

DPP No. 74

Total Marks : 23

Max. Time : 24 min.

Topics : Permutation & Combination, Probability

Type of Questions				
Single choice Objective (no negative marking) Q.1,2,3,4,5	(3 marks, 3 min.)	[15,	15]	
Fill in the Blanks (no negative marking) Q.6	(4 marks, 4 min.)	[4,	4]	
Subjective Questions (no negative marking) Q.7	(4 marks, 5 min.)	[4,	5]	

1. 6 chocolates out of 8 different brands available in the market are choosen, what is the probability that all the chocolates are of different brands.

(A)
$$\frac{{}^{8}C_{6}}{{}^{13}C_{6}}$$
 (B) $\frac{{}^{8}C_{6}}{{}^{13}C_{8}}$ (C) $\frac{{}^{8}C_{6}}{8^{6}}$ (D) I

(D) None of these

2. 18 points are indicated on the perimeter of a triangle ABC (see figure). If three points are choosen probability it will form a triangle.

(A) $\frac{331}{816}$ (B) $\frac{1}{2}$ (C) $\frac{355}{408}$ (D) $\frac{711}{816}$

3. A five digits number of the form x y z y x is choosen, probability that x < y is :

(A)
$$\frac{35}{90}$$
 (B) $\frac{6}{15}$ (C) $\frac{19}{45}$ (D) $\frac{13}{30}$

4. Find the probability in which 5 X's can be placed in the squares of the figure so that no row remains empty is

5. The probability of choosing randomly a number which is from 1 to 90 divisible by 6 or 8 is

6. (i) The number of arrangements that can be made taking 4 letters, at a time, out of the letters of the word "PASSPORT" is _____

(ii) Probability that both S appear in such 4 letter words is _____

(iii) Probability that all letter are distinct in such 4 letter words is _____

7. A 10 digit numbers is choose with odd digits. Find the probability that no two consecutive digits are same.

Answers Key

1.	(A)	2.	(D)	3	8.	(B)	4.	(B)
5.	(D)	6.	(i)	606 (ii)	21 101	(iii)	$\frac{{}^{6}C_{4}.4!}{606}$
7.	$\left(\frac{4}{5}\right)^9$							