EXPERIMENT 1

Determining resistance per cm of given wire by plotting a graph of potential difference versus current:

AIM: To determine the resistance per cm of a given wire by plotting a graph of potential difference versus current.

APPARATUS REQUIRED:

Battery, key, rheostat, voltmeter, ammeter, resistance wire (unknown resistance), connecting wires, meter scale, sandpaper.

PRINCIPLE:

This Experiment is based on OHM'S LAW

Ohm's Law states that the electric current passing through a conductor is directly proportional to the potential difference applied across its ends.

Mathematically, V=IR

The resistance R of the wire depends on the material of the wire and its dimensions.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Draw the circuit diagram as shown in figure above
- 2. Arrange the apparatus as per the circuit diagram
- 3. Clean the ends of the connecting wires with sandpaper and make them shiny.
- Make the connections as per circuit diagram. All connections must be neat and tight.
 Take care to connect the ammeter and voltmeter with their correct polarity. (+ve to +ve and -ve to -ve)
- Determine the zero error and least count of the ammeter and voltmeter and record them.

- 6. Adjust the rheostat to pass a low current.
- 7. Insert the key K and slide the rheostat contact to see whether the ammeter and voltmeter are showing deflections properly.
- 8. Adjust the rheostat to get a small deflection in ammeter and voltmeter.
- 9. Record the readings of the ammeter and voltmeter
- 10. Take at least six sets of readings by adjusting the rheostat gradually
- 11. Plot a graph with V along X axis and I along axis.
- 12. The graph will be a straight line which verifies Ohm's law
- Determine the slope of the V-I graph. The reciprocal of the slope gives the resistance of the wire.

OBSERVATIONS:

1. Range

Range of the given Ammeter = 0-500m A Range of the given voltmeter = 0-5V

2. Least Count

Least Count of the given Ammeter = 10Ma Least Count of the given voltmeter = 0.1V

3. Zero Error

Zero Error of the given Ammeter = 0A Zero Error of the given voltmeter = 0V

4. Zero Correction

Zero Correction of the given Ammeter = 0A Zero Correction of the given voltmeter = 0V

Observation Table for Ammeter and Voltmeter Readings.

S No	Ammeter Observed (A)	Ammeter Corrected (A)	Voltmeter Observed (V)	Voltmeter Corrected (V)	Ratio (V/I) = R (ohm)
1	0.3	0.3	0.1	0.1	0.33
2	0.7	0.7	0.2	0.2	0.28
3	1.1	1.1	0.3	0.3	0.27
4	1.5	1.5	0.4	0.4	0.26
5	1.9	1.9	0.5	0.5	0.26

Graph

Voltage v/s Current Graph

CALCULATIONS:

Mean Value of V/I from observations, R = 0.28Ω Length of resistance wire = 40.2cmValue of slope of VI graph = $0.27~\Omega$ Resistance per unit length = $0.675~\Omega m^{-1}$

RESULT:

- 1. Ohm's Law is verified as the I vs V graph is a straight line
- 2. The resistance of the given wire = 0.28Ω
- 3. The resistance per cm of given wire is $0.675~\Omega~m^{-1}$.

PRECAUTIONS:

- 1. All the electrical connections must be neat and tight.
- 2. Voltmeter and Ammeter must of proper range
- 3. The key should be inserted only while taking readings.