THERMAL EXPANSION OF LIQUIDS

SYNOPSIS

INTRODUCTION:

- Liquids do not have a shape of their own. They assume the shape of the container.
- Linear and superficial expansions have no meaning for liquids.
- As liquids possess definite volume, they experience volume expansion only.

COEFFICIENT OF REAL EXPANSION(γ_r):

- The actual expansion of the liquid is called real or absolute expansion of liquid.
- The real expansion of liquid depends on
 - a) Initial volume of liquid
 - b) Rise in temperature
 - c) Nature of liquid
- The real increase in volume per unit original volume per 1°C rise in temperature is called coefficient of real expansion

$$\gamma_r = \gamma_{real} = \frac{V_2 - V_1}{V_1(t_2 - t_1)} / {}^0 C$$

$$\Rightarrow V_2 = V_1 [1 + \gamma_r (\Delta t)]$$

• % Change in volume of liquid = $\gamma_r (t_2 - t_1) \times 100$.

COEFFICIENT OF APPARENT EXPANSION(γ_a):

- When a liquid is heated both liquid and its container expand. Though the expansion of the liquid is many times more than that of solid container, still the observed expansion of liquid is less than the actual expansion it had.
- The expansion of liquid relative to the container is called visible or apparent expansion.
- The apparent expansion of liquid depends on
 - a) Initial volume of liquid.
 - b) Rise in temperature.
 - c) Nature of liquid.
 - d) Nature of material of container.
- The apparent increase in volume per unit original volume per 1°C rise in temperature is called co-efficient of apparent expansion of liquid.

$$\gamma_a = \gamma_{app} = \frac{V_2 - V_1}{V_1(t_2 - t_1)} / {}^{0}C$$

$\implies V_2 = V_1 [1 + \gamma_{app} (\Delta t)]$

RELATION BETWEEN γ_r **AND** γ_a :

•

•

•

•

•

The coefficient of real expansion of a liquid is equal to the sum of coefficient of apparent expansion of the liquid and coefficient of volume expansion of the vessel.

$$\gamma_r = \gamma_{app} + \gamma_{vessel} = \gamma_{app} + 3\alpha_{vessel}$$

If $\gamma_r > \gamma_{vessel}$, the level of liquid in the vessel rises.

If $\gamma_r = \gamma_{vessel}$, the level of liquid in the vessel remains stationary.

- If $\gamma_{real} < \gamma_{vessel}$, the level of liquid in the vessel will fall.
- If the same liquid is heated in two vessels X and Y then $\gamma_r = \gamma_{ax} + 3\alpha_x = \gamma_{ay} + 3\alpha_y$

$$\Rightarrow \gamma_{ax} - \gamma_{ay} = 3(\alpha_y - \alpha_x)$$

- Here γ_{ax} , γ_{ay} denote coefficients of apparent expansion in vessels X and Y.
- α_x and α_y are coefficients of linear expansion of vessels X and Y.
- VARIATION OF DENSITY OF LIQUID WITH TEMPERATURE:
 - The density of a liquid decreases with increase in temperature. For calculating the change in density the coefficient of real expansion of the liquid is to be considered.

$$d_0 = d_t(1+\gamma_r t)$$
 or $d_t = d_0(1-\gamma_r t)$

where, $d_0 = density of liquid at 0^{\circ}C$

 $d_t = density of liquid at t^0C$

 $\gamma_r =$ Coefficient of real expansion of liquid

If d_1 and d_2 are the densities of liquid at temperatures t_1 and t_2

$$d_1 = d_2 [1 + \gamma (t_2 - t_1)]$$

If d_0 and d_t are densities of liquid at 0^0C and

$$t^{0}C$$
, then $\gamma_{r} = \frac{d_{0} - d_{t}}{d_{t} \times t}$ (or) γ_{r} ; $\frac{d_{0} - d_{t}}{d_{0} \times t}$

If d_1 and d_2 are densities of liquid at $t_1^{0}C$ and

$$t_2^{0}C$$
, then $\gamma_r = \frac{d_1 - d_2}{d_2 t_2 - d_1 t_1}$ (or) γ_r ; $\frac{d_1 - d_2}{d_1 t_2 - d_2 t_1}$

JR.PHYSICS

x% less than that at 0°C is $\left(\frac{x}{(100-x)\gamma_r}\right)^{\circ}C$

• The temperature at which the density becomes x%

of the density at
$$0^{\circ}C$$
 is $\left(\frac{100-x}{x\gamma_r}\right)^{\circ}C$

• The temperature at which the density of liquid is

$$\frac{1}{x}$$
 times of its density at 0° C is $\left(\frac{x-1}{\gamma_r}\right)^{\circ}$ C

DETERMINATION OF γ_{add} OFA LIQUID:

• From specific gravity bottle method, the coeffcient of apparent expansion of liquid is

$$\gamma_{app} - \overline{Mass of the remaining liquid x temp diff}$$

$$\Rightarrow \gamma_{app} = \frac{m_1 - m_2}{m_2(t_2 - t_1)} / {}^0 C$$

where, $m_1 = mass$ of liquid before heating

 $m_2 = \text{mass of liquid after heating}$

- $t_1 =$ initial temperature of liquid
- $t_2 =$ final temperature of liquid

•
$$\gamma_{app} = \frac{(w_2 - w_3)}{(w_3 - w_1)(t_2 - t_1)} / {}^0 C$$

 w_1 = Weight of the empty specific gravity bottle

 w_2 = Weight of the specific gravity bottle filled with liquid at t_1^0 C.

 w_3 = Weight of the Specific gravity bottle filled with liquid at t_2^0 C.

• If mass of the liquid expelled is equal to 1/x th of the remaining mass, then

$$\gamma_a = \frac{1}{x(t_2 - t_1)}$$

• If mass of the liquid expelled is 1/x th of the initial

mass, then
$$\gamma_a = \frac{1}{(x-1)(t_2 - t_1)}$$

VOLUME OF UNOCCUPIED SPACE REMAINS SAMEAT ALL TEMPERATURES:

When a liquid is taken in a container and heated, the unoccupied volume over the liquid remains constant at all temperatures if

$$V_c \ \gamma_c = V_l \ \gamma_l$$

- where V_c and V_l are the volumes of the container and the liquid respectively.
- γ_c And γ_i are the coefficient of volume expansion of container and coefficient of real expansion of the liquid.
- The coefficient of real expansion of mercury is seven times that of glass approximately. Therefore for the unoccupied volume over liquid in a glass vessel to remain constant at all temperatures is

$$\frac{V_l}{V_c} = \frac{1}{7}$$

VOLUME OF LIQUID EXPELLED:

• A container of volume V_c at temperature $t_1^{\ 0}C$ is completely filled with a liquid. If the container is heated to $t_2^{\ 0}C$, then volume of liquid overflown

is $\Delta V_l = (V_2)_l - (V_2)_c = (\gamma_l - \gamma_c)V_c(t_2 - t_1)$

APPARENT WEIGHT OF A SOLID IMMERSED IN LIQUID:

• When a body is immersed in a liquid its weight decreases.

The apparent weight of the body, W=V(d-s) g.

d= density of solid s= density of liquid V= volume of solid.

When temperature is increased, density of the liquid decreases more than that of solid. Hence apparent weight of solid immersed in liquid increases.

CONCEPTUAL QUESTIONS

where

- 1. Expansion of liquids on heating is different from that solids, since the expansion of liquids is
 - 1) much more than solids because molecular spacing in them is less
 - 2) much more than solids because molecular spacing in them is more
 - 3) much less than solids because molecular spacing in them is more.
 - 4) much less than solids because molecular spacing in them is less

•

2.	If the temperature rise is measured in Fahrenheit scale instead of the centigrade scale, the numerical value of co-efficient of real expansion of liquid is 1. remains same 2. decreased	12.	A metal ball immersed in alcohol weights W_1 at 0°C and W_2 at 50°C Assuring that the density of the metal is large compared to that of alcohol then. 1. $W_1 = W_2$ 2. $W_1 > W_2$
3.	 increased depends upon the nature of the liquid Real expansion of liquid is Independent on expansion of the vessel. Dependent on expansion of the vessel. Independent on nature of the liquid. Depends on both nature of the liquid. 	13.	1. $W_1 = W_2$ 3. $W_1 \le W_2$ A block of wood is floating on water at 20°C with certain volume x above the water level. The temperature of water is slowly increased the volume x. 1. increases. 2. $W_1 \ge W_2$
4.	4. Depends on both nature of the liquid and vessel. A liquid with co-efficient of real volume expansion (γ) is filled in container of material having co-efficient of linear expansion (α). If liquid over flows on heating.	14.	3. remains same4. first decreases and then increases.A small stone is inside a ice block which floats in water. When the ice fully melts the level water
5.	1. $\gamma = 3\alpha$ 3. $\gamma < 3\alpha$ Con heating a liquid of co-efficient of real expansion α in a container having coefficient of linear expan-	15.	 increases dose not change first decreases and then increases Water in closed rectangular tube with left arm vertically placed above the arc lamp is heated
6.	sion $\frac{\alpha}{3}$. The level of liquid in the container will 1. rise 2. fall 3. remain 4. over flows A long cylindrical vessel of volume V and co- efficient of linear expansion α contains a liquid. The level of liquid has not changed on heating. The co-efficient of real expansion of the liquid is.		 Water will begin to circulate in anticlockwise direction. Water will begin to circulate in clockwise di- rection. Water will not circulate but heats up Water will oscillate in clockwise and anticlock
7.	1. $\frac{V-\alpha}{V}$ 2. $\frac{V+\alpha}{V}$ 3. $\frac{V}{V-\alpha}$ 4. 3 α The liquid whose co-efficient of real expansion is equal to 1.5 times the co-efficient of areal and heated then the level of the liquid taken in the container	16.	 wise directions. The apparent coefficient of expansion of a liquid depends upon 1. The nature of the liquid 2. The nature of the vessel in which it is heated 3. Both (1) and (2) 4. None of the above
8.	1. Rises2. Falls3. Remains same4. First rises and then fallsBy increasing the temperature of a liquid its1. Volume and density decreases		KEY 01. 2 02. 2. 03. 1 04. 2 05. 3
	 volume and density decreases volume and density increases volume increases and density decreases volume decreases and density increases 		06.407.308.309.110.411.112.313.214.215.2
9.	Density of liquid at any temperature 't' is given by $d_{\perp}d_{0}$ [1- γ t]. This equation applies to 1. all liquids 2) only water 3) no liquid	1.	16.3 LEVEL - I The liquid with co-efficient of real expansion of $27x10^{-6}$ / ⁰ C is heated in a vessel with the co-
10.	 4) all liquids except mercury Co-efficient of apparent expansion of a liquid can be experimentally determined by using 1) Pyknometer 2) Specific gravity bottle 2) Weight thermometer 4) all the above 		efficient of linear expansion 9x10 ^{-6/0} C [.] The level of the liquid 1. Rises 2. Falls 3. Remains same 4. First falls then rises
11. A	 a) weight thermometer 4) all the above b) metal ball suspended from the hook of a spring balance is kept immersed in a liquid other than water. On increasing the temperature of this liquid, the reading in the spring balance. a) increases (2) decreases b) remains same c) may increases or decreases. 	2.	The co- efficient of real expansion γ_R of a liquid is 5 times the co-efficient of linear expansion of the material of the container in which the liquid is present. The ratio of the co-efficient of apparent expansion and real expansion of the liquid is 1. 5:2 2. 1:5 3. 2:5 4. 5:1
	HYSICS	369	EXPANSION OF LIQUIDS

JR.PHYSICS

F

			3. $\alpha_2 - 2\alpha_2$ 4. $6\alpha_1 - 3\alpha_2$
	1. $4x10^{-5}$ / ^{0}C 2. $25x10^{-4}$ / ^{0}C 3. $25x10^{-5}$ / ^{0}C 4. $8x10^{-5}$ / ^{0}C		then coefficient of real expansion of the liquid is 1. $2\alpha_1 - \alpha_2$ 2. $3\alpha_1 - 4\alpha_2$
	When it is heated to 100°C one gram of the liquid over flows. The co-efficient of apparent expan- sion of the liquid is	2.	The ratio of co-efficients of apparent expansions of the same liquid in two different vessels is 1:2. If α_1 and α_2 are the coefficient of linear expansions
11.	3. 1×10^{-5} /°C 4. 1×10^{-4} /°C A specific gravity bottle contains 51 gm at 20°C.		3. 0.005/°C 4. 0.0005/°C
	of apparent expansion of the liquid is 1. $1 \times 10^{-3/0}$ C 2. $1 \times 10^{-6} / {}^{0}$ C		3/4 volume of the vessel. Coefficient of apparent expansion of the liquid is 1. 0.5/°C 2. 0.05/°C
10.	3. 0.98 gm/c.c.4. 10.2 gm/c.c.A specific gravity bottle can hold 101 gm of a liquid at 0°C and 100 gm at 100°C. The co-efficient	1.	A vessel is half filled with a liquid at 0°C. When then vessel is heated to 100°C the liquid occupies
	its density at 100° C is 1.9.8gm/c.c. 2. 980 gm/c.c.		16. 1 LEVEL-II
9.	1. $10^{-4} / {}^{0}C^{-1}$ 2. $5x10^{-4} / {}^{0}C^{-1}$ 2. $8x10^{-4} / {}^{0}C^{-1}$ 4. $4x10^{-4} / {}^{0}C^{-1}$ The coefficient of real expansion of a liquid is 0.2 $x10^{-3}/{}^{0}C$ if its density at 0 ${}^{0}C$ is 10 gm/c.c. Then		01. 3 02. 3 03. 2 04. 3 05. 3 06. 4 07. 1 08. 2 09. 1 10. 4 11. 3 12. 2 13. 1 14. 1 15. 1
8.	The density of a liquid at 100° C is 8.0 gm/cm ³ and at 0° C is 8.4 gm/cm ³ , the coefficient of cubi- cal expansion of the liquid is		volume expansion of Hg is 1.8x10 ^{-4/0} C). 1.150ml 2.750 ml 3.1000 ml.4.700 ml KEY
	1. $\frac{\gamma_r}{21}$ 2. $\frac{\gamma_r}{11}$ 3. $\frac{\gamma_r}{12}$ 4. $\frac{\gamma_r}{14}$		side the flask remain same. The volume of mer- cury taken in the flask is (Co-efficient of linear ex- pansion of glass is $9 \times 10^{-6/0}$ C and coefficient of
	that $\gamma_a = \frac{6}{7} \gamma_r$. The co-efficient of linear expansion of the vessel is	16.	A one liter flask contains some mercury. It is found that at different temperatures the volume of air in-
7.	1. $204x10^{-6/0}$ C.2. $7.5x10^{-6/0}$ C.3. $18x10^{-5/0}$ C.4. $156x10^{-6/0}$ C.For a liquid, when heated in a vessel it is found		that 10 gms of liquid overflows. The coefficient of apparent expansion of liquid is 1. $20x10^{-5}$ / 0 C 2. $0.2x10^{-5}$ / 0 C 3. $20x10^{-4}$ / 0 C 4. $200x10^{-4}$ / 0 C
	$^{6/0}$ C and the co-efficient of real expansion of mer- cury is $180 \times 10^{-6/0}$ C. The co-efficient of apparent expansion of mercury in glass vessel is	15.	A specific gravity bottle contains 510 gms of liq- uid at 0° C. When heated to 100°C it is found
6.	cient of superficial expansion is $1.8 \times 10^{-5/0}$ C. The co-efficient of real expansion of the liquid is $1.22 \times 10^{-6/0}$ C. 2. $5.7 \times 10^{-6/0}$ C. 4. $1 \times 10^{-4/0}$ C. 4. $2.2 \times 10^{-5/0}$ C. The co-efficient of linear expansion of glass is $8 \times 10^{-5/0}$		cury at 20°C and 50 gms of mercury at 100°C.The coefficient of apparent expansion of mercuryin glass vessel is $1.25x10^{-5}/°C$ $2.25x10^{-3}/°C$ $3.2x10^{-5}/°C$ $4.4x10^{-4}/°C$
5.	1. $7x10^{-4/0}$ C. 2. $6x10^{-5/0}$ C. 3. $67x10^{-5/0}$ C. 4. $73x10^{-5/0}$ C. The co-efficient of apparent expansion of a liquid is $30x10^{-6/0}$ C. It is kept in a vessel whose co-effi-	14.	liquid is 1. $10x10^{-4}/{}^{0}C$ 2. $10^{-4}/{}^{0}C$ 3. $10^{-5}/{}^{0}C$ 4. $10^{-6}/{}^{0}C$ A weight thermometer contains 51 gms of mer-
	$7x10^{4/0}$ C. The co efficient of linear expansion of the vessel is $1x10^{-4/0}$ C. The co-efficient of ap- parent expansion of the liquid is	13.	A specific gravity bottle contains liquid of masses 21 gms and 20 gms at 50°C and 100°C respec- tively. The coefficient of apparent expansion of
4.	liquid is γ_{a} . The co-efficient of cubical expansion of the vessel is γ_{a} If γ_{r} : γ_{a} =4:1 then γ_{a} : γ is 1. 3;1 2. 1:3 3. 4:1 4. 1:4 The co-efficient of real expansion of a liquid is		liquid is expelled. The co-efficient of real expansion of the liquid is $[\alpha$ of glass is $9x10^{-6/0}C$ $1.27x10^{-6/0}C$ 2. $427x10^{-6/0}C$ $3.373x10^{-6/0}C$ 4. 0
3.	The co-efficient of real expansion of liquid is γ_r and the co-efficient of apparent expansions of the	12.	A weight thermometer contains 52 gms of a liquid at 10°C. When it is heated to 110°C, 2 gm of the

JR.PHYSICS	$\gamma_r = 2x + 3\alpha_2$ Solve γ_r 371 EXPANSION OF LIQUIDS
10. A specific gravity bottle contains m grams of uid of apparent expansion $\gamma_{a,}$ at 0°C. Whe heated to t° C the mass of liquid expelled is 1. $\frac{1+\gamma_a t}{\gamma_a m t}$ 2. $\frac{\gamma_a m}{1+\gamma_a t}$ 3. $\frac{\gamma_a m t}{1+\gamma_a t}$ 4. $\frac{\gamma_a m}{1-\gamma_a t}$	n it is $V_1(l_2 - l_1)$ $\Delta V = \frac{3}{2}V - \frac{V}{2} \qquad V = \frac{V}{2}$
of its total volume is immersed in water. coefficient of real expansion of water is 3.3x10 ^{-4/0} C. The temperature at which the gets immersed completely is 1. 32.8 ^o C 2. 28.4 ^o C 3. 65.8 ^o C 4. 72.4 ^o C	If the space remains constant at all temperatures. Then the ratio of the coefficients of the cubical expansion of the two vessels is 1. 2:5 2. 5:2 3. 4:5 4. 5:4 <u>HINTS</u>
 100°C the same body floats with 80% of a mersed in the liquid. The coefficient of repansion of the liquid is 1. 8x10^{-4/0}C 2. 8.33x10^{-4/0}C 3. 8.33x10^{-5/0}C 4. 8x10^{-5/0}C 9. A body is floating in water at 4°C such that 	al ex- 15. A vessel contains a liquid filled upto $\frac{1}{10}$ th of its volume. Another vessel contains same liquid upto 1
 of the volume of the boat is submerged in v The temperature at which the boat will just pletely sink in water is 1. 10°C 2. 100°C 3. 60°C 4. 50°C 8. A solid floats in a liquid at 20°C with 75% immersed in a liquid. When the liquid is heat 	com-coefficient of volume expansion is 20 times as that of the vessel. At all temperatures if volume of air above the liquid is constant the volume of that empty space is 1. 950 c.cconfit2. 50 c.c.
 1/5500 /°C. The temperature at which its den 1% less than density at 0°C is 1. 55.5°C 2. 100°C 3. 99°C 4. 1°C 7. A boat is floating in water at 0°C such that 	97% $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
 and apparent expansion of a liquid are in the 2:1. The ratio of the coefficient of real expa and apparent expansion must be 1. 1:1 2. 2:3 3. 3:1 4. 6:5 6. If coefficient of real expansion of a liquid is 	ratio nsion from 0° C to 100° C is 1. 4gms 2. 3 gms 3. 8 gms 4. 1 gms 13. The loss in weight of a solid when immersed in a liquid at 0° C is w_0 and at t° C is 'W'. If cubical coefficient of expansion of the solid and the liquid
 in a vessel A is 18x10^{-4/0}C. The difference coefficients of linear expansions of A and B 1. 1x10^{-3/0}C 2. 1x10^{-6/0}C 3. 1x10^{-5/0}C 4. 1x10^{-4/0}C 5. The sum and difference of the coefficient of the sum and difference of the coefficient of the coefficient of the sum and difference of the coefficient of the coefficient of the sum and difference of the coefficient of the	is 12. When 52 gm of a liquid in a vessel is heated from 0°C to 100°C, 2gm of liquid is expelled. If 104 gm of liquid is taken in a vessel made of same
 The ratio of coefficient of apparent expansion liquid in the containers A and B is 1:2. If 18. ^oC and 12x10^{-6/0}C are the co-efficients of lexpansions of the containers A and B respect then the coefficient of real expansion of the liquid 1. 24x10^{-6/0}C 2. 6x10^{-6/0}C 3.72x10^{-6/0}C 4. 30x10^{-6/0}C The co-efficient of apparent expansion of a liquid base of the containers of the containers of the containers of the liquid the coefficient of apparent expansion of a liquid base of the containers of the containers of the liquid base of the containers of the	inear ively, uid is is $\frac{1}{6400}/{}^{0}C$. A glass bulb at 0°C is com- pletely filled with mercury. The mass of mercury is 260 g. The glass bulb is heated to $100{}^{0}C$. mass of the mercury over flown will be.

 $\gamma_r = \gamma_{app1} + 3\alpha_1 \qquad \gamma_r = \gamma_{app2} + 3\alpha_2$ 4. find $(\alpha_1 \sim \alpha_2)$ 5. use compodendo and dividendo method $\frac{d_0}{d_r} = 1 + \gamma_r t$ 6. weight of body = $\frac{97}{100} V d_{Liquidsat^0 C} g$ $= Vd_{Liquidsat^0t}g$ $\frac{97}{100} = \frac{d_1}{d_2} = 1 - \gamma_r t$ 9. Weight of the body = 0.98Vd₁₄g = Vd₁₄g $\frac{d_4}{d_t} = [1 + \gamma_r(t-4)]$ $\gamma_{app} = \frac{x}{(m-x)t}$ 10. KEY 01.3 02.4 03.3 04.4 05.3 06.1 07.2 08.2 09.3 10.3 11.4 12.1 13.1 14.1 15.3 LEVEL - 3 1. If γ (apparent) of a liquid in a vessel is 76% of γ (real) of that liquid, the coefficient of linear expansion of the vessel is 1. 8% of γ (real) 2. 16% of γ (real) 3. 24% of γ (real) 4. 25.3% of γ (real) 2. If d_1 and d_2 are the densities of a liquid at t_1^0 C and $t_2^0 C$, then $\frac{d_1}{d_2}$ is (γ = coefficient of real expansion) 1. $\frac{1+\gamma_1}{1+\gamma_2}$ 2. $\frac{1-\gamma_1}{1-\gamma_2}$ 3. $\frac{1+\gamma_2}{1+\gamma_1}$ 4. $\frac{1-\gamma_2}{1-\gamma_1}$ 3. A solid whose volume does not change with temperature floats in liquid at two different temperatures t_1^0 C and t_2^0 C of the liquid. Fractions of the volume of the solid remain submerged are f, and f, respectively. The coefficient of absolute expansion of the liquid is equal to 1. $\frac{f_1 - f_2}{f_1 - f_1}$ 2. $\frac{f_1 - f_2}{f_1 - f_1}$

1.
$$f_2 t_2 - f_1 t_2$$

2. $f_1 t_1 - f_2 t_1$
3. $\frac{f_1 + f_2}{f_2 t_1 + f_1 t_2}$
4. $\frac{f_1 \times f_2}{f_2 t_1 + f_1 t_2}$

When a block of iron floats in mercury at 0° C, a fraction k₁ of its volume is submerged, while at the temperature 60°C, a fraction k₂ is seen to be submerged. If the coefficient of volume expansion of iron is γ_{Fe} and that of mercury is γ_{Hg} , then the ratio k₁/k₂ can be expressed as

4.

1.
$$\frac{1+60\gamma_{Fe}}{1+60\gamma_{Hg}}$$

2. $\frac{1-60\gamma_{Fe}}{1+60\gamma_{Hg}}$
3. $\frac{1+60\gamma_{Fe}}{1-60\gamma_{Hg}}$
4. $\frac{1+60\gamma_{Hg}}{1+60\gamma_{Fe}}$

A sphere of mass 266.5g and diameter 7 cm floats 5. on the surface of a liquid. When the liquid is heated to 35° C, the sphere sinks in the liquid. If the density of liquid at 0° C is 1.527 gcm⁻³. The coefficient of real expansion of liquid is 1. $8.48 \times 10^{-4} (^{0}C)^{-1}$ 2. $7.88 \times 10^{-4} (^{0}C)^{-1}$ 3. $6.48 \times 10^{-4} (^{0}C)^{-1}$ 4. 5.48x10⁻⁴(°C)⁻¹ 6. A piece of metal floats on mercury. The coefficients of volume expansion of the metal and mercury are γ_1 and γ_2 respectively. If the temperature of both mercury and metal are increased by an amount Δt , the fraction of the volume of the metal

1.
$$\frac{1}{(\gamma_2 - \gamma_1)\Delta t}$$
 2. $\frac{1}{(\gamma_1 - \gamma_2)\Delta t}$

submerged in mercury changes by the factor.

3.
$$(\gamma_1 - \gamma_2)\Delta t$$
 4. $(\gamma_2 - \gamma_1)\Delta t$

If γ of a solid container is x% of γ (real) of a liquid, the volume fraction of the container which should be filled with that liquid to keep that unoccupied volume above the liquid in it constant at all temperatures is

 $1. x^{20}$ 2. (x-1)% 3. (x+1)% 4. x%

- 8. The coefficient of cubical expansion of liquid and glass are in the ratio of 8:1. The volume of the liquid to be taken into 800 cc container so that the unoccupied portion remains constant is
- 1.10cc 2.100cc 3. 80cc 4. 8cc
 9. A uniform pressure P is exerted on all sides of a solid cube at temperature t⁰ C. By what amount should the temperature of the cube be raised in order to bring its volume back to the original value before the pressure was applied, if the bulk modulus is B and volume coefficients is γ?

1)
$$\frac{\gamma P}{B}$$
 2) $\frac{P}{\gamma B}$ 3) $\frac{B}{\gamma P}$ 4) $\frac{1}{\gamma B P}$

JR.PHYSICS

7.

10 Manageria a accessibility a start of 1 (1 (1) 1)	
10. Mercury is poured into a glass vessel of height 10 cm. At 10° C the level of mercury is 1 mm below	4) A specific gravity bottle is filled up to the brim with mercury of 400g, at 0° C. When heated to 90° C,
the upper edge of the vessel. The coefficient of	the mass of the mercury that over flows from the
volume expansion of mercury is 1.82×10^4 /K. Ne-	specific gravity bottle is : (Coefficient of apparent
glecting the expansion of the vessel, the mercury	
can be heated to temperature t ⁰ C without mer-	expansion of mercury in glass is $\frac{1}{6500}$ / ⁰ C)
cury overflowing then t is equal to	
1. $56^{\circ}C$ 2. $65^{\circ}C$ 3. $36^{\circ}C$ 4. $82^{\circ}C$	[2001 M]
11	1) 5.46g 2) 6.54g 3) 10.92g 4) 13.08 g
11. The co-efficient of linear expansion of iron is $\frac{11}{180}$	5. When a liquid in a glass vessel is heated, its apparent
100	expansion is $10.30 \times 10^{-4/0}$ C. Same liquid when
of volume coefficient of expansion of mercury which	heated in a metallic vessel, its apparent expansion
is 18×10^{-5} /°C. An iron rod is 10m long at 27° C.	is 10.06×10^{-4} /° C. The coefficient of linear ex-
The length of the rod will be decreased by 1.1 mm	pansion of metal is $(\alpha_{glass} = 9x10^{-6/0}C)$
when the temperature of the rod changes by 1.0° C 2.10° C 3.20° C 4.170° C	(EAMECT 2K, E)
1. 0° C 2. 10° C 3. 20° C 4. 170° C	1. $51x10^{-6/0}C$ 2. $43x10^{-6/0}C$
КЕҮ	3. $25^{-6/0}$ C 4. $17 \times 10^{-6/0}$ C
01. 1 02. 3 03. 2 04. 1 05. 1	6. A glass flask of volume 200 cm^3 is completely filled with mercury at 20° C. The amount of mercury
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	that spit over when the flask is heated to 80°C
11.2	(Coefficient of volume expansion of glass is
PREVIOUS EAMCET QUESTIONS	$27 \times 10^{-6/0} \text{ C}, \gamma \text{ mercury } 0.18 \times 10^{-3/0} \text{ C})$
1. The coefficient of apparent expansion of a liquid	[EAMCET '97]
when determined using two different vessels A and	1) 2.16cm^3 2) 0.032cm^3
B are γ_1 and γ_2 respectively. If the coefficient of	3) 1.84 cm ³ 4) 2.40 cm ³
linear expansion of the vessel A is α , the coeffi-	7. The coefficient of real expansion of mercury is
cient of linear expansion of the vessel B is	$18 \times 10^{-5/0}$ C. The thermometer bulb has a volume
(EAMCET 2002 E)	of 10 ⁻⁶ m ³ and the cross section of the stem is 0.002
$1. \frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \qquad 2. \frac{\gamma_1 - \gamma_2}{2\alpha}$	sq.cm. Assuming that the bulb is filled with mer-
$1. \frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \qquad 2. \frac{\gamma_1 - \gamma_2}{2\alpha}$	curve at 0° C, the length of the mercury column at
3. $\frac{\gamma_1 - \gamma_2 + \alpha}{3}$ 4. $\frac{\gamma_1 - \gamma_2}{3} + \alpha$	100°C will be [EAMCET '97]
$4. \frac{1}{3} + \alpha$	1) 9 cm 2) 18 cm 3) 9 mm 4) 18mm
2) The densities of a liquid at 0° C and 100° C are	8) Coefficient of real expansion of mercury is
respectively 1.0127 and 1. A specific gravity bottle	$0.18 \times 10^{-3/0}$ C. If the density of mercury at 0°C is
is filled with 300gm of the liquid at 0°C up to the	13.6 gm/cc its density at 473K will be
brim and it is heated to 100°C. Then the mass of	[EMACET'96]
the liquid expelled in grams is [Coefficient of lin-	1. 13.11 gm/c.c. 2. 13.65gm/c.c.
ear expansion of glass = $9x10^{-6/0}C$]	3. 13.51 gm/c.c. 4. 13.22 gm/c.c.
(EAMCET2003 E)	9) A glass bottle weights 50gm and 1060gm when filled with a liquid. When it at 100% 10gm of the
1. $\frac{3}{10.1}$ 2. $\frac{3}{1.01}$ 3. $\frac{3.81}{1.0127}$ 4. $\frac{3.81}{0.0127}$	filled with a liquid. When it at 100°C, 10gm of the liquid every liquid $f_{10} = 2 \times 10^{4/2}$ C the as affiniant
	liquid overflows. If $\gamma_r = 2 \times 10^{-4/0}$ C the co-efficient
3) At 0° C the densities of a cork and a liquid in which	of linear expansion of the container is
the cork floats are d_1 and d_2 respectively. The	$1. \frac{1}{3} \times 10^{-4} / {}^{0}C \qquad 2. 3 \times 10^{-4} / {}^{0}C$
coefficient of expansion for the material of the cork	1.3^{10} 2.3×10^{-7} °C
and the liquid are γ and 100 γ respectively. If the	3. $6 \times 10^{-4} / {}^{0}C$ 4. $1 \times 10^{-4} / {}^{0}C$
cork sinks when the temperature of the liquid is	10) When a liquid taken in along cylindrical vessel of
d_1	material with linear coefficient of expansion α is
't ⁰ C' then the ratio $\frac{d_1}{d_2}$ is (EAMCET 2004 E)	heated, the level of liquid did not change. The
2	volume coefficient of expansion of liquid is
1) $\frac{1+100\eta}{1+\eta t}$ 2) $\frac{1+\eta t}{1+100\eta t}$	- · ·
-7 $1+\gamma t$ -7 $1+100\gamma t$	$1.\frac{\alpha}{3}$ 2.3α $3.\alpha$ $4.\alpha^3$
$100 + \gamma t$ $1 + \gamma t$	3
3) $\frac{100 + \gamma t}{1 + \gamma t}$ 4) $\frac{1 + \gamma t}{100 + \gamma t}$	
JR.PHYSICS 3	EXPANSION OF LIQUIDS

2. Apparent expansion of a liquid depends upon a) Nature of liquid b) Nature of vessel c) Temperature rise d) Scale of temperature 1) Only (a) is true 2) (a) & (b) are true 3) (a), (b) & (c), (d) are true 4) (a), (b), (c), (d) are true 3. LIST -I LIST -II a) App. expansion e) Nature of Vessel and liquid b) Real expansion f) Nature of Vessel and liquid c) γ_a g) Nature of Vessel and liquid c) γ_a g) Nature of Vessel and liquid c) γ_a g) Nature of Vessel and liquid b) Real expansion f) Nature of Vessel and liquid and temperature d) γ_r h) Nature of Vessel and liquid and temperature d) γ_r h) Nature of Vessel and liquid b) Corrected Barometric f) $\frac{d_1 - d_2}{d_2 \Delta t}$ height c) Coefficient of real g) $\frac{\gamma_a m_i \Delta t}{1 + \gamma_a \Delta t}$ expansion of liquid d) Mass of liquid h) $h_0 [1 - (\gamma_r - \alpha) \Delta t]$ remaining on heating 1) a-g, b-h, c-f, d-e 2) a-h, b-e, c-g, d-h 3) a-e, b-f, c-g, d-h. 4) a-f, b-g, c-h, d-e LIST -I LIST -II a) γ_g is +ve & $< \gamma_r$ e) liquid level does not change b) γ_g is -ve f) liquid level increases con tinuously c) $\gamma_g = \gamma_r$ g) liquid level ficreases. d) $\gamma_g > \gamma_r$ h) liquid level ficreases. 1) a-g, b-e, c-f, d-h 2) a-h, b-f, c-e, d-g. 3) a-e, b-f, c-g, d-h 4) a-f, b-g, c-h, d-e LIST -I LIST -II a) γ_g is -ve f) liquid level decreases. d) $\gamma_g > \gamma_r$ h) liquid level ficreases con tinuously c) $\gamma_g = \gamma_r$ g) liquid level decreases. 1) a-g, b-e, c-f, d-h 2) a-h, b-f, c-e, d-g. 3) a-e, b-f, c-g, d-h 4) a-f, b-g, c-h, d-e Coefficient of volume expansion of the vessel 1) Both A and R are true and R is the correct explanation of A 2) Both A & R are true but R is not the correct explanation of A
Reason (R): co-efficient ofreal of the liquid =co- efficient ofvolume expansion of the vessel1)Both A and R are true and R is the correct

7		11	
7.	Assertion(A): when a liquid with co-efficient of	11.	Assertion(A): when a beaker containing liq-
	γ is heated in a vessel of coefficient of linier		uid is heated the center of mass of the
	γ		system first falls down then rises up above
	expansion $\frac{\gamma}{3}$, the level of liquid in the vessel re		the initial position.
	mains un changed.		Reason (R): The liquid in the beaker undergoes
	•		expansion on heating and the expansion of liquid
	Reason (R): $\gamma_a = \gamma_r - \gamma_g = \gamma_r - 3 \alpha = 0$ 1) Both A and R are true and R is the correct		is more than that of beaker.
			1) Both A and R are true and R is the correct ex-
	explanation of A 2) $\mathbf{P}_{\mathbf{r}}$ the $\mathbf{A} + \mathbf{\beta} \cdot \mathbf{P}_{\mathbf{r}}$ are true best $\mathbf{P}_{\mathbf{r}}$ is not the sum of the		planation of A
	2) Both A & R are true but R is not the correct		2) Both A & R are true but R is not the correct
	explanation of A.		explanation of A.
	3) A is true but R is false 4) A is false but R is true		3) A is true but R is false 4) A is false but R is true
8.	Assertion(A): Real expansion of liquid does not	12.	Identify the correct statement from the following:
	depend up on material of container.		a) The liquids have two coefficient of expansions
	Reason (R): Liquids have no definite shape. They		as they do not have definite shape and size.
	acquire the mouth of the containers in which they		b) The apparent expansion of liquid may be equal
	are taken.		to zero.
	1) Both A and R are true and R is the correct		c) The expansion of liquids is less than the solids.
	explanation of A		d) The real expansion of liquids depends on the
	2) Both A & R are true but R is not the correct		nature of material of the container.
	explanation of A.		1) Only a & b are true 2) a,b & c are true
	3) A is true but R is false 4)A is false but R is true		3) a,b & d are true 4) All are true
9.	Assertion(A): A wooden block is floating	13.	
I	on a liquid when the temperature of the liquid	15.	a) The apparent expansion of liquid depends on
	is increased the volume of the block immersed		the expansion of material of the container
	in the liquid increases.		b) The real expansion of the liquids depends on
	Reason (R): As temperature increases, the den-		· · · ·
			the density of the liquid.
	sity of liquid decreases.		c) The expansion of liquid with respect to the con-
	1) Both A and R are true and R is the correct surface of A		tainer is called the apparent expansion.
	explanation of A 2) $\mathbf{P}_{\mathbf{r}}$ the $\mathbf{A} \in \mathbf{P}_{\mathbf{r}}$ are true best $\mathbf{P}_{\mathbf{r}}$ is not the sum of the		1) Only a & b are true 2) Only b & c are true (1) Only b & c are true (2) only b & c are tr
	2) Both A & R are true but R is not the correct		3) a,b & c are true 4) Only a & c are true
	explanation of A. $(A + A) = (A + A) + (A + A$		
	3) A is true but R is false 4) A is false but R is true		KEY
10.	Assertion(A): when a liquid in a container is		01. 2 02. 3 03. 2 04. 1 05. 2
	heated first the level of the liquid falls		06. 1 07. 1 08. 2 09. 1 10. 1
	down and then rises.		11.1 12.1 13.3
	Reason (R): when the liquid in a container is		
	heated first the container undergoes expan-		
	sion and generally the expansion of the liquid		
	is greater then that of solid.		
	1) Both A and R are true and R is the correct ex-		
	planation of A		
	2) Both A & R are true but R is not the correct		
	explanation of A.		
	3) A is true but R is false 4) A is false but R is true		
	, , <u></u>		
	:	*	۲
	HYSICS	375	EXPANSION OF LIQUIDS
JR.P		010	EXPANSION OF LIQUIDS