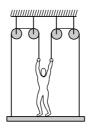


DPP No. 23

Total Marks : 27

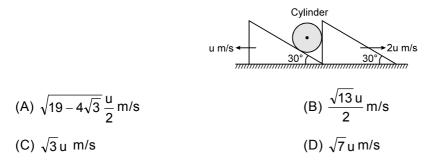

Max. Time : 29 min.

Topics : Newton's Law of Motion, Relative Motion

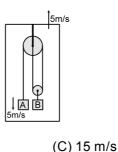
Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.5 Multiple choice objective ('-1' negative marking) Q.6 Subjective Questions ('-1' negative marking) Q.7 to Q.8

	M.M., Min.
(3 marks, 3 min.)	[15, 15]
(4 marks, 4 min.)	[4, 4]
(4 marks, 5 min.)	[8, 10]

1. A man of mass m stands on a platform of equal mass m and pulls himself by two ropes passing over pulleys as shown. If he pulls each rope with a force equal to half his weight, his upward acceleration would be :


(A) g/2 (C) g

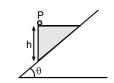
(B) g/4 (D) zero

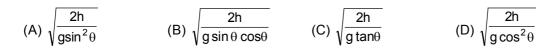

2. Two blocks of masses m_1 and m_2 are connected as shown in the figure. The acceleration of the block m_2 is (pullyes and strings are ideal) :

(A)
$$\frac{m_2 g}{m_1 + m_2}$$

(B) $\frac{m_1 g}{m_1 + m_2}$
(C) $\frac{4m_2 g - m_1 g}{m_1 + m_2}$
(D) $\frac{m_2 g}{m_1 + 4m_2}$

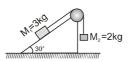
3. In the system shown in figure assume that cylinder remains in contact with the two wedges. The velocity of cylinder is -

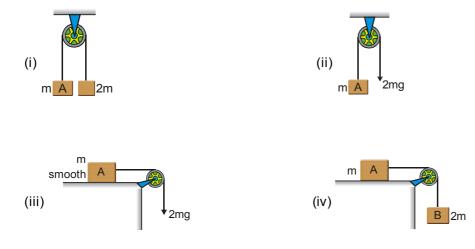

4. A system is as shown in the figure. All speeds shown are with respect to ground. Then the speed of Block B with respect to ground is :



5. A wedge of height 'h' is released from rest with a light particle P placed on it as shown. The wedge slides down an incline which makes an angle θ with the horizontal. All the surfaces are smooth, P will reach the surface of the incline in time:

(B) 10 m/s

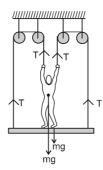



- 6. A block of weight 9.8N is placed on a table. The table surface exerts an upward force of 10 N on the block. Assume $g = 9.8 \text{ m/s}^2$.
 - (A) The block exerts a force of 10N on the table
 - (B) The block exerts a force of 19.8N on the table
 - (C) The block exerts a force of 9.8N on the table
 - (D) The block has an upward acceleration.

(A) 5 m/s

7. A block of mass $M_1 = 3$ kg on a smooth fixed inclined plane of angle 30° is connected by a cord over a small frictionless pulley to a second block of mass 2 kg hanging vertically. The tension in the cord and the acceleration of each block are _____ and _____ respectively.

8. In which of the following cases the magnitude of acceleration of the block A will be maximum (Neglect friction, mass of pulley and string)

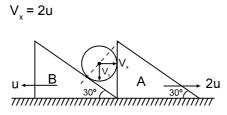

DPP NO. - 23

1.	(D)	2.	(A)	3	3.	(D)	4.	(B)	5. (A)
6.	(A,D)								

Hint & Solutions

DPP NO. - 23

 for (man + platform) system : 2mg - 4T = 2m(a)


$$\Rightarrow 2mg - 4\left(\frac{mg}{2}\right) = 2m (a) [:: T = \frac{mg}{2}]$$
$$\Rightarrow a = 0$$

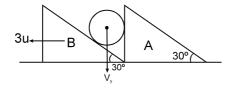
2. Let a = acceleration of m_1

then acceleration of pulley = $\frac{a+0}{2} = \frac{a}{2}$ If acceleration of $m_2 = b$ Then $0 + \frac{b}{2} = \frac{a}{2}$ Hence a = b $T = m_1 a, m_2 g - T = m_2 a$ $\therefore a = \frac{m_2 g}{m_1 + m_2}$

3. Method - I

As cylinder will remains in contact with wedge A

As it also remain in contact with wedge B u sin $30^\circ = V_v \cos 30^\circ - V_x \sin 30^\circ$


$$V_{y} = V_{x} \frac{\sin 30^{\circ}}{\cos 30^{\circ}} + \frac{U \sin 30^{\circ}}{\cos 30^{\circ}}$$
$$V_{y} = V_{x} \tan 30^{\circ} + u \tan 30^{\circ}$$

$$V_y = 3u \tan 30^\circ = \sqrt{3} u$$

V =
$$\sqrt{V_x^2 + V_y^2} = \sqrt{7}$$
 u Ans.

Method - II

In the frame of A

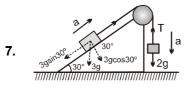
$$3u \sin 30^\circ = V_y \cos 30^\circ$$

$$\Rightarrow$$
 V_y = 3u tan 30° = $\sqrt{3}$ u

and व V_x=2u

$$\Rightarrow$$
 V = $\sqrt{V_x^2 + V_y^2}$ = $\sqrt{7} u$ Ans.

4. $\ell_1 + 2\ell_2 = \text{constant}$

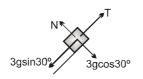

$$\therefore \quad \frac{d\ell_1}{dt} + \frac{2d\ell_2}{dt} = 0$$

$$(5+5)+2(5+v_{B})=0$$
 or $v_{B}=10$ m/s

5. Assume that acceleration of particle is a_p and acceleration of wedge is a_w Then, $a_w = gsin\theta$ From wedge constant $a_p = a_w sin\theta = gsin^2\theta$ $h = \frac{1}{2}g sin^2\theta t^2$

$$t = \sqrt{\frac{2h}{gsin^2\theta}}$$

6. From Newtons third law, the force exerted by table on block is equal to that exerted by block on the table. Therefore block exerts a 10 N force on table. Since the upward force on the block is larger than downward force, it moves upwards.



FBD of block $M_2 = 2kg$

20 – T = 2a(i)

FBD of block $M_1 = 3kg$

= $3 \times \frac{10\sqrt{3}}{2}$ = $15\sqrt{3}$ N. = 15 N T - 15 = 3a(ii) (i) + (ii) 5 = 5a \Rightarrow $a = 1m/s^{2}$; T = 18 N.

8. (i)
$$a = \frac{2mg - mg}{3m} = \frac{g}{3}$$

(ii) $a = \frac{2mg - mg}{m} = g$
(iii) $a = \frac{2mg}{m} = 2g$

(iv) a =
$$\frac{2g}{3}$$