

\mathcal{A} ssignment

			Nucleus ()
1.	For effective nuclear forces, the distan	ce should be	[Similar to (CPMT 2002); Orissa PMT 2004]
	(a) $10^{-10} m$ (b) $10^{-13} m$	(c) $10^{-15} m$	(d) $10^{-20} m$
2.	Mark the correct statement		[MP PMT 2004]
	(a) Nuclei of different elements can ha	ave the same number of neutron	ns
	(b) Every element has only two stable	isotopes	
	(c) Only one isotope of each element i	s stable	
	(d) All isotopes of every element are r	adioactive	
3.	For uranium nucleus how does its mas	s vary with volume	
	(a) $m \propto V$ (b) $m \propto 1/V$	7 (c) $m \propto \sqrt{V}$	(d) $m \propto V^2$
1.	The order of radius of the nucleus of a	n atom is	[MP PET 2002]
	(a) $10^{-10} m$ (b) $10^{-12} m$	(c) $10^{-15} m$	(d) $10^{-17} m$
5.	Two protons exert a nuclear force on e	ach other, the distance between	n them is [CPMT 2002]
	(a) $10^{-14} m$ (b) $10^{-10} m$	(c) $10^{-12} m$	(d) $10^{-8} m$
5.	Oxygen is more stable than nitrogen be	ecause	[TNPCEE 2002]
	(a) Atomic number of oxygen is greate oxygen is less when compared to iron	r than that of nitrogen	(b) The atomic weight of
	(c) Oxygen helps burning	(d) Oxygen l	nas equal number of protons and neutrons
7.	The sodium nucleus $\frac{23}{11}Na$ contains		
	(a) 11 electrons (b) 12 prot	ons (c) 23 proto	ns (d) 12 neutrons
3.	The electron emitted in beta radiation	originates from	[IIT-JEE (Screening) 2001]
	(a) Inner orbits of atoms	(b) Free elec	ctrons existing in nuclei
	(c) Decay of a neutron in a nucleus nucleus	(d)	Photon escaping from the
9.	The mass number of a nucleus is alway	7S	[MH CET 2001]
	(a) Equal to atomic number (b) number (d) Either		omic number (c) More than atomic
l o.	In the given particles, which of the fol	lowing is stable	[CPMT 2000]
	(a) Electron (b) Proton	(c) Positron	(d) Neutron

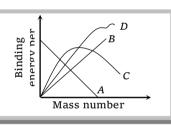
11.	1 amu is equal to (QE	3P-64)		[CPMT 2000]
	(a) 1 g	(b) $4.8 \times 10^{-10} esu$	(c) $6.023 \times 10^{23} q$	(d) $1.66 \times 10^{-27} kg$
12.	-	us in kg/m^3 is of the order of		[MP PMT 2000]
12,	-		4 1 4 9 13	
	(a) 10 ⁴	(b) 10 ⁹	(c) 10^{13}	(d) 10^{17}
13.	Fertile material amo			[KCET 1999]
	(a) U^{233}	(b) U^{238}	(c) U^{235}	(d) Pu^{239}
14.		neutron and a proton inside the n		
	-	active (b) Only Coulomb force	(c) Both of the above	(d) None of these
15.	Outside a nucleus			[MP PET 1999]
	(a) Neutron is stable		(b) Proton and neutro	
16.	(c) Neutron is unsta Nuclear force is	ble	(d) Neither neutron n	[EAMCET (Med.) 1998; CPMT 1999]
10.	(a) Short range and	charge dependent	(b) Short range and c	
	(c) Long range and c	• •	(d) Long range like el	0
17.	In $_{88}Ra^{226}$ nucleus th		(u) hong runge nike er	
-/•	(a) 138 protons and protons		(b)	138 neutrons and 88
	(c) 226 protons and electrons	88 electrons	(d)	226 neutrons and 138
18.	would be		$pes_{5}b$ and $5b$. Then	the ratio of ${}_{5}B^{10} : {}_{5}B^{11}$ in nature [CBSE PMT 1998]
	(a) 19:81	(b) 10 : 11	(c) 15:18	(d) 81:19
19.		contain different number of proto		
	(a) Isotopes	(b) Isotones	(c) Isobars	(d) Isoclinics
20.	r_1 and r_2 are the rad	ii of atomic nuclei of mass numbe	ers 64 and 27 respectively	y. The ratio $\frac{r_1}{r_2}$ is
	(a) $\frac{64}{27}$	(b) $\frac{27}{64}$	(c) $\frac{4}{3}$	(d) 1
21.		nto two nuclear parts which have	5	al to 2 : 1. What will be the ratio
	(a) $2^{1/3}$:1	(b) $1:2^{1/3}$	(c) $3^{1/2}$:1	(d) $1:3^{1/2}$
22.	Two nuclei are said t			[AFMC 1994]
	(a) Number of proto	ns in the two nuclei are equal		
	(b) Number of neutr	ons in the two are equal		
	(c) Number of neutr	ons in one equals number of prote	ons in the other and vice-	versa
	(d) The number of n	ucleons in the two are equal		
		-	2 respectively. The nucle	eus of sulphur is then how many
23.	times greater than th	ne <i>He</i> nucleus		
23.	times greater than that (a) $\sqrt{8}$	(b) 4	(c) 3	(d) 2

(a) $2.5 \times 10^{-11} m$ (b) $2.5 \times 10^{-9} m$ (c) $7 \times 10^{-9} m$ (d) $7 \times 10^{-6} m$ $_{1}H^{1}$ and $_{1}H^{3}$ are examples of 25. (c) Isotopes (b) Isotones (d) Isodiapheres (a) Isobars Mass numbers of two isotopes A and B are 14 and 16 respectively. If 7 electron are present in the atom A, then 26. the number of neutrons in the nucleus of atom B are [MP PMT 1992] (a) 2(b) 7 (c) 9 (d) 16 When a neutron is disintegrated, it gives 27. [MP PMT 1992] (a) One proton, one electron and one neutrino (b) One positron, on electron and one anti-neutrino (c) One proton, one positron and one neutrino (d) One proton, γ rays and one neutrino "Mass density" of nucleus varies with its mass number A as 28. (a) A^2 (c) A^0 (b) A (d) 1/AThe radius of the nucleus with nucleon number 2 is $1.5 \times 10^{-15} m$, then the radius of nucleus with nucleon 29. number 54 will be (c) $6 \times 10^{-15} m$ (b) $4.5 \times 10^{-15} m$ (a) $3 \times 10^{-15} m$ (d) $9 \times 10^{-15} m$ If F_{pp} , F_{pm} and F_{nn} are the magnitudes of net force between proton-proton, proton-neutron and neutron-30. neutron respectively, then (a) $F_{pp} = F_{pn} = F_{nn}$ (b) $F_{pp} < F_{pn} = F_{nn}$ (c) $F_{nn} > F_{nn} > F_{nn}$ (d) $F_{nn} < F_{nn} < F_{nn}$ A nucleus $_{Z}X^{A}$ emits 2 α -particles and 3 β -particles. The ratio of total protons and neutrons in the final nucleus 31. is (a) $\frac{Z-7}{A-Z+7}$ (b) $\frac{Z-1}{A-Z-8}$ (c) $\frac{Z-1}{A-Z-7}$ (d) $\frac{Z-3}{A-Z+3}$ Mass defect & Binding energy M_p denotes the mass of a proton and M_n that of a neutron. A given nucleus, of binding energy B, contains Z 32. protons and N neutrons. The mass M(N, Z) of the nucleus is given by (c is the velocity of light) (b) $M(N, Z) = NM_n + ZM_n + BC^2$ (a) $M(N, Z) = NM_n + ZM_n - BC^2$ (d) $M(N, Z) = NM_n + ZM_n + B/C^2$ (c) $M(N,Z) = NM_n + ZM_n - B/C^2$ The binding energy of nucleus is a measure of its 33. [MP PET 2004] (a) Charge (b) Mass (c) Momentum (d) Stability If *M* is the atomic mass and *A* is the mass number, packing fraction is given by 34. [KCET 2004] (b) $\frac{A-M}{A}$ (d) $\frac{M-A}{\Delta}$ (a) $\frac{A}{M-A}$ (c) $\frac{M}{M-A}$ When an electron-positron pair annihilates, the energy released is about 35. [MP PET/PMT 1988; CBSE 1992; MP PMT 1994; RPET 1997; RPMT 2000; AIIMS 2004] (a) $0.8 \times 10^{-13} J$ (c) $3.2 \times 10^{-13} J$ (d) $4.8 \times 10^{-13} J$ (b) $1.6 \times 10^{-13} J$ The atomic mass unit (amu) is equivalent to energy [Similar to CPMT 2001; MP PET/PMT 2001; MP PMT 2004] 36. (a) 93.1 eV (b) 931 MeV (c) 931 keV (d) 931 eV

37.	• Sun radiates energy in all the directions. The average energy received by earth is 1.4 kW/m^2 . The average distance between the earth and the sun is $1.5 \times 10^{11} m$. The average mass in kg lost per day by the sun is (1 day = 86400 sec) (QBP 279) [MP PMT 1993, 2003]				
	(a) 4.4×10^9	(b) 7.6×10^{14}	(c) 3.8×10^{12}	(d) 3.8×10^{14}	
38.	Energy obtained when 1 n	ng mass is completely convert	ed to energy is		
	(a) $3 \times 10^8 J$	(b) $3 \times 10^{10} J$	(c) $9 \times 10^{13} J$	(d) $9 \times 10^{15} J$	
39.	The energy liberated on c 1 nucleus)	omplete fission of 1 kg of $_{92}U$	²³⁵ is (Assume 200 <i>MeV</i> end	ergy is liberated on fission of	
	[RPET 1999, 2000; UPSEAT 2003]				
			[R	PET 1999, 2000; UPSEAT 2003]	
	(a) $8.2 \times 10^{10} J$	(b) $8.2 \times 10^9 J$	(c) $8.2 \times 10^{13} J$		
40.	· · ·	rticular nuclear reaction is	(c) $8.2 \times 10^{13} J$		
40.	The mass defect in a pa hours is (Velocity of ligh	rticular nuclear reaction is	(c) $8.2 \times 10^{13} J$	(d) $8.2 \times 10^{16} J$	
40. 41.	The mass defect in a pa hours is (Velocity of light (a) 1.5×10^6	articular nuclear reaction is $t = 3 \times 10^8 m/s$)	(c) $8.2 \times 10^{13} J$ 6.3 gm. The amount of e (c) 3×10^{6}	(d) $8.2 \times 10^{16} J$ nergy liberated in kilowatt	
-	The mass defect in a particular hours is (Velocity of light (a) 1.5×10^6 The binding energy per number of the binding energy pe	articular nuclear reaction is $mt = 3 \times 10^8 m/s$) (b) 2.5×10^6	(c) $8.2 \times 10^{13} J$ 6.3 gm. The amount of e (c) 3×10^{6}	(d) $8.2 \times 10^{16} J$ nergy liberated in kilowatt	

- **42.** Binding energy per nucleon plot against the mass number for stable nuclei is shown in the figure. Which curve is correct
 - (a) A
 - (b) *B*
 - (c) *C*
 - (d) D
- **44.** If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} J$, then number of nuclei required per second in a power plant of 16 kW is **[KCET 2000; CPMT 2001]**

(c) 0.5×12^{12}


- (a) 5×10^{14} (b) 5×10^{12}
- **45.** M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass M has Nneutron and Z-proton, then the correct relation will be
 (a) $M < [NM_n + ZM_p]$ (b) $M > [NM_n + ZM_p]$ (c) $M = [NM_n + ZM_p]$ (d) $M = N[M_n + M_p]$
- **46.** An element has binding energy 8 *eV/nucleon*. If it has total binding energy 128 *eV*, then the number of nucleons are (QBP 314)

[CPMT 2001]

[Orissa JEE 2002]

47. If the binding energy per nucleon in Li⁷ and He⁴ nuclei are respectively 5.60 MeV and 7.06 MeV, then energy of reaction Ll⁷ + p → 2 ₂He⁴ is [CBSE 1994; JIPMER 2000]
(a) 19.6 MeV (b) 2.4 MeV (c) 8.4 MeV (d) 17.3 MeV

- **48.** If 200 *MeV* energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 *Kilowatt* power shall be (Given 1 $eV = 1.6 \times 10^{-19} J$)
 - (a) 3.125×10^{13} (b) 3.125×10^{14} (c) 3.125×10^{15} (d) 3.125×10^{16}
- **49.** $M_P = 1.008$ amu, Mn = 1.009 amu and $M_2He^4 = 4.003$ amu then the binding energy of α -particle is

(d) 0.5×10^{14}

			Nuclear Pl	nysics & Radioactivity 111
	(a) 21.4 <i>MeV</i>	(b) 8.2 <i>MeV</i>	(c) 34 <i>MeV</i>	(d) 28.8 <i>MeV</i>
50.	The rest energy of an e in its energy will be	lectron is 0.511 <i>MeV</i> . The electr	on is accelerated from rest t	to a velocity 0.5 c. The chang
				[MP PET 1996
	(a) 0.026 <i>MeV</i>	(b) 0.051 <i>MeV</i>	(c) 0.079 <i>MeV</i>	(d) 0.105 <i>MeV</i>
51.	The binding energy per remove a neutron from	nucleon of O^{16} is 7.97 <i>MeV</i> and O^{17} is	d that of <i>O</i> ¹⁷ is 7.75 <i>MeV</i> . Th	e energy (in <i>MeV</i>) required t
	(a) 3.52	(b) 3.64	(c) 4.23	(d) 7.86
2.	• • •	er nucleon for a deuteron and e reaction $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + Q$	an α -particle are x_1 and x_2 1	respectively. What will be th
	(a) 4 ($x_1 + x_2$)	(b) 4 $(x_2 - x_1)$	(c) 2 $(x_1 + x_2)$	(d) 2 $(x_2 - x_1)$
53.	${}_1H^2 + {}_1H^2 \rightarrow {}_1H^3 + p$	deuterons. It produces energy	via the processes	
	$_1H^2 + _1H^3 \rightarrow _2He^4 + m$			
	The masses of the nucle	ei are as follows : $M(H^2) = 2.0$	14 $amu; M(p) = 1.007 amu;$	
		$M(n) = 1.008 \ amu; M(n)$	$(He^4) = 4.001 \ amu$	
	If the average power r of the order of	radiated by the star is 10^{16} W.	The deuteron supply of th	e star is exhausted in a tim
				[IIT-JEE 199]
	(a) 10 ⁶ sec	(b) $10^8 sec$	(c) 10^{12} sec	(d) 10^{16} sec
4.		m_1 and m_2 fused to form a nucl		
	(a) $(m_1 + m_2) > m$	(b) $(m_1 + m_2) < m$	(c) $m_1 + m_2 = m$	(d) $m_1 - m_2 = m$
55.	•	ergy per nucleon of hydrogen n		
	(a) 0	(b) ∞	(c) 7.5 <i>MeV</i>	(d) 8.5 <i>MeV</i>
		Nucl	ear reaction, Nuclear Fis	sion and Nuclear Fusion
6.	The function of the con	trol rods in nuclear reactor is	[Simila	ar to CPMT 2003; MP PET 2004
	(a) Absorb neutrons	(b) Accelerate neutrons	(c) Slow down neutrons	(d) No effect on neutrons
57.	Complete the reaction	$n + {}^{235}_{92} U \to {}^{144}_{56} Ba + \dots + 3n$		[Kerala PMT 2004
	(a) $\frac{89}{36}Kr$	(b) $^{90}_{36} Kr$	(c) ${}^{91}_{36}Kr$	(d) $\frac{92}{36} Kr$
8.	Heavy water is			[KCET 2004
	(a) Water, in which soa	ap does not lather	(b) Compound of heavy o	xygen and heavy hydrogen
	(c) Compound of deute	rium and oxygen	(d) Water at 4°C	
9.	The nuclear reactor at 1	Kaiga is a		[KCET 2004
	(a) Breeder reactor	(b) Power reactor	(c) Research reactor	(d) Fusion reactor
io.	The principle of control	lled chain reaction is used in		[Orissa JEE 2004
	(a) Atomic energy reac	tor (b) Atom bomb	(c) In the core of sun	(d) Artificial radioactivity
51.	In the following reaction	on the value of 'X' is		
	$_7N^{14} + _2He^4 \rightarrow X + _1He^4$	I^1		[DPMT 1999; CPMT 2003

114	Nuclear Thysics & Radi	ouccivicy		
	(a) ${}_{8}N^{17}$	(b) ₈ O ¹⁷	(c) $_7 O^{16}$	(d) $_7 N^{16}$
2.	What was the fissionable	material used in bomb drop	pped at Nagasaki (Japan)	in the year 1945
			-	[MNR 1985; UPSEAT 2003]
	(a) Uranium	(b) Nepturium	(c) Berkalium	(d) Plutonium
3.	The atomic number and t	he mass number of an atom	remains unchanged whe	
	(a) A photon	(b) A neutron	(c) β -particle	(d) An α -particle
ŧ۰	Light energy emitted by s	stars is due to [M	P PET 1985, 86; CPMT 199	o; CBSE 1992; EAMCET (Engg.) 1995;
				98; DCE 1999, 2000; Orissa JEE 2003]
	(a) Breaking of nuclei	(b) Joining of nuclei	(c) Burning of nucle	ei (d) Reflection of solar light
5.	A nuclear reaction given	by $_{Z}X^{A} \rightarrow _{Z+1}Y^{A} +_{-1}e^{0} + \overline{p}$ rep	presents	
	(a) γ-decay	(b) Fusion	(c) Fission	(d) β-decay
5.	Solar energy is mainly ca	used due to		[CBSE PMT 2003]
em	(a) Fission of uranium pr ents	resent in the sun	(b) Fusion of prot	ons during synthesis of heavier
	(c) Gravitational contrac	tion	(d)	Burning of hydrogen in the
kyg	en			-
7.	Find the wrong statemen	t		[TNPCEE 2002]
	(a) Half-life of a neutron	is 13 minutes		
	(b) The stability of a nuc	leus is determined by the n	umber of neutrons preser	nt in it
	(c) Both fast and slow $n\epsilon$	eutrons are capable of penet	rating a nucleus	
	(d) A free neutrons decay	ys into a proton, an electron	and positron	
3.	Fusion reaction is initiate	ed with the help of		[DPMT 2002]
	(a) Low temperature	(b) High temperature	(c) Neutrons	(d) Any particle
).	In nuclear fission the per	centage of mass converted i	nto energy is about	
	(a) 10%	(b) 0.01%	(c) 0.1%	(d) 1%
).	If the speed of light we decreased by a fraction	re 2/3 of its present value	, the energy released in	a given atomic explosion will be
			[CBSE PMT	2002; Kerala PET 2002; AFMC 2003]
	(a) 2/3	(b) 4/9	(c) 3/4	(d) 5/9
•	•	noderator in a nuclear react		
				2, 2003; CBSE PMT 2002; IIMS 2003]
	(a) To control the energy			ons and stop chain reaction
	(c) To cool the reactor fa to thermal energies		(d)	To slow down the neutrons
2.	The nuclear reaction ${}^{2}H$ -	$+^{2}H \rightarrow {}^{4}He$ (mass of deutero	n = 2.0141 <i>a.m.u.</i> and ma	ass of <i>He</i> = 4.0024 <i>a.m.u.</i>) is [Oriss]
	(a) Fusion reaction relea	sing 24 <i>MeV</i> energy	(b) Fusion reaction	absorbing 24 <i>MeV</i> energy
	(c) Fission reaction relea	asing 0.0258 <i>MeV</i> energy	(d) Fission reaction	absorbing 0.0258 <i>MeV</i> energy
3.	A deutron is bombarded of	on ${}_8O^{16}$ nucleus and $lpha$ -parti	cle is emitted. The produ	ict nucleus is
	(a) $_7 N^{13}$	(b) ${}_{5}B^{10}$	(c) $_{4}Bc^{9}$	(d) $_{7}N^{14}$
				/

²²Ne nucleus after absorbing energy decays into two α -particles and an unknown nucleus. The unknown 74. nucleus is [IIT-JEE 1999; UPSEAT 2002] (a) Nitrogen (b) Carbon (c) Boron (d) Oxygen In atom bomb the reaction which occurs is 75. [BHU 2001] (b) Controlled fission (c) Uncontrolled fission (a) Fusion (d) Thermonuclear 76. In an atomic bomb, the energy is released due to [AIIMS 2001] (a) Chain reaction of neutrons and $_{\rm q2} U^{235}$ (b) Chain reaction of neutrons and $_{92} U^{238}$ (c) Chain reaction of neutrons and $_{92}Pu^{240}$ (d) Chain reaction of neutrons and $_{92} U^{236}$ In the reaction $X(n,\alpha)_3^7 Li$, X will be 77. (a) ${}^{10}_{5}B$ (b) ${}_{5}^{9}B$ (c) ${}^{11}_{4}Be$ (d) ${}^{2}_{4}He$ 78. Energy released in nuclear fission is due to [CBSE PM/PD 2001] (a) Few mass is converted into energy (b) Total binding energy of fragments is more than the B.E. of parental element (c) Total B.E. of fragments is less than the B.E. of parental element (d) Total B.E. of fragments is equal to the B.E. of parental element Which one is not possible [CPMT 2001] 79. (b) $_{16}S^{32} + _{1}H^{1} \rightarrow _{17}Cl^{35} + _{2}He^{4}$ (a) $_{7}N^{14} + _{0}n^{1} \rightarrow _{7}N^{16} + _{1}H^{1}$ (c) ${}_{8}O^{16} + {}_{0}n^{1} \rightarrow {}_{7}N^{14} + 3{}_{1}H^{1} + 2{}_{-1}\beta^{0}$ (d) $_{1}H^{1} + _{1}H^{1} \rightarrow _{2}He^{4}$ $_{16}S^{32} + _{0}n^{1} \rightarrow X + _{2}He^{4}$, X is 80. [CPMT 2001] (c) $_{14}Si^{29}$ (a) ${}_{16}S^{28}$ (b) $_{14}N^7$ (d) ${}_{16}S^{29}$ The polonium isotope $\frac{210}{84}$ Po is unstable and emits a 10 MeV alpha particle. The atomic mass of $\frac{210}{84}$ Po is 209.983 81. U and that $\frac{4}{2}He$ is 4.003 U. The atomic mass of the daughter nucleus is (a) 210 U (b) 208 U (c) 82.0 U (d) None of these 82. When two deuterium nuclei fuse together to form a tritium nuclei, we get a [EAMCET 1994; CPMT 2000; CPMT 2000] (c) α -particle (a) Neutron (b) Deutron (d) Proton The average number of prompt neutrons produced per fission of $\ U^{235}$ is 83. [MP PMT 2000] (a) More than 5 (b) 3 to 5 (c) 2 to 3 (d) 1 to 2 Nuclear fission experiments show that the neutrons split the uranium nuclei into two fragments of about same 84. size. This process is accompanied by the emission of several [CBSE 1994; SCRA 1994; DPMT 2000] (d) Protons (a) Protons and positrons (b) α – particles (c) Neutrons and α – particles To generate a power of 3.2 mega watt, the number of fissions of U^{235} per minute is 85. (Energy released per fission = 200MeV, $1eV = 1.6 \times 10^{-19} J$) (a) 6×10^{18} (b) 6×10^{17} (c) 10^{17} (d) 6×10^{16} 86. Atomic hydrogen has its life period of [CBSE PMT 2000] (c) One hour (d) One minute (a) One day (b) A fraction of a second

87. It is possible to understand nuclear fission on the basis of the

	(a) Meson theory of the n		(b) Proton-proton cyc	
8.	(c) Independent particle If E_1 is the energy releas		(d) Liquid drop mode ar fusion and E_2 that in nuc	
	(a) $E_1 < E_2$	(b) $E_1 > E_2$	(c) $E_1 = -E_2$	
9.	When $\frac{235}{92}U$ is bombarded	l with one neutron, the fis	sion occurs and the product	is are three neutrons, $\frac{94}{36}$ Kr , and [UP
	(a) $\frac{139}{54} Xe$	(b) $^{139}_{58} Ce$	(c) $^{139}_{56} Ba$	(d) $^{142}_{53}I$
	In the carbon cycle, from	which stars hotter than th	he Sun obtain their energy,	the ${}_{6}^{12}C$ isotope
	(a) Splits into three alph nucleus to form ${}_{12}Mg^{24}$	a particles	(b)	Fuse with another ${}_6C^{12}$
	(c) Is completely convert	ted into energy	(d) Is regenerated at	the end of the cycle
•	In the following nuclear	reaction ${}_6C^{11} \rightarrow {}_5B^{11} + \beta^+ + \beta^-$	X what does X stand for	[CEET 1998; CPMT 2000]
	(a) A proton	(b) A neutron	(c) A neutrino	(d) An electron
•	Fusion reaction takes pla 1999]	ce at high temperature be	cause	[CPMT 1980; SCRA 1996; RPET
	(a) Atoms are ionized at	high temperature		
	(b) Molecules break-up a	at high temperature		
	(c) Nuclei break-up at hi	gh temperature		
		0 1		
	(d) Kinetic energy is high	h enough to overcome repu	ılsion between nuclei	
3.		h enough to overcome repu	ulsion between nuclei neutrons is of the orde	er of (Boltzmann's constant
•	The average kinetic e	h enough to overcome repu		er of (Boltzmann's constant [MP PET 1993; AMU (Engg.) 1999]
•	The average kinetic e	h enough to overcome repu		
	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV	h enough to overcome repunergy of the thermal (b) 3 <i>eV</i>	neutrons is of the orde	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i>
	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV	h enough to overcome repunergy of the thermal (b) 3 <i>eV</i> on, that would be caused d	neutrons is of the orde (c) 3 <i>KeV</i>	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called
•	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea	neutrons is of the orde (c) 3 <i>KeV</i> lue to the use of nuclear we	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called
•	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea	neutrons is of the orde (c) 3 <i>KeV</i> lue to the use of nuclear we	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d)
•	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea	neutrons is of the orde (c) 3 <i>KeV</i> lue to the use of nuclear we action (c) Neutron reproduc	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d)
•	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) $\frac{1}{3}H + \frac{1}{2}H = \frac{2}{4}He + \frac{0}{1}n$ (c) $\frac{12}{7}C \rightarrow \frac{12}{6}C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jour (a) Electrons of the atom (b) Electron and positron (c) Only positron will be	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea h reaction <i>eles</i> is absorbed by a mater of absorbed material will h pair will be created produced	neutrons is of the order (c) 3 <i>KeV</i> lue to the use of nuclear weat action (c) Neutron reproduct (b) ${}^{238}_{92} U \rightarrow {}^{206}_{82} Pb + 8 ({}^4_2)$ (d) None of these rial under special circumstant I go to the higher energy stat	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d) He)+6($_{-1}^{0}\beta$) unces. The correct statements is [MP
+- 	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) $\frac{1}{3}H + \frac{1}{2}H = \frac{2}{4}He + \frac{0}{1}n$ (c) $\frac{12}{7}C \rightarrow \frac{12}{6}C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jour (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea h reaction <i>eles</i> is absorbed by a mater of absorbed material will h pair will be created produced t will occur and electron wor the following fission pro	neutrons is of the order (c) 3 <i>KeV</i> lue to the use of nuclear weat action (c) Neutron reproduct (b) $\frac{238}{92} U \rightarrow \frac{206}{82} Pb + 8 (\frac{4}{2})$ (d) None of these cial under special circumstant I go to the higher energy standard	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$
+- 	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) $\frac{1}{3}H + \frac{1}{2}H = \frac{2}{4}He + \frac{0}{1}n$ (c) $\frac{12}{7}C \rightarrow \frac{12}{6}C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jour (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect	h enough to overcome repu nergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear rea h reaction <i>les</i> is absorbed by a mater h of absorbed material will h pair will be created produced t will occur and electron w or the following fission pro	neutrons is of the order (c) 3 <i>KeV</i> lue to the use of nuclear weat action (c) Neutron reproduct (b) $\frac{238}{92} U \rightarrow \frac{206}{82} Pb + 8 (\frac{4}{2})$ (d) None of these cial under special circumstant I go to the higher energy standard	[MP PET 1993; AMU (Engg.) 1999] (d) 3 MeV apons is called ction factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$ ences. The correct statements is [MP ates
3. 5. 5.	The average kinetic e $K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) ${}_3^1H + {}_2^1H = {}_4^2He + {}_1^0n$ (c) ${}_7^1C \rightarrow {}_6^{12}C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jour (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect Complete the equation for ${}_{92}U^{235} + {}_0n^1 \rightarrow \dots {}_{38}Kr^{90} + \dots$	h enough to overcome repunergy of the thermal (b) 3 <i>eV</i> on, that would be caused d (b) Thermo-nuclear reach h reaction <i>ules</i> is absorbed by a materian of absorbed material will h pair will be created produced t will occur and electron work the following fission pro- (b) ₅₄ <i>Xe</i> ¹⁴⁵	neutrons is of the order (c) 3 <i>KeV</i> lue to the use of nuclear weat action (c) Neutron reproduct (b) ${}^{238}_{92}U \rightarrow {}^{206}_{82}Pb + 8 ({}^4_2)$ (d) None of these cial under special circumstant I go to the higher energy standard vill be produced occess	[MP PET 1993; AMU (Engg.) 1999] (d) 3 MeV apons is called ction factor (d) $He) + 6\binom{0}{-1}\beta$ succes. The correct statements is [MP ates [CBSE 1998]

Nuclear Physics & Radioactivity 115 Four $_{1}H^{2}$ fuse to form (c) Two $_{1}H^{2}$ fuse to form $_{2}He^{4}$ (d) $_{2}He^{4}$ and two positrons **99.** In the reaction ${}_7N^{14} + {}_2He^{14} \rightarrow {}_8O^{17} + {}_1H^1$ the minimum energy of the α -particle is $(M_N = 14.00307 \text{ amu}, M_{He} = 4.0026 \text{ amu} \text{ and } M_O = 16.99914 \text{ amu}, M_H = 1.00783 \text{ amu} \text{ and } 1 \text{ amu} = 931 \text{ MeV}$) [EAMCET (Engg.) 1998] (a) 1.21 *MeV* (b) 1.62 MeV (c) 1.89 *MeV* (d) 1.96 MeV **100.** A nuclear reaction $n \rightarrow p + e^{-1} + \overline{v}$, if masses of proton, neutron and electron are respectively 1.6725×10^{-27} , 1.6747×10^{-27} and $9 \times 10^{-31} kg$ then emitted energy will be [RPET 1998] (a) 0.51 *MeV* (b) 0.73 MeV (c) 1.02 *MeV* (d) 4.21 MeV **101.** For the construction of nuclear-bomb which of the following substances is taken [CPMT 1998] (b) Pu-239 (d) Both (a) and (b) (a) U-235 (c) F-14 **102.** (QBP-588) Consider the fission reaction $_{92}U^{236} \rightarrow X^{117} + Y^{117} + n + n$ *i.e.*, two nuclei of same mass number 117 are found plus two neutrons. The binding energy per nucleon of X and Y is 8.5 MeV whereas of U^{236} is 7.6 MeV. The total energy liberated will be about [CPMT 1976; CBSE 1997] (a) 2 *MeV* (b) 20 MeV (c) 200 *MeV* (d) 2000 MeV The capacity of Tarapur Atomic Power Station is 200 MW. The energy produced at this station in one day will 103. he [NCERT 1975; RPET 1996] (b) 200 *M* Cal. (c) $1728 \times 10^{10} J$ (a) 200 J (d) None of these **104.** A reaction between a proton and ${}_{8}O^{18}$ that produces ${}_{9}F^{18}$ must also liberate (QBP-740) (a) $_{0}n^{1}$ (b) $_{1}e^{0}$ (c) $_{1}n^{0}$ (d) $_{0}e^{1}$ **105.** Which of the following statements is (are) correct [IIT-JEE 1994] (a) The rest mass of a stable nucleus is less than the sum of the rest masses of its separated nucleons (b) The rest mass of a stable nucleus is greater than the sum of the rest masses of its separated nucleon (c) In nuclear fusion, energy is released by fusing two nuclei of medium mass (approximately 100 amu) (d) In nuclear fission, energy is released by fragmentation of a very heavy nucleus **106.** In the following reaction ${}_{12}Mg^{24} + {}_{2}He^4 \rightarrow {}_{14}Si^x + {}_{0}n^1 x$ is (a) 28 (b) 27 (c) 26 (d) 22 **107.** A slow neutron (*n*) is captured by a $\frac{235}{92}U$ nucleus forming a highly unstable $\frac{236}{92}U^*$ (where * denotes that the nucleus is in an excited state). The fission of the nucleus occurs by (a) ${}^{236}_{92}U^* \rightarrow {}^{140}_{50}Sn + {}^{89}_{42}MO + 6n + Q$ (b) $^{236}_{92}U^* \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 4n + Q$ (c) $^{236}_{92}U^* \rightarrow ^{144}_{52}Te + ^{89}_{42}MO + 3n + Q$ (d) $^{236}_{92}U^* \rightarrow ^{144}_{56}Ba + ^{89}_{36}Kr + 3n + Q$ 108. For an atomic reactor being critical the ratio (r) of the average number of neutrons produced and used in chain reaction [NCERT 1990] (a) Is less than one (b) Is equal to one (c) Is greater than one (d) Depends upon the mass of the fissionable material

109. The following nuclear reaction shows : $4_1H^1 \rightarrow {}_2He^4 + 2_1e^0 + 26MeV$

(a) Fission (b) Fusion (c) Transformation of element (d)Scattering of α – particle

ιο.					
	Heavy water has molecula	ar weight			
	(a) 20	(b) 18	(c) 19	(d) 36	
۱.					
	Column I (A) Thermal energy of air of heavy nuclei	molecules at room temperat	ure (B)	Binding energy per nucleon	
	(C) X-ray photon energy		(D) Photon energy of visit	ble light	
	Column II				
	(E) 0.02 <i>eV</i>	(F) 2 <i>eV</i>	(G) 1 <i>keV</i>	(H) 7 <i>MeV</i>	
	The correct matching of c	olumn I and column II is give	n by		
	(a) A – E, B – H, C – G, D H (d)	– F (b) A – F, B – H, C – E, D –G	A – E, B – G, C – F, D – H	(c) A - F, B - E, C - G, D -	
2.	Most suitable element for	nuclear fission is the elemen	t with atomic number near	[CPMT 1982]	
	(a) 11	(b) 21	(c) 52	(d) 92	
3.	A free electron can give ri	se to the following decay (wh	here γ is a quantum of E.M.	field)	
	(a) $e^- \rightarrow e^+$	(b) $e^- \rightarrow e^- + \gamma$	(c) $e^- \rightarrow e^-$	(d) $e^- \rightarrow \mu^-$	
1	Assuming that about 20	MeV of energy is released ne	r fusion reaction $H^2 + H^2$	$\rightarrow_0 n^1 + {}_2 He^3$ then the mass of	
4.	-	a fusion reactor of power 1 n		· -	
	(a) 0.001 g	(b) 0.1 <i>g</i>	(c) 10.0 <i>g</i>	(d) 1000 <i>g</i>	
5.	energy required to remov	e one neutron from the nucle	us U^{236} is nearly about	on = 1.008665 <i>amu</i> . Then the	
	(a) 75 <i>MeV</i>	(b) 6.5 <i>MeV</i>	(c) 1 <i>eV</i>	(d) Zero	
			()	(u) 2010	
_				Radioactivity	
6.	A radioactive decay chai particles can be				
6.	•			Radioactivity	
6.	•	in starts from $_{93}Np^{237}$ and		Radioactivity	
6.	particles can be	In starts from $_{93} Np^{237}$ and β^- particle	produces $_{90} Th^{229}$ by succes (b) Three eta^+ particles	Radioactivity sive emissions. The emitted [MP PMT 2004]	
	particles can be (a) Two α -particles and o (c) One α particle and tw	In starts from $_{93} Np^{237}$ and β^- particle o β^+ particles	produces $_{90}Th^{229}$ by succes (b) Three eta^+ particles (d) One $lpha$ particle and two	Radioactivity sive emissions. The emitted [MP PMT 2004]	
	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und	in starts from $_{93} Np^{237}$ and ne β^- particle o β^+ particles ergoes a series of decay accord	produces $_{90} Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme	Radioactivity sive emissions. The emitted [MP PMT 2004]	
	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und $A - \alpha$	in starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles ergoes a series of decay according $\xrightarrow{\alpha} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} A_3$	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles	
	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A- If the mass number and a	In starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles ergoes a series of decay according $\frac{\alpha}{-} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} f$ tomic number of A are 180 and	produces $_{90} Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 and 72 respectively, then what [Roorkee 1986; CBSE PMT 1	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003]	
	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und $A - \alpha$	in starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles ergoes a series of decay according $\xrightarrow{\alpha} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} A_3$	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 and 72 respectively, then what	Radioactivity sive emissions. The emitted [MP PMT 2004] 0 β^- particles t are these number for A_4	
7.	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A - If the mass number and a (a) 172 and 69	In starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles ergoes a series of decay according $\frac{\alpha}{-} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} f$ tomic number of A are 180 and	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 id 72 respectively, then what [Roorkee 1986; CBSE PMT 1 (c) 176 and 69	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003]	
7.	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A - If the mass number and a (a) 172 and 69 Which of the following is (a) α , β , γ	In starts from ${}_{93}Np^{237}$ and In starts from ${}_{93}Np^{237}$ and In β^- particle o β^+ particles lergoes a series of decay accord $\stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta}{\longrightarrow} A_2 \stackrel{\alpha}{\longrightarrow} A_3 \stackrel{\gamma}{\longrightarrow} \gamma^+$ tomic number of <i>A</i> are 180 and (b) 174 and 70 in the increasing order for per- (b) β , α , γ	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 id 72 respectively, then what [Roorkee 1986; CBSE PMT 1 (c) 176 and 69	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003]	
7.	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A- If the mass number and a (a) 172 and 69 Which of the following is (a) α , β , γ	In starts from ${}_{93}Np^{237}$ and In starts from ${}_{93}Np^{237}$ and In β^- particle o β^+ particles lergoes a series of decay accord $\stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta}{\longrightarrow} A_2 \stackrel{\alpha}{\longrightarrow} A_3 \stackrel{\gamma}{\longrightarrow} \gamma^+$ tomic number of <i>A</i> are 180 and (b) 174 and 70 in the increasing order for per- (b) β , α , γ	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 ad 72 respectively, then what [Roorkee 1986; CBSE PMT 1 (c) 176 and 69 enetrating power (c) γ , α , β	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ , β , α	
7.	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A - If the mass number and a (a) 172 and 69 Which of the following is (a) α , β , γ	In starts from ${}_{93}Np^{237}$ and in starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles lergoes a series of decay accord $\stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta}{\longrightarrow} A_2 \stackrel{\alpha}{\longrightarrow} A_3 \stackrel{\gamma}{\longrightarrow} \gamma^+$ tomic number of <i>A</i> are 180 and (b) 174 and 70 in the increasing order for per- (b) β , α , γ a correct statement	produces $_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 ad 72 respectively, then what [Roorkee 1986; CBSE PMT 1 (c) 176 and 69 enetrating power (c) γ , α , β	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ, β, α HEE 1999; DPMT 2000; UPSET 20	
17.	particles can be (a) Two α -particles and o (c) One α particle and tw A radioactive nucleus und A - If the mass number and a (a) 172 and 69 Which of the following is (a) α , β , γ Which of the following is (a) Beta rays are same as	In starts from ${}_{93}Np^{237}$ and in starts from ${}_{93}Np^{237}$ and ne β^- particle o β^+ particles lergoes a series of decay accord $\stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta}{\longrightarrow} A_2 \stackrel{\alpha}{\longrightarrow} A_3 \stackrel{\gamma}{\longrightarrow} \gamma^+$ tomic number of <i>A</i> are 180 and (b) 174 and 70 in the increasing order for per- (b) β , α , γ a correct statement	produces ${}_{90}Th^{229}$ by succes (b) Three β^+ particles (d) One α particle and two rding to the scheme A_4 and 72 respectively, then what [Roorkee 1986; CBSE PMT 1 (c) 176 and 69 enetrating power (c) γ , α , β [IIT-J (b) Gamma rays are high-	Radioactivity sive emissions. The emitted [MP PMT 2004] o β^- particles t are these number for A_4 995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ, β, α HEE 1999; DPMT 2000; UPSET 20	

Nuclear Physics & Radioactivity 117 **120.** The rate of disintegration of fixed quantity of a radioactive element can be increased by [MP PMT 1997, 2003] (a) Increasing the temperature(b) Increasing the pressure (c) Chemical reaction (d) **121.** An element *A* decays into element *C* by a two step process [MP PMT 1997, 2003] $A \rightarrow B + _2He^4$ $B \rightarrow C + 2e^{-}$, then [CBSE 1994; AMU 2002; KCET 2003] (d) A and B are isobars (a) A and C are isotopes (b) A and C are isobars (c) *A* and *B* are isotopes **122.** In the disintegration series ${}^{238}_{92}U \xrightarrow{\alpha} X \xrightarrow{\beta} {}^{A}_{7}Y$ the value of Z and A respectively will be [MP PET/PMT 2001; DPMT 2002; MP PMT 2003] (a) 92, 236 (b) 88, 230 (c) 90, 234 (d) 91, 234 **123.** The α -particle is the nucleus of an atom of [CBSE 1999; RPET 2000; AFMC 2003 MP PET 2003] (a) Neon (b) Hydrogen (c) Helium (d) Deuterium **124.** An atomic nucleus ${}_{90}Th^{232}$ emits several α and β radiations and finally reduces to ${}_{82}Pb^{208}$. It must have emitted [RPMT 1998; MP PET 2003] (a) 4α and 2β (b) 6α and 4β (c) 8α and 24β (d) 4α and 16β **125.** Which of the following radiations has the least wavelength (a) X-rays (b) γ -rays (c) β -rays (d) α -rays **126.** In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called (b) PET (c) CAT (d) SPECT (a) MRI **127.** Which of the following rays are not electromagnetic waves (a) γ -rays (b) β -rays (c) Heat rays (d) X-rays **128.** A nucleus with Z = 92 emits the following in a sequence : $\alpha, \beta^-, \beta^-, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$. The *Z* of the resulting nucleus is [AIEEE 2003] (a) 74 (b) 76 (c) 78 (d) 82 129. Radioactive nuclei that are injected into a patient collect at certain sites within its body, undergoing radioactive decay and emitting electromagnetic radiation. These radiations can then be recorded by a detector. This procedure provides an important diagnostic tool called (a) Gamma camera (b) CAT scan (c) Radiotracer technique (d) Gamma ray spectroscopy **130.** Which of the following cannot be emitted by radioactive substances during their decay [Haryana PMT 2000; AIEEE 2003] (a) Electrons (b) Protons (c) Neutrinoes (d) Helium nuclei 131. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit (iii) *He*²⁺ (i) Electrons (ii) Protons (iv) Neutrons The emission at the instant can be (a) i, ii, iii (b) i, ii, iii, iv (c) iv (d) ii, iii **132.** Read the following statements and identify the correct one

(i) Radioactive decay obeys the law of exponential

110	Nuclear Flysics & Raulo	Jactivity				
	(ii) Electrons orbiting the	nucleus are responsible for r	adioactivity			
	(iii)	Half life period is greater th	nan mean life	e period		
	(iv) After disintegration ra	adio carbon is converted into	N-14			
	(a) (i), (ii) correct and (ii (iii) false	i), (iv) false	(b)		(i), (ii), (iv) correct	an
	(c) (i), (ii), (iii) and (iv) a (iii) false	are correct	(d)		(i), (iv) correct and	(ii
33.	If $_{92}U^{238}$ undergoes succes	sively 8 α -decays and 6 β -de	cays, then re	sulting nucleus	is	
	(a) $_{82}U^{206}$	(b) $_{82}Pb^{206}$	(c) $_{82}U^{210}$		(d) $_{82}U^{214}$	
34.	In the given reaction $_{z}X^{A}$	$\rightarrow_{z+1} Y^A \rightarrow_{z-1} K^{A-4} \rightarrow_{z-1} K^{A-4}$	1			
002	Radioactive radiations are	e emitted in the sequence	[4	AIIMS 1982; CBS	SE 1993; AFMC 1999; MP	• PE
	(a) <i>α</i> , <i>β</i> , γ	(b) <i>β</i> , <i>α</i> , γ	(c) γ, α, β		(d) β, γ, α	
35.	A nucleus $_{n}X^{m}$ emits one	lpha and one eta particles. The res	ulting nucleı	ıs is		
		[Simi]	lar to (Kerala	PMT 2002); CBS	SE 1998; BHU 2001; AFMC 2	2002
	(a) $_{n}X^{m-4}$	(b) $_{n-2}Y^{m-4}$	(c) $_{n-4}Z^{m-1}$	- 4	(d) $_{n-1}Z^{m-4}$	
36.	In radioactive element, β -	rays emits from			[AIEEE 2	2002
	(a) Nucleus	(b) Outer-orbit	(c) Inner-	orbit	(d) None of these	
37.	The equation $_{z}X^{A} \rightarrow_{z+1} Y^{A}$	$+_{-1}e^{0}+\overline{v}$ is			[CPMT 2	2002
	(a) β -emission	(b) α -emission	(c) e⁻ capt	ture	(d) Fission	
38.	A $\pi^{\rm o}$ at rest decays into 2 γ	rays $\pi^0 \rightarrow \gamma + \gamma$. Then which ϕ	of the follow:	ing can happen	[CPMT 2	2002
	(a) The two $-\gamma$'s move in s	same direction	(b) The tw	vo γ's move in o	pposite direction	
	(c) Both repel each other		(d) Both a	ttract each othe	er	
39.	A radioactive substance en	mits				
	(a) Electromagnetic radia the nucleus	tion	(b)		Electrons revolving ar	oun
	(c) Charged particles		(d) Neutra	al particles		
40.	Which of the following pr	ocesses represents a gamma-	decay			
	(a) ${}^{A}X_{z} + \gamma \rightarrow {}^{A}X_{z-1} + a + b$	(b) ${}^{A}X_{Z} + {}^{1}n_{0} \rightarrow {}^{A-3}X_{Z-2} + c$	(c) ${}^{A}X_{Z} \rightarrow$	$\cdot {}^{A}X_{Z} + f$	(d) ${}^{A}X_{Z} + e_{-1} \rightarrow {}^{A}X_{Z-1} +$	g
41.	The S.I. unit of radioactiv	ity is				
	(a) Roentgen	(b) Rutherford	(c) Curie		(d) Becqueral	
42.	Which one of the followin	g statements about uranium i	s correct			
	(a) ^{235}U is fissionable by	thermal neutrons				
	(b) Fast neutrons trigger	the fission process in ^{235}U				
	(c) ^{238}U breaks up into fr	agments when bombarded by	slow neutro	ons		
		otope and undergoes spontan				
43 .	When a radioactive substa	ance emits an $lpha$ -particle, its p	osition in the	e periodic table	is lowered by	

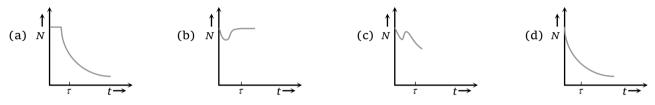
	Tathich many services and the			
144.	Which rays contain posit			[CBSE PM/PD 2001]
14-	(a) α -rays	(b) β -rays	(c) γ-rays	(d) x-rays
145.		Deta radiation originates fro		HU 2000); IIT-JEE (Screening) 2001]
	(a) Inner orbits of atoms		(b) Free electrons exi	
	(c) Decay of a neutron in		(d)	Photon escaping from the
	nucleus.			I O
146.	Which of the following is 2001]	s a good nuclear fuel		[Manipal MEE 1995; RPET
	(a) Neptunium – 239	(b) Plutonium – 239	(c) Thorium – 236	(d) Uranium – 236
l 4 7.	In which of the following	g decay, the element does no	ot change	
	(a) β -decay	(b) α -decay	(c) γ-decay	(d) None of these
148.	The correct order of ioni	zing capacity of α , β and γ -r	ays is	
	(a) $\alpha > \gamma > \beta$	(b) $\alpha > \beta > \gamma$	(c) $\alpha < \beta < \gamma$	(d) $\alpha > \beta < \gamma$
149.	A neutron with velocity	V strikes a stationary deuter	rium atom., its kinetic ener	rgy changes by a factor of
	(2) ¹⁵	(b) $\frac{1}{2}$	(c) $\frac{2}{1}$	(d) None of these
	(a) $\frac{15}{16}$	$(0) \frac{1}{2}$	$(c) \frac{1}{1}$	(d) None of these
150.	A nucleus $_Z X^A$ emits an numbers of the final nuc		ucleus emits a β^+ particle.	. The respective atomic and mass
	(a) <i>Z</i> -3, <i>A</i> -4	(b) <i>Z</i> -1, <i>A</i> -4	(c) <i>Z</i> -2, <i>A</i> -4	(d) <i>Z</i> , <i>A</i> -2
151.	The same radioactive nu	cleus may emit		[BHU Med. 1999]
	(a) All the three α , β and	γ simultaneously	(b) All the three α , β	and γ one after another
	(c) Either α or β and γ at simultaneously	a time		(d) Only α and β
152.	Consider the following to	wo statements		[AMU (Med.) 1999]
	(A) Energy spectrum of a	x-particles emitted in radioa	active decay is discrete.	
	(B) Energy spectrum of μ	3-particles emitted in radioa	ctive decay is continuous	
	(a) Only A is correct	(b) Only <i>B</i> is correct	(c) <i>A</i> is correct but <i>B</i>	is wrong (d)Both <i>A</i> and <i>B</i> are correc
153.	Among electron, proton,		naximum penetration capa	acity is for [EAMCET (Engg.) 1998]
	(a) Electron	(b) Proton	(c) Neutron	(d) α -particle
154.	When $_{15}P^{30}$ decays to be	come $_{14}Si^{30}$, the particle rel	eased is	
	(a) Electron	(b) α -particle	(c) Neutron	(d) Positron
155.	Which of the following d	oes not have the velocity eq	ual to that of light	
	(a) Radio waves	(b) γ-rays	(c) β -particles	(d) EM waves
156.		$_{9}Cu^{64}$ and $_{30}Zn^{64}$ are 63.92		respectively. It can be concluded
	(a) Both the isobars are decaying to Cu^{64} through	stable	(b)	Zn ⁶⁴ is radioactive
		decaying to Zn^{64} through γ -o	lecay (d)	<i>Cu</i> ⁶⁴ is radioactive
157.		00 KeV are bombarded on	nucleus of $_{82}Pb$. In scatte	ering of α -particles, its minimum
	(a) 0.59 nm	(b) 0.59 Å	(c) 5.9 <i>pm</i>	(d) 0.59 <i>pm</i>

158. In the given nuclear reaction A, B, C, D, E represents ${}_{92}U^{238} \xrightarrow{\alpha} {}_{B}Th^{A} \xrightarrow{\beta} {}_{D}Pa^{C} \xrightarrow{E} {}_{92}U^{234}$ (a) $A = 234, B = 90, C = 234, D = 91, E = \beta$ (b) $A = 234, B = 90, C = 238, D = 94, E = \alpha$ (c) $A = 238, B = 93, C = 234, D = 91, E = \beta$ (d) $A = 234, B = 90, C = 234, D = 93, E = \alpha$ **159.** The activity of a radioactive sample is measured as 9750 counts per minute at t = 0, as 975 counts per minute at t = 5 min. the decay constant is approximatel (a) 0.230 per minute (b) 0.461 per minute (c) 0.691 per minute (d) 0.922 per minute 160. Which of the following isotopes is used for the treatment of cancer (a) K^{40} (b) Co⁶⁰ (c) Sr^{90} (d) *I*¹³¹ **161.** Age of a tree is determined using radio-isotope of [EAMCET (Engg.) 1995] (a) Carbon (b) Cobalt (c) Iodine (d) Phosphorus **162.** Which of the following statements are true regarding radioactivity (I) All radioactive elements decay exponentially with time (II) Half life time of a radioactive element is time required for one half of the radioactive atoms to disintegrate (III) Age of earth can be determined with the help of radioactive dating (IV) Half life time of a radioactive element is 50% of its average life period Select correct answer using the codes given below Codes : [SCRA 1994] (a) I and II (b) I, III and IV (c) I, II and III (d) II and III 163. Unit of radioactivity is Rutherford. Its value is [MP PMT 1994] (a) 3.7×10^{10} disintegrations/sec (b) 3.7×10^{6} disintegrations/sec (c) 1.0×10^{10} disintegrations/sec 1.0×10^{6} disintegrations/sec (d) **164.** The essential distinction between X-rays and γ -rays is that (a) γ -rays have smaller wavelength than X-rays (b) γ -rays emanate from nucleus while X-rays emanate from outer part of the atom (c) γ -rays have greater ionizing power than X-rays (d) γ -rays are more penetrating than X-rays **165.** Neutrons can be accelerated by (a) Cyclotron (b) Betatron (c) Van-de-graph generator (d) None of these **166.** If the end A of a wire is irradiated with α -rays and the other end B is irradiated with β -rays, then (a) A current will flow from A to B (b) A current will flow from *B* to *A* (c) There will be no current in the wire (d) A current will flow from each end to the mid-point of the wire **167.** Which of the following statements is true [MP PET 1993] (a) $_{78}Pt^{192}$ has 78 neutrons (b) $_{84}Po^{214} \rightarrow _{82}Pb^{210} + \beta^{-1}$ (c) $_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}He^{4}$ (d) $_{90}Th^{234} \rightarrow _{91}Pa^{234} + _{2}He^{4}$ **168.** When a radioactive substance is subjected to a vacuum, the rate of disintegration per second (a) Increases considerably (b) Increases only if the products are gaseous (c) Is not affected (d) Suffers a slight decrease 169. Radioactivity is due to [MP PMT 1983]

Nuclear Physics & Radioactivity 121 (a) Unstable electronic configuration (b) Stable electronic configuration (c) Stable nucleus (d) Unstable nucleus **170.** Cosmic rays, as they arrive at the top of the atmosphere, consist mainly of [NCERT 1979] (a) High energy electrons (b) Heavy atoms (d) Protons (c) Heavy nuclei 171. After 280 days, the activity of a radioactive sample is 6000 dps. The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in *dps* is (a) 6000 (b) 9000 (c) 3000 (d) 24000 **172.** The half-life of radium is 1600 years. What is the fraction of sample undecayed after 6400 years (c) $\frac{1}{16}$ (d) $\frac{1}{24}$ (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ **173.** A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is (a) 20 min (b) 30 min (c) 80 min (d) 120 min **174.** The half life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at t = 0, then the number of atoms decayed in the duration t = 2 hour to t = 4 hour will be (a) 2×10^{10} (b) 1.5×10^{10} (c) Zero (d) Infinity **175.** The half-life of radium is about 1600 years. Of 100 *q* of radium existing now, 25 *q* will remain unchanged after [CBSE PMT/PDT (Screening) 2004] (c) 6400 years (b) 4800 years (d) 2400 years (a) 3200 years 176. A radioactive substance decays to 1/16th of its initial activity in 40 days. The half-life of the radioactive substance expressed in days is [AIIMS 2003] (c) 10 (a) 2.5 (b) 5 (d) 20 177. Rate of decay is proportional to (b) The number of active nuclei present at that instant (a) The number of nuclei initially present (c) To the number of decayed nuclei (d) None of these **178.** The rate of radioactive decay of a material is 800 dps. If the half-life period of the material is 1 sec, the rate of decay after 3 seconds will be (a) 800 dps (b) 400 dps (c) 200 dps (d) 100 dps **179.** A sample of radioactive element has a mass of 10 q at an instant t = 0. The approximate mass of this element in the sample after two mean lives is (a) 1.35 q (b) 2.50 q (c) 3.70 q (d) 6.30 q **180.** The half-life of radium is 1620 years and its atomic weight is 226 kg per kilomol. The number of atoms that will decay from its 1 gm sample per second will be (Avogadro's number $N = 6.02 \times 10^{26}$ atom/kilomol) (a) 31.1×10^{15} (b) 3.11×10^{15} (c) 3.6×10^{12} (d) 3.61×10^{10} 181. Half-life of a radioactive substance is 20 minutes. The time between 20% and 80% decay will be (a) 20 minutes (b) 40 minutes (c) 30 minutes (d) 25 minutes **182.** The half-life of a radioactive substance is 48 hours. How much time will it take to disintegrate to its $\frac{1}{16}$ th part [BCECI (a) 12 h (b) 16 h (c) 48 h (d) 192 h 183. A radioactive material has an initial amount of 16 qm. After 120 days it reduces to 1 qm, then the half-life of radioactive material is [Similar to (RPET 1997; MP PET/PMT 2002); Bihar MEE 1995; Manipal MEE 1995;

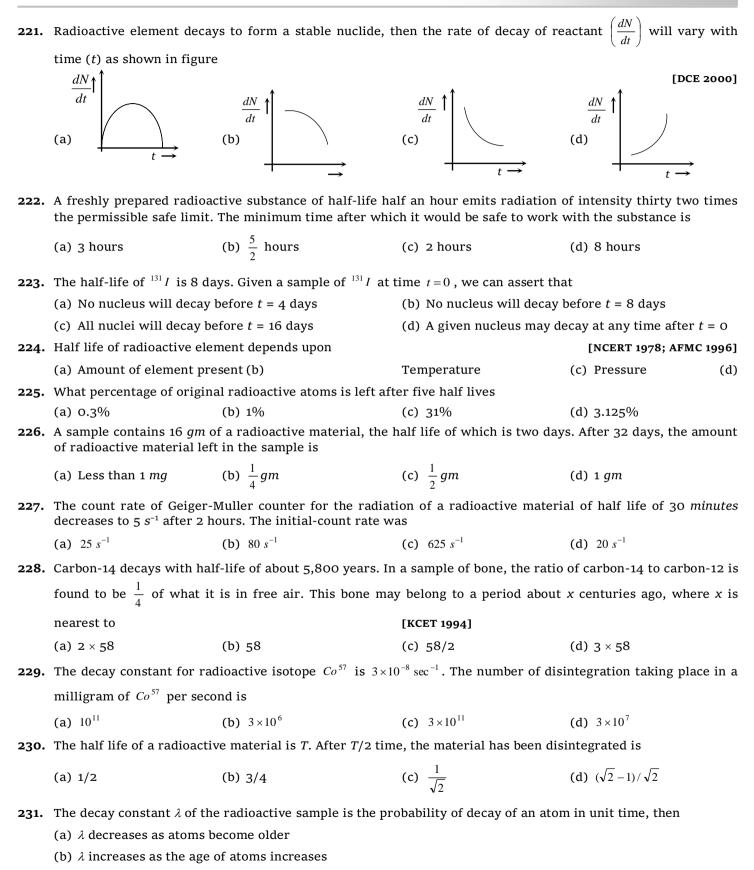
122	Nuclear Physics & R	autoactivity		
		EA	AMCET 1994; MP PMT 1997; AF	MC 2000; DPMT 2002; CPMT 2003]
	(a) 60 days	(b) 30 days	(c) 40 days	(d) 240 days
84.		oactive substances whose half e time (approximate) after w	, , , , , , , , , , , , , , , , , , ,	ectively. Initially 10 <i>gm</i> of A and antity remaining is
	(a) 6.62 years	(b) 5 years	(c) 3.2 years	(d) 7 years
85.	The activity of a samp	ple is 64×10^{-5} Ci . Its half-life	is 3 days. The activity will be	ecome 5×10^{-6} Ci after
	(a) 12 days	(b) 7 days	(c) 18 days	(d) 21 days
86.	_	f a radioactive element <i>X</i> is s have the same number of ato		of another radioactive element Y.
	(a) X and Y have the	same decay rate initially	(b) X and Y decay at	the same rate always
	(c) Y will decay at a f	faster rate than X	(d) X will decay at a f	aster rate than Y
87.	N atoms of a radioac	tive element emit <i>n</i> alpha pa		f life of the element is [MP PET 1995; MP PMT 1997, 2003]
	(a) $\frac{n}{N}$ sec	(b) $\frac{N}{n}$ sec	(c) $\frac{0.693 N}{n}$ sec	(d) $\frac{0.693 n}{N}$ sec
88.	•	at any instant has its disinteg tegrations per minute. Then, 1		tion per minute. After 5 minutes, ite) is
	(a) 0.8 ln 2	(b) 0.4 ln 2	(c) 0.2 ln 2	(d) 0.1 ln 2
89.	A radioactive substan	ce has an average life of 5 ho	urs. In a time of 5 hours	[Orissa JEE 2003]
	(a) Half of the active nuclei decay	nuclei decay	(b)	Less than half of the active
	(c) More than half of	the active nuclei decay	(d) All active nuclei d	ecay
) 0.	In a mean life of a rad	lioactive sample		[MP PMT 2000, 2003]
	(a) About 1/3 of subs	tance disintegrates	(b) About 2/3 of the s	ubstance disintegrates
	(c) About 90% of the	substance disintegrates	(d) Almost all the sub	stance disintegrates
91.	Half-life of a substand	ce is 10 years. In what time, i	t becomes $\frac{1}{4}$ th part of the in	itial amount
	(a) 5 years	(b) 10 years	(c) 20 years	(d) None of these
)2.	If in a radioactive sub half lives will be	ostance, the initial number of	active atoms is 1000, the nu	imber of active atoms after three
				[RPMT 2002]
	(a) 1000	(b) 500	(c) 250	(d) 125
93.	A sample of a radioac intact in the sample a		atoms. If its half-life is 2 d	ays, how many atoms will be left
	(a) 1414	(b) 1000	(c) 2000	(d) 707
94.	The activity of a samp then (QBP-1263)	ple of a radioactive material is	s A at time t_1 and A_2 at time	
			$(t_1 - t_2)/T$	[BHU 2002]
		(b) $A_1 - A_2 = t_2 - t_1$		(d) $A_2 = A_1 e^{(t_1 / t_2)T}$
∂ 5.	If N_0 is the original after 15 years is	mass of the substance of half	F life period $T_{1/2} = 5$ years, t	hen the amount of substance left
				[AIEEE 2002]
	(a) M / 9	(b) $N / 16$	(c) N/2	(d) M / A

(a) $N_0 / 8$ (b) $N_0 / 16$ (c) $N_0 / 2$ (d) $N_0 / 4$


196. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life [KCET 2002] (c) 50% (a) 69.3% (b) 63% (d) 37% **197.** The half-life of a radioactive substance against α -decay is 1.2×10^7 s. What is the decay rate for 4.0×10^{15} atoms of the substance [AMU (Med.) 2002] (a) 4.6×10^{12} atoms/s (b) 2.3×10^{11} atoms/s (c) 4.6×10^{10} atoms/s (d) 2.3×10^8 atoms/s 198. 10 qm of radioactive material of half-life 15 year is kept in store for 20 years. The disintegrated material is (a) 12.5 q (b) 10.5 q (c) 6.03 q (d) 4.03 q **199.** If half-life of a substance is 3.8 days and its quantity is 10.38 gm. Then substance quantity remaining left after 19 days will be [(Similar to UPSEAT 2001; RPMT 2000; AFMC 2002] (a) 0.151 gm (b) 0.32 *qm* (c) 1.51 qm (d) 0.16 qm **200.** Decay constant of radium is λ . By a suitable process its compound radium bromide is obtained. The decay constant of radium bromide will be (a) λ (c) Less than λ (b) More than λ (d) Zero 201. A radioactive material decays by simultaneous emission of two particles with respective half lives 1620 and 810 years. The time (in years) after which one-fourth of the material remains is (a) 1080 (b) 2430 (c) 3240 (d) 4860 **202.** If the decay or disintegration constant of a radioactive substance is λ , then its half life and mean life are respectively ($\log_e 2$ can also be written as log 2) (a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$ (b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$ (c) $\lambda \log_e 2$ and $\frac{1}{\lambda}$ (d) $\frac{\lambda}{\log^2 2}$ and $\frac{1}{\lambda}$ 203. The decay constant of a radioactive element is 0.01 per sec. Its half life period is [DPMT 2001] (a) 693 sec (b) 6.93 sec (c) 0.693 sec (d) 69.3 sec **204.** The half-life of Bi^{210} is 5 days. In the seven samples out of eight, the time required for decay is (a) 3.4 days (b) 10 days (c) 15 days (d) 20 days **205.** 99% of a radioactive element will decay between [AMU (Engg.) 2001] (a) 6 and 7 half lives (b) 7 and 8 half lives (c) 8 and 9 half lives (d) 9 half lives 206. Certain radioactive substance reduces to 25% of its value in 16 days. Its half-life is [MP PMT 2001] (d) 28 days (a) 32 days (b) 8 days (c) 64 days **207.** The decay constant of a radioactive element is 1.5×10^{-9} per second. Its mean life in seconds will be (a) 1.5×10^9 (b) 4.62×10^8 (d) 10.35×10^8 (c) 6.67×10^8 **208.** Three fourth of the active decays in a radioactive sample in 3/4 sec. The half life of the sample is (c) $\frac{3}{8}$ sec (d) $\frac{3}{4}$ sec (a) $\frac{1}{2}$ sec (b) 1 sec **209.** During mean life of a radioactive element, the fraction that disintegrates is [CPMT 2001] (b) $\frac{1}{-}$ (c) $\frac{e-1}{e}$ (d) $\frac{e}{e-1}$ (a) e

210. Half-life is measured by

[RPET 2001]


	(a) Geiger-Muller counter (b) Carbon dating	(c) Spectroscopic method	(d) Wilson-(Cloud chan	nber
211.	1 <i>Curie</i> is equal to			[BHU	2001]
	(a) 3 × 10 ¹⁰ disintegrations / sec sec	(b)	$3.7 \times 10^7 d$	isintegrati	ons /
	(c) 5×10^7 disintegrations / sec disintegrations / sec		(d) 3.7	×	10 ¹⁰

212. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life time of one species is τ and that of the other is 5τ . The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot. [IIT-JEE (Screening) 2001]

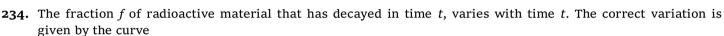
213. A radioactive substance has half-life of 60 minutes. During 3 hours, the fraction of atoms that have decayed would be

				[BHU (Med.) 2000]
	(a) 12.5%	(b) 87.5%	(c) 8.5%	(d) 25.1%
214.	The activity of a radioactiv	ve sample is 1.6 <i>curie</i> , and its 1	half-life is 2.5 days. Its acti	vity after 10 days will be
	(a) 0.8 <i>curie</i>	(b) 0.4 <i>curie</i>	(c) 0.1 <i>curie</i>	(d) 0.16 <i>curie</i>
215.	The half-life of ${}^{42}_{19}K$ is 12.	5 hours. If the original sampl	e of it contained 256 gm.,	the amount of ${}^{42}_{19}K$ after 100
	hours will be			
				[UPSEAT 2000]
	(a) 1.00 gm	(b) 2.00 gm	(c) 2.56 <i>gm</i>	(d) 5.12 <i>gm</i>
216.	0	active atoms at any instant a		•
		e graph drawn with $\log_e N$, w	where <i>e</i> is the base of natura	al logarithm along <i>y</i> -axis and
	<i>t</i> along the <i>X</i> -axis will be a	i straight line with slope		
	(a) λ	(b) $-\lambda$	(c) $\frac{1}{\lambda}$	(d) $-\frac{1}{\lambda}$
217.	1 <i>mg</i> of radioactive substa would have disintegrated	nce has 2.68×10^{18} nuclei. Its l	half-life is 1620 year. After	3240 years how many nuclei [J & K CET 2000]
	(a) 1.82×10^{18}	(b) 1.34×10^{18}	(c) 0.67×10^{18}	(d) 2.01×10^{18}
218.	What fraction of radioactiv	ve material will get disintegra	ted in a period of two half-	lives
	(a) Whole	(b) Half	(c) One-fourth	(d) Three-fourth
219.		tive substances A and B are qual number of nuclei. After [CBSE 1998; JIPMER 2000]	80 minutes, the ratio of re	
	(a) 1:16	(b) 4:1	(c) 1:4	(d) 1:1
220.	A radioactive sample has h	alf-life of 5 years. Probability	of decay in 10 years will be	e [RPET 2000]
	(a) 100%	(b) 75%	(c) 50%	(d) 25%

(c) λ is independent of the age

(d) Behaviour of λ with time depends on the nature of the activity

(b) 65%


232. If 10% of a radioactive material decays in 5 days, then the amount of original material left after 20 days is approximately [MNR 1987]

(c) 70%

(a) 60%

(d) 75%

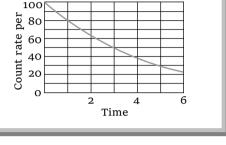
- **233.** The count rate of 10g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are [CPMT 1986]
 - (a) 4h, 9000
 - (b) 3h, 14000
 - (c) 3h, 235
 - (d) 3h, 50

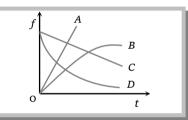
- (a) A
- (b) *B*
- (c) C
- (d) D

235. The count rate from 100 cm³ of a radioactive liquid is c. Some of this liquid is now discarded. The count rate of the remaining liquid is found to be c/10 after three half-lives. The volume of the remaining liquid, in cm^3 , is (c) 60 (a) 20 (b) 40 (d) 80

236. A radioactive isotope X with a half-life of 137×10^9 years decays to Y which is stable. A sample of rock from the moon was found to contain both the elements X and Y which were in the ratio of 1 : 7. The age of the rock is

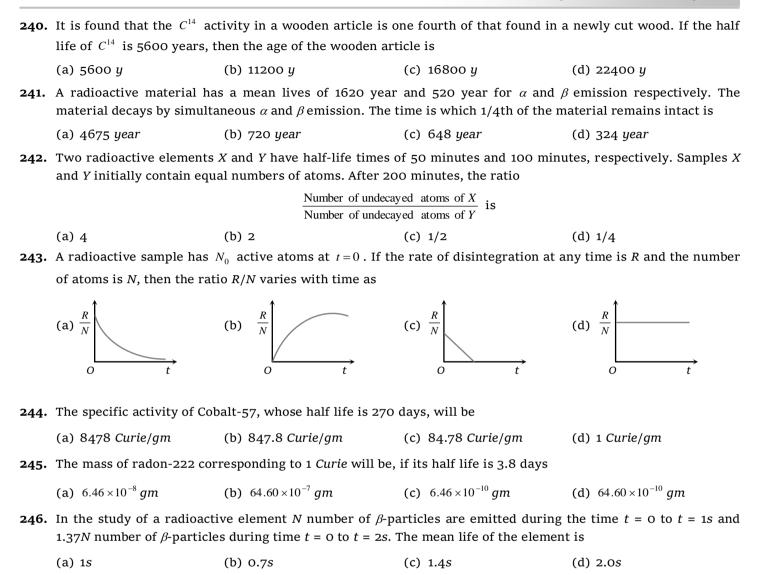
(a) 1.96×10^8 years (b) 3.85×10^9 years


237. A radioactive element emits 200 particles per second. After three hours 25 particles per second are emitted. The half life period of element will be


(c) 4.11×10^9 years

- (b) 60 minutes (a) 50 minutes (c) 70 minutes
- **238.** Element *X* decays into element *Y* with a half-life of 3 days. On 1st March a piece of *X* has a mass of 10 *q*. What mass of X and of Y exist 6 days after

	Mass of X	Mass of Y
(a)	5 g	5 <i>g</i>
(b)	10 <i>g</i>	Zero
(c)	2.5 g	7.5 g
(d)	7.5 g	2.5 g


- **239.** The radioactivity of a sample is R_1 at a time T_1 and R_2 at a time T_2 . If the half life of the specimen is T, the number of atoms that have disintegrated in the time $(T_2 - T_1)$ is proportional to
 - (a) $(R_1T_1 R_2T_2)$ (b) $(R_1 - R_2)$ (c) $(R_1 - R_2)/T$ (d) $(R_1 - R_2)T$

(d) 9.59×10^9 years

(d) 80 minutes

	Assignments																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	a	а	с	а	d	d	С	d	d	d	d	b	а	с	b	b	а	b	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	d	а	С	С	а	С	b	b	С	С	d	d	b	b	d	С	с	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	c	а	а	а	с	d	а	d	С	С	b	С	а	а	а	а	С	b	а
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	d	а	b	d	b	d	b	С	b	d	а	d	b	с	а	а	b	с	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	d	С	с	а	с	d	b	С	d	с	d	а	а	а	b	а	а	а	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	с	С	а	a,d	b	d	d	b	а	а	d	b	b	b	а	а	а	а	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	d	С	b	b	b	b	С	с	b	а	d	b	b	d	а	а	b	a,c	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	a	b	а	с	b	С	b	d	а	с	b	с	d	с	d	d	а	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
а	с	d	b	d	а	С	С	d	d	d	С	а	b	а	С	b	d	а	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	d	b	а	d	с	С	b	С	b	с	d	с	с	а	b	d	С	b	а
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
а	b	d	С	а	b	С	С	С	а	d	d	b	С	а	b	d	d	С	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	b	d	d	d	а	b	а	С	d	С	b	b	b	d	с	b	с	d	b
241	242	243	244	245	246														
С	d	d	а	С	а														