EXERCISE 7.1 [PAGE 157]

Exercise 7.1 | Q 1.1 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: $y = x^4$, x = 1, x = 5Solution:

Let A be the required area.

Consider the equation $y = x^4$.

$$\therefore A = \int_{1}^{5} y \cdot dx$$
$$= \int_{1}^{5} x^{4} \cdot dx$$
$$= \left[\frac{x^{5}}{5}\right]_{1}^{5}$$
$$= \frac{1}{5} \left[x^{5}\right]_{1}^{5}$$
$$= \frac{1}{5} \left[(5)^{5} - (1)^{5}\right]$$
$$= \frac{1}{5} (3125 - 1)$$
$$\therefore A = \frac{3124}{5} \text{ sq. units}$$

Exercise 7.1 | Q 1.2 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: y = $\sqrt{6x+4}, x=0, x=2$

Solution:

Let A be the required area. Consider the equation y = $\sqrt{6x + 4}$.

$$\therefore A = \int_{0}^{2} y \cdot dx$$

$$= \int_{0}^{2} \sqrt{6x + 4} \cdot dx$$

$$= \int_{0}^{2} (6x + 4)^{\frac{1}{2}} \star dx$$

$$= \left[\frac{(6x + 4)^{\frac{1}{2}}}{\frac{3}{2} \times 6} \right]$$

$$= \frac{1}{9} \left[(6x + 4)^{\frac{3}{2}} \right]$$

$$= \frac{1}{9} \left[(6 \times 2 + 4)^{\frac{3}{2}} - (6 \times 0 + 4)^{\frac{3}{2}} \right]$$

$$= \frac{1}{9} \left[(16)^{\frac{3}{2}} - (4)^{\frac{3}{2}} \right]$$

$$= \frac{1}{9} \left[(4^{2})^{\frac{3}{2}} - (2^{2})^{\frac{3}{2}} \right]$$

$$= \frac{1}{9} \left[(4)^{2} - (2)^{3} \right]$$

$$= \frac{1}{9} \left[(64 - 8)$$

$$\therefore A = \frac{56}{9} \text{ sq.units.}$$

Exercise 7.1 | Q 1.3 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: y = $\sqrt{16 - x^2}$, x = 0, x = 4

Solution:

Let A be the required area.

Consider the equation y = $\sqrt{16 - x^2}$.

$$\therefore A = \int_{0}^{4} y \cdot dx = \int_{0}^{4} \sqrt{16 - x^{2}} \cdot dx = \int_{0}^{4} \sqrt{(4)^{2} - (x)^{2}} \cdot dx = \left[\frac{x}{2}\sqrt{(4)^{2} - x^{2}} + \frac{(4)^{2}}{2}\sin^{-1}\left(\frac{x}{4}\right)\right]_{0}^{4} = \left[\frac{4}{2}\sqrt{16 - (4)^{2}} + \frac{16}{2}\sin^{-1}\left(\frac{4}{4}\right)\right] - \left[\frac{0}{2}\sqrt{16 - (0)^{2}} + \frac{16}{2}\sin^{-1}\left(\frac{0}{2}\right)\right] = [2(0) + 8\sin^{-1}(1)] - [0 + 0] = 8 \times \frac{\pi}{2} \therefore A = 4\pi q. units.$$

Exercise 7.1 | Q 1.4 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y = 5x + 7, x = 2, x = 8**Solution:** Let A be the required area.

Consider the equation 2y = 5x + 7

i.e.
$$y = \frac{5x+7}{2}$$

 $\therefore A = \int_{2}^{8} y \cdot dx$

$$= \int_{2}^{8} \frac{5x+7}{2} \cdot dx$$

= $\frac{1}{2} \int_{2}^{8} (5x+7) \cdot dx$
= $\frac{1}{2} \left[\frac{5x^{2}}{2} + 7x \right]_{2}^{8}$
= $\frac{1}{2} \left[\left(\frac{5 \times 8^{2}}{2} + 7 \times 8 \right) - \left(\frac{5 \times 2^{2}}{2} + 7 \times 2 \right) \right]$
= $\frac{1}{2} \left[(160 + 56) - (10 + 14) \right]$
= $\frac{1}{2} (216 - 24)$
= $\frac{1}{2} \times 192$

 \therefore A = 96 sq. units.

Exercise 7.1 | Q 1.5 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4

Solution:

Let A be the required area.

Consider the equation 2y + x = 8

i.e.,
$$y = \frac{8-x}{2}$$

 $\therefore A = \int_{2}^{4} y \cdot dx$
 $= \int_{2}^{4} \frac{8-x}{2} \cdot dx$
 $= \frac{1}{2} \int_{2}^{4} (8-x) \cdot dx$

$$= \frac{1}{2} \left[8x - \frac{x^2}{2} \right]_2^4$$

= $\frac{1}{2} \left[\left(8 \times 4 - \frac{4^2}{2} \right) - \left(8 \times 2 - \frac{2^2}{2} \right) \right]$
= $\frac{1}{2} (32 - 8) - (16 - 2) \right]$
= $\frac{1}{2} (24 - 14)$
= $\frac{1}{2} \times 10$
∴ A = 5 sq. units.

Exercise 7.1 | Q 1.6 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: $y = x^2 + 1$, x = 0, x = 3

Solution: Let A be the required area.

Consider the equation $y = x^2 + 1$.

$$\therefore A = \int_0^3 y \cdot dx$$
$$= \int_0^3 (x^2 + 1) \cdot dx$$
$$= \left[\frac{x^3}{3} + x\right]_0^3$$
$$= \left(\frac{3^3}{3} + 3\right) - (0)$$
$$= (9 + 3)$$
$$\therefore A = 12 \text{ sq. units.}$$

Exercise 7.1 | Q 1.7 | Page 157

Find the area of the region bounded by the following curves, the X-axis and the given lines: $y = 2 - x^2$, x = -1, x = 1

Solution: Let A be the required area.

Consider the equation $y = 2 - x^2$.

$$\therefore A = \int_{-1}^{1} y \cdot dx$$

$$= \int_{-4}^{1} (2 - x^{2}) \cdot dx$$

$$= \left[2x - \frac{x^{3}}{3} \right]_{-1}^{1}$$

$$= \left[2 \times 1 - \frac{1^{3}}{3} \right] - \left[2 \times (-1) - \frac{(-1)^{3}}{3} \right]$$

$$= \left(2 - \frac{1}{3} \right) - \left(-2 + \frac{1}{3} \right)$$

$$= \frac{5}{3} - \left(\frac{-5}{3} \right)$$

$$\therefore A = \frac{10}{3} \text{ sq. units.}$$

Exercise 7.1 | Q 2 | Page 157

Find the area of the region bounded by the parabola $y^2 = 4x$ and the line x = 3. Solution:

Given equation of the parabola is $y^2 = 4x$ $\therefore y = 2\sqrt{x}$...[: In first quadrant, y > 0] and equation of the line is x = 3 \therefore Required = area of the region OQRPO

- ... Required area of the region of
- = 2(area of the region ORPO

$$= 2 \int_0^3 y \cdot dx$$
$$= 2 \int_0^3 2\sqrt{x} \cdot dx$$
$$= 4 \int_0^3 \sqrt{x} \cdot dx$$
$$= 4 \int_0^3 x^{\frac{1}{2}} \cdot dx$$

$$= 4 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{3}$$
$$= 4 \times \frac{2}{3} \left[(3)^{\frac{3}{2}} - 0 \right]$$
$$= \frac{8}{3} \left(3\sqrt{3} \right)$$

 \therefore Required area = $8\sqrt{3}$ sq. units.

Exercise 7.1 | Q 3 | Page 157

Find the area of circle $x^2 + y^2 = 25$.

Solution:

By the symmetry of the circle, required area of the circle is 4 times the area of the region OPQO.

For the region OPQO, the limits of integration are x = 0 and x = 5.

Given equation of the circle is

x² + y² = 25
∴ y² = 25 - x²
∴ y = ±
$$\sqrt{25 - x^2}$$

∴ y = $\sqrt{25 - x^2}$...[∵ In first quadrant , y > 0]
∴ Required area = 4 (area of the region OPQO)

$$\begin{split} &= 4 \times \int_{0}^{5} y \cdot dx \\ &= 4 \times \int_{0}^{5} \sqrt{25 - x^{2}} \cdot dx \\ &= 4 \int_{0}^{5} \sqrt{(5)^{2} - x^{2}} \cdot dx \\ &= 4 \left[\frac{x}{2} \sqrt{(5)^{2} - x^{2}} + \frac{(5)^{2}}{2} \sin^{-1} \left(\frac{x}{5} \right) \right]_{0}^{5} \\ &= 4 \left\{ \left[\frac{5}{2} \sqrt{25 - (5)^{2}} + \frac{25}{2} \sin^{-1} \left(\frac{5}{5} \right) \right] - \left[\frac{0}{2} \sqrt{25 - (0)^{2}} + \frac{25}{2} \sin^{-1} \left(\frac{0}{5} \right) \right] \right\} \\ &= 4 \left\{ \left[\frac{5}{2} (0) + \frac{25}{2} \sin^{-1} (1) \right] - [0 + 0] \right\} \\ &= 4 \left(\frac{25}{2} \times \frac{\pi}{2} \right) \\ &= 25\pi \text{ sq. units.} \end{split}$$

Exercise 7.1 | Q 4 | Page 157

Find the area of ellipse $rac{x^2}{4}+rac{y^2}{25}$ = 1.

Solution:

By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region OPQO.

For the region OPQO, the limits of integration are x = 0 and x = 2.

Given equation of the ellipse is $rac{x^2}{4}+rac{y^2}{25}$ = 1

$$\therefore \frac{y^2}{25} = 1 - \frac{x^2}{4}$$

$$\therefore y^2 = 25\left(1 - \frac{x^2}{4}\right)$$

$$= \frac{25}{4}\left(4 - x^2\right)$$

$$\therefore y = \pm \frac{5}{2}\sqrt{4 - x^2}$$

$$\therefore y = \frac{5}{2}\sqrt{4 - x^2} \quad ...[:: \text{ In first quadrant, y . 0]}$$

 \therefore Required area = 4(area of the region OPQO)

$$= 4 \int_{0}^{2} y \cdot dx$$

= $4 \int_{0}^{2} \frac{5}{2} \sqrt{4 - x^{2}} \cdot dx$
= $\frac{4 \times 5}{2} \int_{0}^{2} \sqrt{(2)^{2} - x^{2}} \cdot dx$
= $10 \left[\frac{x}{2} \sqrt{(2)^{2} - x^{2}} + \frac{(2)^{2}}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$
= $10 \left\{ \left[\frac{2}{2} \sqrt{(2)^{2} - (2)^{2}} + \frac{(2)^{2}}{2} \sin^{-1} \left(\frac{2}{2} \right) \right] - \left[\frac{0}{2} \sqrt{(2)^{2} - (0)^{2}} + \frac{(2)^{2}}{2} \sin^{-1} \left(\frac{0}{2} \right) \right] \right\}$
= $10 \{ [0 + 2 \sin^{-1} (1)] - [0 + 0] \}$
= $10 \{ 2 \times \frac{\pi}{2} \}$
= 10π sq. units.

MISCELLANEOUS EXERCISE 7 [PAGES 157 - 158]

Miscellaneous Exercise 7 | Q 1.1 | Page 157

-

Choose the correct alternative :

Area of the region bounded by the curve $x^2 = y$, the X-axis and the lines x = 1 and x = 3

is _____.

- 1. 26/3sq. units
- 2. 3/26sq. units
- 3. 26 sq. units
- 4. 3 sq. units

Solution:

Required area =
$$\int_{1}^{2} y \cdot dx$$
$$= \int_{1}^{3} x^{2} \cdot dx$$
$$= \left[\frac{x^{3}}{3}\right]_{1}^{3}$$
$$= \frac{1}{3}(27 - 1)$$
$$= \frac{26}{3}$$
 sq. units.

Miscellaneous Exercise 7 | Q 1.2 | Page 157

Choose the correct alternative :

The area of the region bounded by $y^2 = 4x$, the X-axis and the lines x = 1 and x = 4 is

1. 28 sq. units

- 2. 3 sq. units
- 3. 56/3 sq. units
- 4. 63/7 sq. units

Solution:

Miscellaneous Exercise 7 | Q 1.3 | Page 157

Choose the correct alternative :

Area of the region bounded by $x^2 = 16y$, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _____.

- 1. 53 sq. units
- 2. 3/56 sq. units

3. 56/3 sq. units

4. 63/7 sq. units

Solution:

Miscellaneous Exercise 7 | Q 1.4 | Page 157

Choose the correct alternative :

Area of the region bounded by $y = x^4$, x = 1, x = 5 and the X-axis is _____.

- 1. 3142/5 sq.unts
- 2. 3124/5 sq.unts
- 3. 3142/3 sq.unts
- 4. 3124/3 sq.unts

Solution: Let A be the required area.

Consider the equation $y = x^4$.

$$\therefore A = \int_{1}^{5} y \cdot dx$$
$$= \int_{1}^{5} x^{4} \cdot dx$$
$$= \left[\frac{x^{5}}{5}\right]_{1}^{5}$$
$$= \frac{1}{5} \left[x^{5}\right]_{1}^{5}$$
$$= \frac{1}{5} \left[(5)^{5} - (1)^{5}\right]$$
$$= \frac{1}{5} (3125 - 1)$$
$$\therefore A = \frac{3124}{5} \text{ sq. units.}$$

Miscellaneous Exercise 7 | Q 1.5 | Page 157

Choose the correct alternative :

Using definite integration, area of circle $x^2 + y^2 = 25$ is _____.

- 1. 5π sq. units
- 2. 4π sq. units
- 3. 25π sq. units
- 4. 25 sq. units

Solution: Let A be the required area.

Consider the equation y = $\sqrt{16 - x^2}$.

$$\therefore A = \int_{0}^{4} y \cdot dx$$

$$= \int_{0}^{4} \sqrt{16 - x^{2}} \cdot dx$$

$$= \int_{0}^{4} \sqrt{(4)^{2} - (x)^{2}} \cdot dx$$

$$= \left[\frac{x}{2}\sqrt{(4)^{2} - x^{2}} + \frac{(4)^{2}}{2}\sin^{-1}\left(\frac{x}{4}\right)\right]_{0}^{4}$$

$$= \left[\frac{4}{2}\sqrt{16 - (4)^{2}} + \frac{16}{2}\sin^{-1}\left(\frac{4}{4}\right)\right] - \left[\frac{0}{2}\sqrt{16 - (0)^{2}} + \frac{16}{2}\sin^{-1}\left(\frac{0}{2}\right)\right]$$

$$= [2(0) + 8\sin^{-1}(1)] - [0 + 0]$$

$$= 8 \times \frac{\pi}{2}$$

$$\therefore A = 4\pi \,\mathbf{q}. \text{ units.}$$

Miscellaneous Exercise 7 | Q 2.1 | Page 158

Fill in the blank :

Area of the region bounded by $y = x^4$, x = 1, x = 5 and the X-axis is _____.

Solution: Let A be the required area.

Consider the equation $y = x^4$.

$$\therefore \mathsf{A} = \int_{1}^{5} y \cdot dx$$

$$= \int_{1}^{5} x^{4} \cdot dx$$

= $\left[\frac{x^{5}}{5}\right]_{1}^{5}$
= $\frac{1}{5} \left[x^{5}\right]_{1}^{5}$
= $\frac{1}{5} \left[(5)^{5} - (1)^{5}\right]$
= $\frac{1}{5} (3125 - 1)$
 $\therefore A = \frac{3124}{5} \text{ sq. units.}$

Miscellaneous Exercise 7 | Q 2.2 | Page 158

Using definite integration, area of the circle $x^2 + y^2 = 49$ is _____. **Solution:** Area of the circle $x^2 + y^2 = r^2$ is πr^2 sq. units. Here, $r^2 = 49$ \therefore Required area = **49** π sq. units.

Miscellaneous Exercise 7 | Q 2.3 | Page 158

Fill in the blank :

Area of the region bounded by $x^2 = 16y$, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _____.

Solution:

Miscellaneous Exercise 7 | Q 2.4 | Page 158

Fill in the blank :

The area of the region bounded by the curve $x^2 = y$, the X-axis and the lines x = 3 and x = 9 is _____.

Solution:

Required area =
$$\int_{3}^{9} y \cdot dx$$

= $\int_{3}^{9} x^{2} \cdot dx$
= $\left[\frac{x^{3}}{3}\right]_{3}^{9}$
= $\frac{1}{3}(9^{3} - 3^{3})$
= $\frac{1}{3}(729 - 27)$
= $\frac{702}{3}$
= 234 sq. units.

Miscellaneous Exercise 7 | Q 2.5 | Page 158

Fill in the blank :

The area of the region bounded by $y^2 = 4x$, the X-axis and the lines x = 1 and x = 4 is

Solution:

_____•

Required area =
$$2 \int_{1}^{4} y \cdot dx$$

= $2 \int_{1}^{4} 2\sqrt{x} \cdot dx$
= $4 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$
= $\frac{8}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$
= $\frac{8}{3} (8 - 1)$
= $\frac{56}{3}$ sq.units.

Miscellaneous Exercise 7 | Q 3.1 | Page 158

State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by $\int^{d} x \cdot dy = \int^{y=d} g(y) \cdot dy$

$$\int_{c} x \cdot dy = \int_{y=c}^{c} g(y) \cdot dy$$

1. True

2. False

Solution: The area bounded by the curve x = g(y), Y-axis and bounded between the lines y = c and y = d is given by

$$\int_{ ext{c}}^{ ext{d}} x \cdot dy = \int_{y= ext{c}}^{y= ext{d}} ext{g}(y) \cdot dy$$
 True.

Miscellaneous Exercise 7 | Q 3.2 | Page 158

State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g(x) and X-axis is $\left| \int_{a}^{b} f(x) \cdot dx - \int_{b}^{a} g(x) \cdot dx \right|.$

- 1. True
- 2. False

Solution:

The area bounded by two curves
$$y = f(x)$$
, $y = g(x)$ and X-axis is $\left| \int_{a}^{b} f(x) \cdot dx - \int_{a}^{b} g(x) \cdot dx \right|$ False.

Miscellaneous Exercise 7 | Q 3.3 | Page 158

State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is $\left| \int_{a}^{b} f(x) \cdot dx \right|$.

1. True

2. False

Solution:

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is $\left| \int_{a}^{b} f(x) \cdot dx \right|$ True.

Miscellaneous Exercise 7 | Q 3.4 | Page 158

State whether the following is True or False :

If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.

- 1. True
- 2. False

Solution: If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive **True**.

Miscellaneous Exercise 7 | Q 3.5 | Page 158

State whether the following is True or False :

The area of the portion lying above the X-axis is positive

- 1. True
- 2. False

Solution: The area of the portion lying above the X-axis is positive True.

Miscellaneous Exercise 7 | Q 4.1 | Page 158

Solve the following :

Find the area of the region bounded by the curve $xy = c^2$, the X-axis, and the lines x = c, x = 2c.

Solution: Given equation of the curve is $xy = c^2$

$$\therefore y = \frac{c^2}{x}$$

$$\therefore$$
 Required area = $\int_{c}^{2c} y \cdot dx$

$$= \int_{c}^{2c} \frac{c^{2}}{x} \cdot dx$$
$$= c^{2} \int_{c}^{2c} \left(\frac{1}{x}\right) \cdot dx$$

$$= c^{2} [\log x]_{c}^{2c}$$
$$= c^{2} (\log 2c - \log c)$$
$$= c^{2} \log \left(\frac{2c}{c}\right)$$
$$= c^{2} \log 2 \text{ sq.units.}$$

Miscellaneous Exercise 7 | Q 4.2 | Page 158

Solve the following :

Find the area between the parabolas $y^2 = 7x$ and $x^2 = 7y$.

Solution: Given equations of the parabolas are $y^2 = 7x$...(i) and $x^2 = 7y$

$$\therefore y = \frac{x^2}{7} \qquad \dots (ii)$$

From (i), we get y = $\sqrt{7}x$...(iii) [: In first quadrant, y > 0]

Find the points of intersection of $y^2 = 7x$ and $x^2 = 7y$. Subbstituting (ii) in (i) we get

$$\left(\frac{x^2}{7}\right)^2 = 7x$$

$$\therefore x^4 = 343x$$

$$\therefore x^4 - 34x = 0$$

$$\therefore x(x^3 - 343) = 0$$

$$\therefore x = 0 \text{ or } x^3 = 343 = 7^3$$

$$\therefore x = 0 \text{ or } x = 7$$

When x = 0, y = 0 and when x = 7, y = 7

:. The points of intersection of y2 = 7x and x2 = 7y are O(0, 0) and B(7, 7). Draw BD \perp OX

Required area = area of the region OABCO

= area of the region ODBCO – area of the region ODBAO

= area under the parabola
$$y^2 = 7x - area$$
 under the parabola $x^2 = 7y$

$$= \int_{0}^{7} \sqrt{7x} \cdot dx - \int_{0}^{7} \frac{x^{2}}{7} \cdot dx \dots \text{[from (iii) and (ii)]}$$
$$= \sqrt{7} \int_{0}^{7} x^{\frac{1}{2}} \cdot dx - \frac{1}{7} \int_{0}^{7} x^{2} \cdot dx$$
$$= \sqrt{7} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{7} - \frac{1}{7} \left[\frac{x^{3}}{3} \right]_{0}^{7}$$
$$= \frac{2\sqrt{7}}{3} [97)^{\frac{3}{2}} - 0 - \frac{1}{21} \left[(7)^{3} - 0 \right]$$

$$= \frac{2\sqrt{7}}{3} \left(7\sqrt{7}\right) - \frac{1}{21} (343)$$
$$= \frac{98}{3} - \frac{49}{3}$$
$$= \frac{49}{3}$$
 sq. units.

Miscellaneous Exercise 7 | Q 4.3 | Page 158

Solve the following :

Find the area of the region bounded by the curve $y = x^2$ and the line y = 10.

Solution: Given equation of the curve is

$$y = x^2$$

 $\therefore x = \sqrt{y}$...[: In first quadrant, x> 0]

Required area = area of the region ORQPO

= 2 (area of the region ORQO)
=
$$2 \int_0^{10} x \cdot dy$$

Miscellaneous Exercise 7 | Q 4.4 | Page 158

Solve the following :

Find the area of the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
.

Solution: By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region OPQO.

For the region OPQO, the limits of integration are x = 0 and x = 4.

Given equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{9} = 1$

$$\therefore \frac{y^2}{9} = 1 - \frac{x^2}{16}$$

$$\therefore y^2 = 9\left(1 - \frac{x^2}{16}\right)$$

$$= \frac{9}{16}\left(16 - x^2\right)$$

$$\therefore y = \pm \frac{3}{4}\sqrt{16 - x^2}$$

$$\therefore y = \frac{3}{4}\sqrt{16 - x^2} \dots [\because \text{ In first quadrant, } y > 0]$$

 \therefore Required area = 4(area of the region OPQO)

$$= 4 \int_{0}^{4} y \cdot dx$$

= $4 \int_{0}^{4} \frac{3}{4} \sqrt{16 - x^{2}} \cdot dx$
= $3 \int_{0}^{4} \sqrt{(4)^{2} - x^{2}} \cdot dx$
= $3 \left[\frac{x}{2} \sqrt{(4)^{2} - x^{2}} + \frac{(4)^{2}}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_{0}^{4}$
= $3 \left\{ \left[\frac{4}{2} \sqrt{(4)^{2} - (4)^{2}} + \frac{(4)^{2}}{2} \sin^{-1} \left(\frac{4}{4} \right) \right] - \left[\frac{0}{2} \sqrt{(4)^{2} - (0)^{2}} + \frac{(4)^{2}}{2} \sin^{-1} \left(\frac{0}{4} \right) \right] \right\}$
= $3 \{ [0 + 8 \sin^{-1} (1)] - [0 + 0] \}$
= $3 \left\{ 8 \times \frac{\pi}{2} \right\}$
= 12π sq. units.

Miscellaneous Exercise 7 | Q 4.5 | Page 158

Solve the following :

Find the area of the region bounded by $y = x^2$, the X-axis and x = 1, x = 4.

Solution:

$$= \frac{1}{3}(64 - 1)$$
$$= \frac{1}{3}(63)$$

= 21 sq. units.

Miscellaneous Exercise 7 | Q 4.6 | Page 158

Solve the following :

Find the area of the region bounded by the curve $x^2 = 25y$, y = 1, y = 4 and the Y-axis.

Solution:

Given equation of the curve is $x^2 = 25y$ $\therefore 5\sqrt{y}$...[: In first quadrant, x > 0] Required area = area of the region PRSVP = 2(area of the region QRSTQ)

$$= 2 \int_{1}^{4} x \cdot dy$$
$$= 2 \int_{1}^{4} 5\sqrt{y} \cdot dy$$
$$= 10 \int_{1}^{4} y^{\frac{1}{2}} \cdot dy$$
$$= 10 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$$

$$= \frac{20}{3} \left[(4) \left(\frac{3}{2} \right) - (1)^{\frac{3}{2}} \right]$$
$$= \frac{20}{3} (8 - 1)$$
$$= \frac{20}{3} (7)$$
$$= \frac{140}{3} \text{ sq. units.}$$

Miscellaneous Exercise 7 | Q 4.7 | Page 158

Solve the following :

Find the area of the region bounded by the parabola $y^2 = 25x$ and the line x = 5.

Solution:

Given equation of the parabola is $y^2 = 25x$ $\therefore y = 5\sqrt{x}$...[: IIn first quadrant, y > 0] Requred areaa = area of the region OQRPO = 2(area of the region ORPO) = $2\int_{0}^{5} u \cdot dx$

$$=2\int_0 y\cdot d$$

$$= 2 \int_{0}^{5} 5\sqrt{x} \cdot dx$$

= $10 \int_{0}^{5} x^{\frac{1}{2}} \cdot dx$
= $10 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{5}$
= $\frac{20}{3} \left[(5)^{\frac{3}{2}} - 0 \right]$
= $\frac{20}{3} \left(5\sqrt{(5)} \right)$
= $\frac{100\sqrt{5}}{3}$ sq.units.