

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.2	We tennis in the lawn when it suddenly started to rain.
	Select the most appropriate option to complete the above sentence.
(A)	have been playing
(B)	had been playing
(C)	would have been playing
(D)	could be playing
	Roorko

Q.3	A 4 × 4 digital image has pixel intensities (<i>U</i>) as shown in the figure. The number of pixels with $U \le 4$ is:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(A)	3
(B)	8
(C)	11
(D)	9
	GATE 2025
	17 Roorkee

Q.5	A rectangle has a length L and a width W, where $L > W$. If the width, W, is increased by 10%, which one of the following statements is correct for all values of L and W?
(A)	Perimeter increases by 10%.
(B)	Length of the diagonals increases by 10%.
(C)	Area increases by 10%.
(D)	The rectangle becomes a square.

Q.6 – Q.10 Carry TWO marks Each

	Column-I		Column-II	
Р.	This house is in a mess.	1.	Alright, I won't bring it up during our conversations.	
Q.	I am not happy with the marks given to me.	2.	Well, you can easily look it up.	
R.	Politics is a subject I avoid talking about.	3.	No problem, let me clear it up for you.	
S.	I don't know what this word means.	4.	Don't worry, I will take it up with your teacher.	
Identify the option that has the correct match between Column-I and Column-II.				
P – 2	2; Q – 3; R – 1; S – 4			
P – 3	; Q – 4; R – 1; S – 2			
P – 4	R; Q - 1; R - 2; S - 3	2	02-	
P – 1	; Q – 2; R – 4; S – 3		623	
	VIT Poo	r	kee	
	P. Q. R. S. Ident P - 2 P - 3 P - 4 P - 1	Column-IP.This house is in a mess.Q.I am not happy with the marks given to me.R.Politics is a subject I avoid talking about.S.I don't know what this word means.Identify the option that has the correct ma $P-2; Q-3; R-1; S-4$ $P-3; Q-4; R-1; S-2$ $P-4; Q-1; R-2; S-3$ $P-1; Q-2; R-4; S-3$	Column-IP.This house is in a mess.1.Q.I am not happy with the marks 2. given to me.2.R.Politics is a subject I avoid talking 3. about.3.S.I don't know what this word 4. means.4.Identify the option that has the correct match I $P-2; Q-3; R-1; S-4$ $P-3; Q-4; R-1; S-2$ P-4; Q-1; R-2; S-3 $P-1; Q-2; R-4; S-3$	

Q.7 Weight of a person can be expressed as a function of their age. The function usually varies from person to person. Suppose this function is identical for two brothers, and it monotonically increases till the age of 50 years and then it monotonically decreases. Let a_1 and a_2 (in years) denote the ages of the brothers and $a_1 < a_2$. Which one of the following statements is correct about their age on the day when they attain the same weight? $a_1 < a_2 < 50$ (A) $a_1 < 50 < a_2$ **(B)** $50 < a_1 < a_2$ (C) Either $a_1 = 50 \text{ or } a_2 = 50$ (D) 117 Roorkee

Q.8	A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius r cm as shown in the figure. The side of the dodecagon is d cm. All the triangles (numbered 1 to 12) in the figure are used to form squares of side r cm and each numbered triangle is used only once to form a square.
	The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
	Note: The figure shown is representative.
	3:4
(B)	4; 3
(C)	3; 3
(D)	3; 2 TE 200
	GALL ZUZS
	117 Roorkee

Q.10 The number of patients per shift (X) consulting Dr. Gita in her past 100 shifts is shown in the figure. If the amount she earns is $\gtrless 1000(X - 0.2)$, what is the average amount (in \mathfrak{F}) she has earned per shift in the past 100 shifts? Note: The figure shown is representative. 50 40 40 Number of shifts 30 30 20 20 10 10 0 5 7 8 6 Number of patients per shift (X) (A) 6,100 **(B)** 6,300 (C) 6,000 6,500 (D)

Q.11 – Q.35 Carry ONE mark Each

Q.12	The reaction for the synthesis of Me ₂ SiCl ₂ through Rochow-Müller process is
(A)	SiCl ₄ + Me ₂ Zn $\xrightarrow{0 \circ C}$
(B)	Si:Fe (9:1) + 2 MeCI 300 °C
(C)	Si:Cu (9:1) + 2 MeCI <u>300 °C</u>
(D)	SiCl₄ + 2 MeMgBr►
Q.13	Upon cooling from room temperature, the magnetic susceptibility of MnO slowly increases until 118 K, and then it decreases. This phenomenon is known as
(A)	ferromagnetism
(B)	paramagnetism
(C)	antiferromagnetism
(D)	ferrimagnetism
	117 100
	Roork

Q.14 An aqueous solution of Co(ClO₄)₂.6H₂O is light pink in colour. Addition of conc. HCl results in an intense blue coloured solution due to the formation of a new species. The new species among the following is CIO₃ CI OH_2 Co CI CI CI OH₂ CI ΓĴ Ω ĊI O₃CI Ш IV Ш L [Given: Atomic number of Co = 27] (A) Ι Π (B) (C) Ш (D) IV 117 Roorkee

Q.16	In the ¹ H-NMR spectrum of the following molecule, the signal of proton H_a appears as
	D D H _a
(A)	singlet
(B)	triplet
(C)	quintet
(D)	quartet
	GATE 2025 // Roorkee

Q.18	The symmetry element that does NOT belong to C_{4v} point group is
(A)	C_4
(B)	C_2
(C)	i
(D)	συ
Q.19	Rigid rotor wavefunctions are given by $Y_{l,m}(\theta, \phi)$. The wavefunctions $Y_{1,0}(\theta, \phi)$ and $Y_{2,0}(\theta, \phi)$ are given below $Y_{1,0}(\theta, \phi) = \sqrt{\frac{3}{4\pi}} \cos \theta \qquad Y_{2,0}(\theta, \phi) = \sqrt{\frac{5}{16\pi}} (3 \cos^2 \theta - 1)$ For a non-polar diatomic molecule, the value of transition dipole moment integral for transition between $Y_{1,0}(\theta, \phi)$ and $Y_{2,0}(\theta, \phi)$ is equal to
(A)	$1/\sqrt{2\pi}$
(B)	OGALE ZU25
(C)	2
(D)	$1/\sqrt{4\pi}$ Roorke

Τ

Q.20	The translational, vibrational, and rotational molecular partition functions for a system containing ideal diatomic gas molecules in the canonical ensemble (N, V, T) are written as, q_{trans} , q_{vib} , and q_{rot} , respectively. The option that correctly defines their thermodynamic variable(s) dependency is
(A)	$q_{trans}(T,V), q_{vib}(T,V), q_{rot}(T,V)$
(B)	$q_{trans}(T,V), q_{vib}(T), q_{rot}(T)$
(C)	$q_{trans}(T), q_{vib}(T,V), q_{rot}(T)$
(D)	$q_{trans}(T,V), q_{vib}(T), q_{rot}(T,V)$
Q.21	The Vaska's complex <i>trans</i> -IrCl(CO)(PPh ₃) ₂ shows a band at 1967 cm ⁻¹ for the v_{co} stretching vibration in its infrared spectrum. The complex(es) that will show an increase in the v_{co} stretching vibration from 1967 cm ⁻¹ is/are
(A)	PhEt ₂ P//////Ir
(B)	Ph ₃ P/////OMe OC PPh ₃
(C)	Ph ₃ P _m Cl PPh ₃ CO
(D)	Ph ₃ P _{1/1/1} , Ir., NCMe

Q.22	Under the conditions mentioned for each reaction, the reaction(s) that would give borazine $(B_3N_3H_6)$ as the major product is/are
(A)	$LiBH_4 + NH_4CI \xrightarrow{230 \circ C}$
(B)	$B_2H_6 + 2 NH_3 \xrightarrow{180 \circ C} \rightarrow$
(C)	NaBH ₄ + (NH ₄) ₂ SO ₄ $\xrightarrow{\text{THF, 40 °C}}$
(D)	$BCI_3 + NH_4CI \xrightarrow{\text{chlorobenzene}}$
Q.23	The essential symmetry(ies) for a monoclinic crystal system is/are the presence of
(A)	one C_3 axis
(B)	one C_2 axis
(C)	one C ₄ axis
(D)	one C_6 axis
	17 Roorkee

Q.25 The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are 0 (major) (A) (i) NBS, (PhCOO)₂; (ii) aq. NaOH; (iii) active MnO₂; (iv) Li/liq.NH₃, *t*-BuOH (B) (i) m-CPBA; (ii) BF₃.Et₂O (C) (i) SeO₂; (ii) Dess-Martin periodinane; (iii) K[BH(*s*-Bu)₃] (K-selectride) (D) (i) dil. KMnO₄; (ii) NaIO₄ 17 Roorkee

Q.27	Choose the correct option(s) with regard to mechanism of the following transformation.
	hv ()
(A)	It proceeds through divinyl cyclopropane rearrangement
(B)	It involves a diradical intermediate
(C)	It proceeds through di- π -methane rearrangement
(D)	It proceeds through [2+2+2] cycloaddition reaction
Q.28	Consider two non-interacting particles confined to a one-dimensional box with infinite potential barriers. Their wavefunctions are ψ_1 and ψ_2 and energies are E_1 and E_2 , respectively. The INCORRECT statement(s) about this system is/are
(A)	The total energy is $E_1 + E_2$
(B)	The total wavefunction is $\psi_1 + \psi_2$
(C)	The total energy is E_1E_2
(D)	The total wavefunction is $\psi_1\psi_2$

Q.29	The thermodynamic criterion/criteria for a spontaneous process is/are
(A)	$\Delta U > 0$ at constant S and V
(B)	$\Delta S > 0$ at constant U and V
(C)	$\Delta(H - TS) > 0$ at constant T and P
(D)	$\Delta(U - TS) < 0$ at constant T and V
Q.30	Xe and F_2 in 1:1 molar ratio when mixed in a closed flask and kept in the sunlight for a day, gave white crystals of a compound Q. Two equivalents of Q on reaction with one equivalent of AsF ₅ gave an ionic compound X ⁺ Y ⁻ with the cation having two Xe atoms. The total number of lone pairs present on the cation X ⁺ is (<i>in integer</i>).
Q.31	The total number of hyperfine lines expected in the EPR spectrum of •CH ₂ OH (radical) is (<i>in integer</i>).
	[Note: Consider all hydrogen atoms for calculation]
	17 Roorkee

Г

Q.32	Partial hydrolysis of a pentapeptide yields all possible tripeptides and dipeptides. The dipeptides that are obtained upon hydrolysis are given below.
	Val-Ala, Gln-His, Phe-Val and Ala-Gln
	The total number of tripeptides obtained that contain 'Ala' as one of the amino acids is (<i>in integer</i>).
Q.33	The specific rotation of enantiomerically pure (<i>S</i>)-2-butanol is $+14^{\circ}$. The specific rotation of enantiomeric mixture of 2-butanol obtained from an asymmetric reduction of 2-butanone is found to be $+7^{\circ}$. The percentage of (<i>R</i>)-2-butanol present in the reaction mixture is (<i>in integer</i>).
	R
Q.34	The ratio of the fundamental vibrational frequencies (v_{13c16o}/v_{12c16o}) of two diatomic molecules ¹³ C ¹⁶ O and ¹² C ¹⁶ O, considering their force constants to be the same, is (rounded off to two decimal places).
	ATE 200
	GAIL ZUZS
Q.35	The expressions for the vapour pressure of solid (p_1) and vapour pressure of liquid (p_2) phases of a pure substance, respectively, are
	$\ln p_1 = -\frac{2000}{T} + 5$ and $\ln p_2 = -\frac{4000}{T} + 10$
	The triple point temperature of this substance is K (<i>in integer</i>).

Q.36 – Q.65 Carry TWO marks Each

Q.37	The homogeneous catalyst whose metal ion does NOT undergo either oxidation or reduction in any of the steps during the hydrogenation of terminal olefins is
(A)	RhCl(PPh ₃) ₃
(B)	HRuCl(PPh ₃) ₃
(C)	$[Ir(COD)(PCy_3)(Py)]^+ PF_6^-$ (COD = cyclooctadiene)
(D)	$[Rh(COD)(PPh_3)_2]^+ PF_6^-$ (COD = cyclooctadiene)

The given zirconocene compound, $(\eta^5-Cp)_2ZrEt_2$, when heated in the presence of an equimolar amount of PMe₃ results in the formation of a compound **X** which Q.38 obeys the 18 electron rule. The reaction also resulted in the release of a saturated hydrocarbon. РМе₃ - X [*Given*: Atomic number of Zr = 40] The structure of compound **X** is PMe₃ (A) (B) (C) PMe₃ (D) CH₂CH₃ PMe₃ Roorkee

Q.39 The ¹H NMR spectrum of the given iridium complex at room temperature gave a single signal at 2.6 ppm, and its ³¹P NMR spectrum gave a single signal at 23.0 ppm. When the spectra were recorded at lower temperatures, both these signals split into a complex pattern. The intra-molecular dynamic processes shown by this molecule are

(B) Berry pseudo-rotation and propeller type rotation of the ethylene units along the Ir-alkene axis

(C)	Ray-I	Dutt twist and	rotatic	on of	the ethylene	units alo	ng the	C=C axis
< /					2		\mathcal{O}	

(D) Ray-Dutt twist and propeller type rotation of the ethylene units along the Ir-alkene axis

Q.40	The effective magnetic moment, μ_{eff} value for $[Cr(H_2O)_6]^{3+}$ taking into account for spin-orbit coupling is closest to [Given: Atomic number of Cr = 24, spin-orbit coupling constant $\lambda = 92$ cm ⁻¹ , and $\Delta_o = 17400$ cm ⁻¹]
(A)	3.79 µ _B
(B)	3.87 µ _B
(C)	4.05 μ _B
(D)	3.60 µ _B
	GATE 2025 // Roorkee

٦

Q.44	In the following asymmetric transformation, the key aldol reaction involves the attack of		
	$(i) n-Bu_2BOTf, {}^{i}Pr_2NEt$ $(ii) PhCHO$ $(iii) LiOH/H_2O_2$ $(iiii) LiOH/H_2O_2$ $(pure enantiomer)$ $(pure enantiomer)$ $(pure enantiomer)$		
(A)	Si face of enolate on to the <i>Re</i> face of aldehyde		
(B)	Si face of enolate on to the Si face of aldehyde		
(C)	<i>Re</i> face of enolate on to the <i>Re</i> face of aldehyde		
(D)	<i>Re</i> face of enolate on to the <i>Si</i> face of aldehyde		

117 Roorkee

Q.45	The correct option with regard to the following statements is				
	(a) Time-independent Schrödinger equation can be exactly solved for Be^{2+} .				
	(b) For a particle confined in a one-dimensional box of length <i>l</i> with infinite potential barriers, the trial variation function $\phi = \left[\left(\frac{3}{l^3}\right)^{1/2} x\right]$ is not an acceptable trial wavefunction for $0 \le x \le l$.				
	(c) Wavefunctions for system of Fermions must be anti-symmetric with respect to exchange of any two Fermions in the system.				
	(d) Born-Oppenheimer approximation can be used to separate the vibrational and rotational motion of a molecule.				
(A)	(a) True (b) False (c) False (d) True				
(B)	(a) True (b) True (c) False (d) False				
(C)	(a) False (b) True (c) True (d) False				
(D)	(a) False (b) True (c) True (d) True				

Q.46	The phase diagram of a single component system is given below.
	$\frac{1}{p} \int_{\frac{1}{p}} \frac{1}{\frac{1}{p}} \int_{\frac{1}{p}} \frac{1}{p} \int_{\frac{1}{p} \int_{\frac{1}{p}} \frac{1}{p}$
(A)	0, 1, 2
(B)	3, 2, 1
(C)	2, 0, 1
(D)	0, 2, 1
	GAIE ZO25
	117 Roorkee

Q.47	An approximate partition function $Q(N, V, T)$ of a gas is given below.
	$Q(N, V, T) = \frac{1}{N!} \left(\frac{2\pi m k_B T}{h^2}\right)^{3N/2} (V - Nb)^N$
	The equation of state(s) for this gas is/are
	[<i>Note: b</i> is a parameter independent of volume.]
(A)	$P(V - Nb) = Nk_BT$
(B)	$PV^{(N-b)} = k_B T$
(C)	$PV = Nk_BT$
(D)	$P(V - Nb) = Nk_B$
Q.48	The compound(s) having structure similar to that of B_2H_6 is/are
(A)	I ₂ Cl ₆
(B)	Si ₂ Cl ₆
(C)	Al ₂ Cl ₆ Roorke ^e
(D)	Cl ₂ O ₆

Q.49	The UV-visib maxima at 11	le spectrum of $[Ni(en)_3]^{2+}$ 200 cm ⁻¹ , 18350 cm ⁻¹ , and	(en = ethylenediamine) show d 29000 cm ^{-1} .	vs absorbance
		Absorbance maximum	Electronic transition	
		(a) 11200 cm^{-1}	(i) ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F)	-
		(b) 18350 cm^{-1}	(ii) ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$	-
		(c) 29000 cm^{-1}	(iii) ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$	-
	[Given: Atom	ic number of Ni = 28]		-
	The correct m is/are	atch(es) between absorbar	nce maximum and electronic	transition
(A)	$(a) \rightarrow (ii)$			
(B)	$(b) \rightarrow (i)$			
(C)	(a)→(iii)			
(D)	$(c) \rightarrow (iii)$			
	G	ATE	2025	
		//1 Ro	orkee	

Т

Q.50	Cytochrome P450 (CYP) enzymes catalyze stereoselective C–H hydroxylation of hydrocarbons in the presence of O_2 . The correct statement(s) about the structure and activity of CYP is/are
(A)	A thiolate group is coordinated to the Fe center at one of the axial positions around Fe.
(B)	While one of the oxygen atoms of O_2 is inserted into a C–H bond of a hydrocarbon, the other oxygen atom gets reduced to water.
(C)	An imidazole group is coordinated to the Fe center at one of the axial positions around Fe.
(D)	An iron-oxo species acts as a key oxidant in the catalytic cycle of CYP.
Q.51	The complex(es) having metal-metal bond order ≥3.5 is/are [<i>Given</i> : The atomic numbers of Mo, Cr, Mn, and Re are 42, 24, 25, and 75, respectively.]
(A)	$[Mo_2(\mu-SO_4)_4(H_2O)_2]^{3-1}$
(B)	[Mn ₂ (CO) ₁₀]
(C)	$[Cr_2(\mu - O_2CCH_3)_4]$
(D)	$[Mo_2(\mu-HPO_4)_4(H_2O)_2]^{2-}$

Q.53	The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
(A)	(i) Li $-C\equiv C-H$, THF, -70 °C; (ii) cat. HgSO ₄ , H ₂ SO ₄ , H ₂ O; (iii) aqueous acid, Δ
(B)	(i) $O O$, NaH; (ii) aqueous acid, Δ H ₃ C H
(C)	(i) LDA, TfNPh ₂ ; (ii) cat. [(dppe)Pd(0)], \bigcirc OB _{II} ; (iii) aqueous acid, Δ
	(dppe = diphenylphosphinoethane)
(D)	(i) H ₃ C-NO ₂ , NaOCH ₃ ; (ii) sat. NaCl; (iii) TiCl ₃ , H ₂ O; (iv) aqueous acid, Δ

Wavefunctions and energies for a particle confined in a cubic box are ψ_{n_x,n_y,n_z} Q.56 and E_{n_x,n_y,n_z} , respectively. The functions ϕ_1 , ϕ_2 , ϕ_3 , and ϕ_4 are written as linear combinations of ψ_{n_x,n_y,n_z} . Among these functions, the eigenfunction(s) of the Hamiltonian operator for this particle is/are $\phi_1 = \frac{1}{\sqrt{2}}\psi_{1,4,1} - \frac{1}{\sqrt{2}}\psi_{2,2,3}$ $\phi_2 = \frac{1}{\sqrt{2}}\psi_{1,5,1} + \frac{1}{\sqrt{2}}\psi_{3,3,3}$ $\phi_3 = \frac{1}{\sqrt{2}}\psi_{1,3,8} + \frac{1}{\sqrt{2}}\psi_{3,8,1}$ $\phi_4 = \frac{1}{2}\psi_{3,3,1} + \frac{\sqrt{3}}{2}\psi_{2,4,1}$ (A) ϕ_2 (B) ϕ_4 ϕ_3 (C) (D) ϕ_1 117 Roorkee

Q.57	If a particle's state function is an eigenfunction of the operator \hat{L}^2 with eigenvalue $30\hbar^2$, then the possible eigenvalue(s) of the operator \hat{L}_z^2 for the same state function is/are
(A)	10ħ ²
(B)	16ħ ²
(C)	25ħ²
(D)	0
Q.58	An archaeological specimen containing ¹⁴ C gives 45 counts per gram of carbon in 5 minutes. A specimen of freshly cut wood gives 20 counts per gram of carbon per minute. The counter used recorded a background count of 5 counts per minute in the absence of any ¹⁴ C containing sample. The age of the specimen is years (<i>in integer</i>). [<i>Note</i> : $t_{1/2}$ of ¹⁴ C = 5730 years]
	GATE 2025
	117 Roorkee

Q.59	In the following reaction, 13.4 grams of aldehyde P gave a diastereomeric mixture of alcohols Q and R in a ratio of 2:1. If the yield of the reaction is 80%, then the amount of Q (in grams) obtained is (<i>in integer</i>).								
	$\begin{array}{c} H \ CH_{3} \\ Ph \ O \\ O \\ (P) \end{array} H \begin{array}{c} (i) \ MeLi, \ THF \\ (ii) \ H_{3}O^{+} \end{array} H \begin{array}{c} H \ CH_{3} \\ Ph \ O \\ H \\ (Q) \\ (Q) \\ (R) \end{array} H \begin{array}{c} H \ CH_{3} \\ Ph \ H \\ HO \\ H \\ (R) \end{array}$								
Q.60	The kinetic energies of an electron (e) and a proton (p) are E and 3E, respectively. Given that mass of a proton is 1836 times that of an electron, the ratio of their de Broglie wavelengths (λ_e/λ_p) is (rounded off to two decimal places).								
Q.61	If a molecule emitting a radiation of frequency 3.100×10^9 Hz approaches an observer with a relative speed of 5.000×10^6 m s ⁻¹ , then the observer detects a frequency of × 10 ⁹ Hz. (<i>rounded off to three decimal places</i>) [<i>Given</i> : Speed of light $c = 3.000 \times 10^8$ m s ⁻¹]								
	Roorkee								
Q.62	The mean energy of a molecule having two available energy states at $\varepsilon = 0$ J and $\varepsilon = 4.14 \times 10^{-21}$ J at 300 K is × 10^{-21} J (<i>rounded off to two decimal places</i>). [<i>Given</i> : Boltzmann constant (k_B) = 1.38 × 10 ⁻²³ J K ⁻¹]								

GRADUATE APTITUDE TEST IN ENGINEERING 2025 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२५ Organising Institute: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Q. No.	Session	Q. Type	Section	Key/Range	Marks
1	5	MCQ	GA	A	1
2	5	MCQ	GA	В	1
3	5	MCQ	GA	С	1
4	5	MCQ	GA	A	1
5	5	MCQ	GA	С	1
6	5	MCQ	GA	В	2
7	5	MCQ	GA	В	2
8	5	MCQ	GA	А	2
9	5	MCQ	GA	С	2
10	5	MCQ	GA	А	2
11	5	MCQ	CY	С	1
12	5	MCQ	CY	С	1
13	5	MCQ	CY	С	1
14	5	MCQ	CY	С	1
15	5	MCQ	CY	В	1
16	5	MCQ	CY	С	1
17	5	MCQ	CY	D	1
18	5	MCQ	CY	С	1
19	5	MCQ	CY	В	1
20	5	MCQ	CY	В	1
21	5	MSQ	CY	C;D	1
22	5	MSQ	CY	A;B	1
23	5	MSQ	CY	В	1
24	5	MSQ	CY	A;B;D	1
25	5	MSQ	CY	A;C	1
26	5	MSQ	CY	А	1
27	5	MSQ	CY	B;C	1
28	5	MSQ	CY	B;C	1
29	5	MSQ	CY	B;D	1
30	5	NAT	CY	14 to 14	1

Answer Key for Chemistry (CY)

			-		
31	5	NAT	CY	6 to 6	1
32	5	NAT	CY	3 to 3	1
33	5	NAT	CY	25 to 25	1
34	5	NAT	CY	0.97 to 0.99	1
35	5	NAT	CY	400 to 400	1
36	5	MCQ	CY	D	2
37	5	MCQ	CY	В	2
38	5	MCQ	CY	С	2
39	5	MCQ	CY	В	2
40	5	MCQ	CY	A	2
41	5	MCQ	CY	D	2
42	5	MCQ	CY	С	2
43	5	MCQ	CY	В	2
44	5	MCQ	CY	D	2
45	5	MCQ	CY	С	2
46	5	MCQ	CY	А	2
47	5	MSQ	CY	А	2
48	5	MSQ	CY	С	2
49	5	MSQ	CY	A;B;D	2
50	5	MSQ	CY	A;B;D	2
51	5	MSQ	CY	A;C	2
52	5	MSQ	CY	A;C	2
53	5	MSQ	CY	A;C	2
54	5	MSQ	CY	A;C;D	2
55	5	MSQ	CY	A;C	2
56	5	MSQ	CY	A;C	2
57	5	MSQ	CY	B;C;D	2
58	5	NAT	CY	10926 to 10934	2
59	5	NAT	CY	8 to 8	2
60	5	NAT	CY	74.10 to 74.30	2
61	5	NAT	CY	3.110 to 3.200	2
62	5	NAT	CY	1.00 to 1.20	2
63	5	NAT	CY	69.00 to 71.00	2
64	5	NAT	CY	0.4 to 0.4	2
65	5	NAT	CY	3 to 3	2