty}$$

$$[e_{ss} = 0]$$

46. The magnitude Bode plot of a network is shown in the figure

The maximum phase angle .m and the corresponding gain Gm respectively, are

 $(A) - 30^{\circ}$ and 1.73dB $(B) - 30^{\circ}$ and 4.77dB $(C) + 30^{\circ}$ and 4.77dB $(D) + 30^{\circ}$ and 1.73dB

Answer: C

Exp:
$$G(s) = k \cdot \frac{(1+3s)}{(1+s)}$$

$$G(s) = \frac{3k \cdot (s+\frac{1}{3})}{(s+1)}$$
Here k = 1
$$\frac{1}{T} = \frac{1}{3} \Rightarrow \frac{1}{\alpha T} = 1$$

$$\omega_{m} = \frac{1}{\sqrt{3}}; \alpha = \frac{1}{3}$$

$$G(s)|_{\omega = \frac{1}{\sqrt{3}}} = \frac{\sqrt{4}}{\sqrt{\frac{4}{3}}} \Rightarrow \sqrt{3}$$

$$G_{m}|_{in dB} = 20 \log \sqrt{3} = 4.77 \text{ dB}$$

$$\phi_{m} = \sin^{-1} \left[\frac{1-\alpha}{1+\alpha}\right]$$

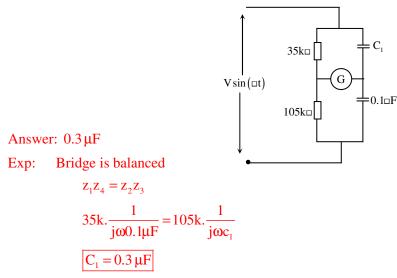
$$\alpha = \frac{1}{3} = \sin^{-1} \left[\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right] = \sin^{-1} \left(\frac{1}{2}\right)$$

$$\phi_{m} = 30^{\circ}$$

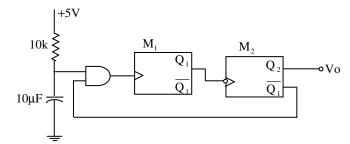
47. A periodic waveform observed across a load is represented by

$$V(t) = \begin{cases} 1 + \sin \omega t & 0 \le \omega t < 6\pi \\ -1 + \sin \omega t & 6\pi \le \omega t < 12\pi \end{cases}$$

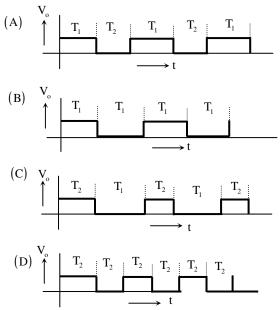
The measured value, using moving iron voltmeter connected across the load, is

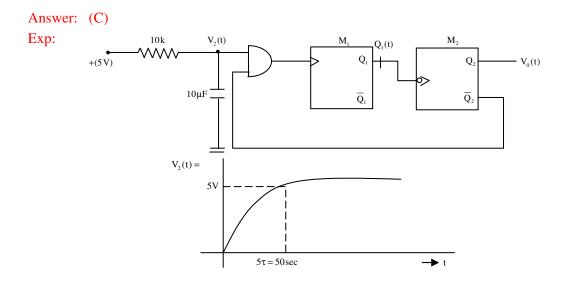

(A)
$$\sqrt{\frac{3}{2}}$$
 (B) $\sqrt{\frac{2}{3}}$ (C) $\frac{3}{2}$ (D) $\frac{2}{3}$

Answer: (A)

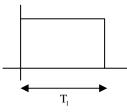

Exp: M.I instrument reads RMS value

$$=\sqrt{\left(1\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}} =\sqrt{1+\frac{1}{2}} \Rightarrow \sqrt{\frac{3}{2}}$$

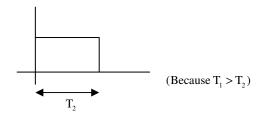

48. In the bridge circuit shown, the capacitors are loss free. At balance, the value of capacitance C_1 in microfarad is _____.



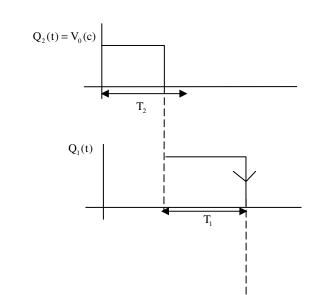
49. Two monoshot multivibrators, one positive edge triggered (M_1) and another negative edge triggered (M_2) , are connected as shown in figure

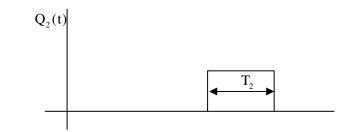


The monoshots M_1 and M_2 when triggered produce pulses of width T_1 and T_2 respectively, where $T_1>T_2$. The steady state output voltage v_o of the circuit is

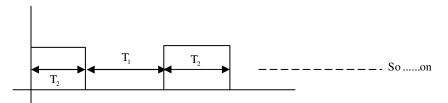


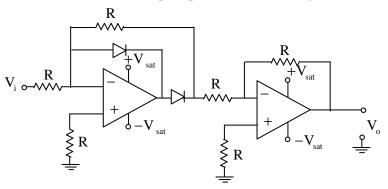
 \rightarrow given M₁ mono-stable multivibrator generates pulse width T₁.

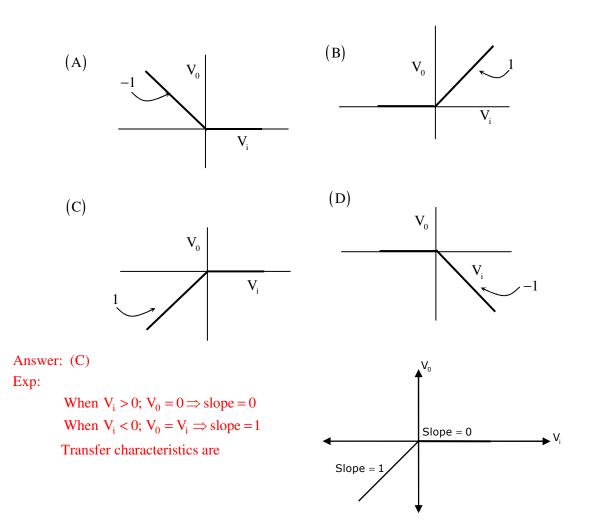

 M_2 mono-stable multivibrator generates public width T_2 .

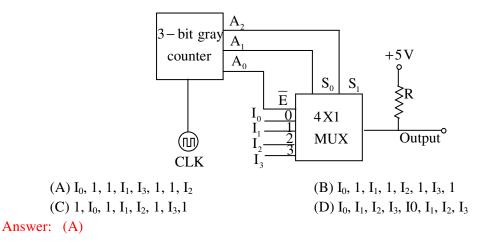

(1) Assume Initially if $Q_2 = 1$ (high state), then $\overline{Q}_2 = 0$ (low state)

Then output of AND gate is low, M_1 (multi vibrator) it does not generates pulse width T_1 (Because it is positive edge triggered),


(2) Output (Q₂), after T₂ duration, it is low (comes to stable state then \overline{Q}_2 is high, the output of And gate is high now, then M₁ multivibrator generates pulse width T₁ (Because it positive edge triggered), At this time Q₂ does not generates pulse width T₂ (Because it negative edge Triggered) then, at the end of T₁ pulse, M₂ multi vibrator generates T₂ pulse width (Because it is negative edge triggered)

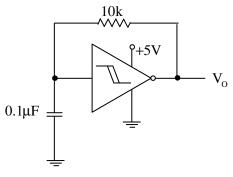

Then again $Q_2(t)$ is high at the end of T_1 pulse


Overall output wave form


50. The transfer characteristic of the Op-amp circuit shown in figure is

(1)

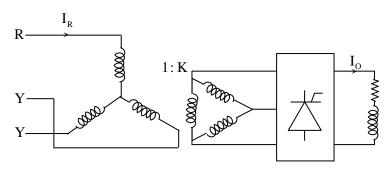
51. A 3-bit gray counter is used to control the output of the multiplexer as shown in the figure. The initial state of the counter is 000_2 . The output is pulled high. The output of the circuit follows the sequence

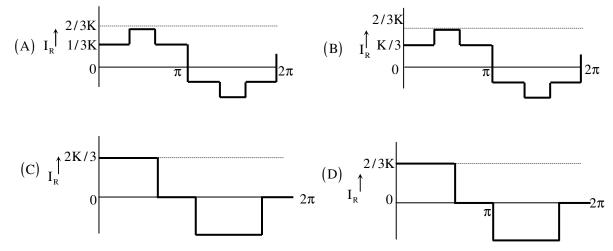


T		
EX	n	
	М	

Decimal	Binary	Gray	Output
		\mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}	
0	000	000	I_0
1	0 0 1	0 0 1	1
2	010	011	1
3	011	010	I_1
4	100	1 1 0	I ₃
5	101	1 1 1	1
6	110	101	1
7	111	100	I_2

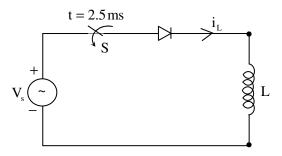
 A_0 is mapped to \overline{E} of 4:1 MUX it means when $A_0(\overline{E})$ will be low then MUX will be enabled and as per $S_0(A_1)$ and $S_2(A_2)$ will produce the output and when $A_0(\overline{E})$ will be high then 4:1 MUX will be disabled and disabled output will be 1.


52. A hysteresis type TTL inverter is used to realize an oscillator in the circuit shown in the figure.

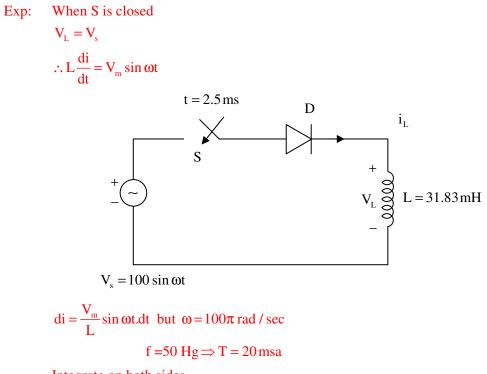

If the lower and upper trigger level voltages are 0.9 V and 1.7 V, the period (in ms), for which output is LOW, is _____.

```
Answer: 0.66
```

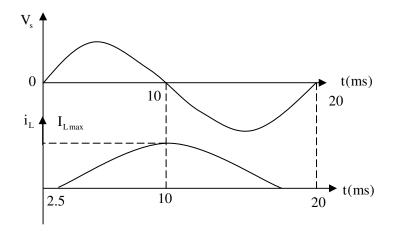
Exp: Given LTP = 0.9 UTP = 1.7 $V_{c}(t) = V_{max} + (V_{initial} - V_{max})e^{-t/RC}$ LTP = 0 + (1.7 - 0) $e^{-t/RC}$ = 0.9 $\Rightarrow t = 0.635 \text{ ms}$ (Given R = 10k, C = 0.1 µF). 53. A three-phase fully controlled bridge converter is fed through star-delta transformer as shown in the figure.



The converter is operated at a firing angle of 300. Assuming the load current (I0) to be virtually constant at 1 p.u. and transformer to be an ideal one, the input phase current waveform is

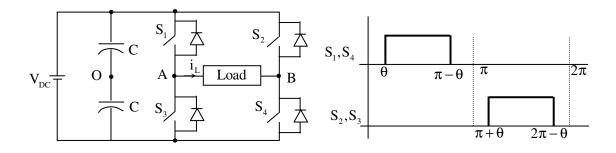


Answer: (B)

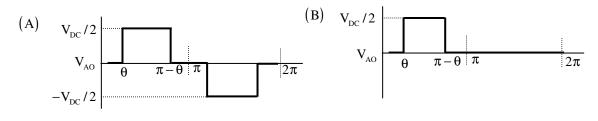

54. A diode circuit feeds an ideal inductor as shown in the figure. Given $v_s = 100 \sin(\omega t) V$, where $\omega = 100\pi rad/s$, and L = 31.83 mH. The initial value of inductor current is zero. Switch S is closed at t = 2.5 ms. The peak value of inductor current i_L (in A) in the first cycle is _____.

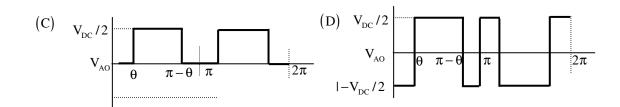
Answer: 17.07A

Integrate on both sides



$$\int_{2.5 \times 10^{-3}}^{10 \times 10^{-3}} di = \frac{V_m}{L} \int_{2.5 \times 10^{-3}}^{10 \times 10^{-3}} \sin \omega t. dt$$


Current I_c is changing from 0 to mgx density their period.


$$\therefore I_{\max} = -\frac{V_m}{\omega L} [\cos \omega t]_{2.5 \times 10^{-3}}^{2.5 \times 10^{-3}} = -\frac{V_m}{\omega L} [\cos(100\pi \times 10 \times 10^{-3}) - \cos(100\pi \times 2.5 \times 10^{-3}] \\ = -\frac{V_m}{\omega L} (\cos \pi - \cos \frac{\pi}{4}) \\ I_{\max} = \frac{100}{100\pi \times 31.83 \times 10^{-3}} [1 + 0.707] \\ \therefore \overline{I_{\max} = 17.07A}$$

55. A single-phase voltage source inverter shown in figure is feeding power to a load. The triggering pulses of the devices are also shown in the figure.

If the load current is sinusoidal and is zero at 0, x, 2x..., the node voltage V_{AO} has the waveform

Answer: (D)