Class XII Session 2024-25 Subject - Applied Mathematics Sample Question Paper - 6

Time Allowed: 3 hours

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with total weightage of 12 marks.
- 3. Section A: It comprises of 20 MCQs of 1 mark each.
- 4. Section B: It comprises of 5 VSA type questions of 2 marks each.
- 5. **Section C:** It comprises of 6 SA type of questions of 3 marks each.
- 6. Section D: It comprises of 4 LA type of questions of 5 marks each.
- 7. Section E: It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study.
- 8. Internal choice is provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D.You have to attempt only one of the alternatives in all such questions.

Section A

- 1. If A, B are two $n \times n$ non-singular matrices, then
 - a) $(AB)^{-1}$ does not exist b) AB is non-singular c) $(AB)^{-1} = A^{-1} B^{-1}$ d) AB is singular
- 2. An observed set of the population that has been selected for analysis is called
 - a) a forecast b) a sample
 - c) a process

3. Assume that the year-end revenues of a business over a three period, are mentioned in the following table: [1]

Year-End	31-12-2018	31-12-2021
Year-End Revenue	9,000	13,000

d) a parameter

Calculate the CAGR of revenues over, three-years period spanning the "end" of 2018 to the **end** of 2021. Given that

 $\left(\frac{13}{9}\right)^{\frac{1}{3}} = 1.13$

Maximum Marks: 80

[1]

[1]

	a) 13%	b) 16%	
	c) 15%	d) 14%	
4.	Z = 7x + y, subject to $5x + y \ge 5$	5, x + y \geq 3, x \geq 0, y \geq 0. The minimum value of Z occurs at	[1]
	a) (7, 0)	b) (0, 5)	
	C) $\left(\frac{1}{2}, \frac{5}{2}\right)$	d) (3, 0)	
5.	The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a	a local minimum at	[1]
	a) x = -1	b) x = -2	
	c) x = 2	d) x = 1	
6.	A random variable X takes the v then $P(X = 0)$ is:	alues 0, 1, 2, 3 and its mean is 1.3. If $P(X = 3) = 2 P(X = 1)$ and $P(X = 2) = 0.3$,	[1]
	a) 0.2	b) 0.1	
	c) 0.3	d) 0.4	
7.	A coin is tossed 10 times. The p	robability of getting exactly six heads is	[1]
	a) $\frac{512}{513}$	b) ¹⁰ C ₆	
	c) $\frac{105}{512}$	d) $\frac{100}{153}$	
8.	The order and the degree of the orbitrary constant, are	differential equation of the family of curves given by $y = Ax + A^3$, where A is	[1]
	a) 2, 3	b) 1, 2	
	c) 1, 1	d) 1, 3	
9.	An outlet pipe can empty a cister	rn in 3 hours. The time taken by it to empty $\frac{3}{2}$ rd of the cistern is	[1]
	a) 4 hours	b) 6 hours	
	c) 2 hours	d) 3 hours	
10.	The solution of the differential e	quation $\frac{dy}{dx} = \frac{2y}{x} = 0$ with y(1) = 1 is given by:	[1]
	a) $x = \frac{1}{y}$	b) $y = \frac{1}{x^2}$	
	C) $x = \frac{1}{u^2}$	d) $y = \frac{1}{x}$	
11.	9	satisfies $x \equiv 27 \pmod{4}$, when $27 < x \le 36$?	[1]
	a) 31	b) 30	
	c) 35	d) 27	
12.	The solution of the linear inequa	lity in x represented on number line as	[1]
	$\begin{array}{c c} & & & & \\ \hline x' & -2 & & \\ i. & (-\infty, -2) \cup [11, \infty) \\ ii. & (-\infty, -2] \cup [11, \infty) \\ iii. & (-2, 11) \\ iv. & (-2, 11] \end{array}$	X	
	a) Option (iv)	b) Option (ii)	

	c) Option (i)	d) Option (iii)	
13.	A man can row upstream at 10 km/hr and downstread	am at 18 km/hr. Man's rate in still water in km/hr is	[1]
	a) 10	b) 14	
	c) 12	d) 4	
14.	The graph of the inequality $2x + 3y > 6$ is		[1]
	a) half plane that contains the origin	b) half plane that neither contains origin nor the points of the line $2x + 3y = 6$	
	c) whole XOY-plane excluding the points on the line $2x + 3y = 6$	d) entire XOY-plane.	
15.	If $x \leq 8$, then		[1]
	a) -x \leq -8	b) -x > -8	
	c) -x < -8	d) -x \geq -8	
16.	What is the standard deviation of a sampling distrib	ution called?	[1]
	a) Simple error	b) Sampling error	
	c) Sample error	d) Standard error	
17.	If the supply function for a commodity is $p = \sqrt{9 + 1}$	\overline{x} and the market price $p_0 = 4$, then producer's surplus is	[1]
	a) 15	b) 3	
	c) $\frac{10}{3}$	d) 10	
18.	For the given values 15, 23, 28, 36, 41, 46, the 3-ye	arly moving averages are:	[1]
	a) 22, 29, 35, 41	b) 24, 29, 35, 41	
	c) 24, 28, 35, 41	d) 22, 28, 35, 41	
19.	Assertion (A): If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$, then $ 3A = 27$	A	[1]
	Reason (R): If A is a square matrix of order n, then	$ \mathbf{k}\mathbf{A} = \mathbf{k}^n \mathbf{A} .$	
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
20.	Let a, $b \in R$ be such that the function f given by f(x and x = 2. Assertion (A):f has local maximum at x = -1 and at	$b) = \log x + bx^{2} + ax, x \neq 0 \text{ has extreme values: at } x = -1$	[1]
	Reason (R): $a = \frac{1}{2}$ and $b = -\frac{1}{4}$		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
		ection B	
21.	Calculate the 3-yearly moving averages of the follo	wing data:	[2]

	Year	1	2	3	4	5	6	7		
	Value	2	4	5	7	8	10	1	3	1
22.	Abhay bought a mo a span of 3 years. U years.	-		-				-		. [2]
	Find the present val if money is worth 4	-	1 0	s of ₹8,000	made at t	he end of	each 6 mc	onths and o	continuing for	ever
23.	By using properties	By using properties of definite integral, evaluate: $\int_{1}^{1} e^{ x } dx$ [2]								
24.	How much money i indefinitely, if mone				osting ₹2,	500 at the	beginninį	g of each y	zear	[2
	Mr. Bharti wishes to payments for 20 yea 4.4608)	-							-	-
25.	Prove that: $3^{500} \equiv 2$	2 (mod 7)								[2
	Section C									
26.	Solve the initial value $\operatorname{If} \sqrt{1-\mathrm{x}^2} + \sqrt{1}$			OR						[3
27.	A machine costing \overline{s}				v	rs and a fi	nal scran y	value of ₹	4000 Find	[3
27.	the annual depreciat	-			5		-		4000.11110	L
28.	The marginal cost o		-		-	-			re ₹ 120.	[3
	i. the total cost of	. 0								
	ii. the cost of increa	0								
29.	In a precision bomb required to destroy t completely destroyi	the target comple			5			0		[3
				OR						
	Two biased dice are second die, $P(1) = \frac{2}{5}$ seen'.				-					
30.	Fit the straight line	trend to the follow	wing series	data:						[3
	Year			2	2017	2018	2019	2020	2021	
	Sales of sugar (in	thousand kg)		8	30	90	92	83	94	1
	Also, tabulate the tr			ļ_				ļ]

of 19

 $H_a: \mu \neq 15.$

A sample of 50 provided a sample mean of 14.15. The population standard deviation is 3.

i. Compute the value of the test statistic.

ii. What is the p-value?

iii. At α = 0.05, what is your conclusion?

iv. What is the rejection rule using the critical value? What is your conclusion?

Section D

32. Express the matrix $A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix. [5]

Find A⁻¹, where A =
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$
. Hence solve the system of equations: x + 2y - 3z = -4, 2x + 3y + 2z = 2, 3x - 3y - 4z = 11

33. In a 1000-metre race, A, B and C get Gold, Silver and Bronze medals respectively. If A beats B by 100 metres [5] and B beats C by 100 metres, then by how many metres does A beat C?

34. The probability that Rohit will hit a shooting target is $\frac{2}{3}$. While preparing for an international shooting [5] competition. Rohit aims to achieve the probability of hitting the target atleast once to be 0.99. What is the minimum number of chances must he shoot to attain this probability?

OR

A die is thrown 5 times. Find the probability that an odd number will turn up

i. exactly 3 times

ii. atleast 4 times

iii. maximum 3 times

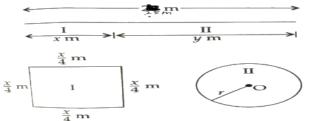
35. Anil plans to send his daughter for higher studies abroad after 10 years. He expects the cost of the studies to be ₹ [5]
2,00,000. How much must he set aside at the end of each quarter for 10 years to accumulate this amount, if

money is worth 6% compounded quarterly? [Given: $(1.015)^{40} = 1.8140$]

Section E

36. **Read the text carefully and answer the questions:**

A piece of wire of length 25 cm is to be cut into pieces one of which is to bent into the form of a square and other into the form of a circle.



- (a) What is the total area of the square and circle?
- (b) What is the relation between r and y?
- (c) If we consider total length of wire then what is the relation between x and y?

OR

When $\frac{dA}{du} = 0$, then find the value of y.

37. **Read the text carefully and answer the questions:**

[4]

EMI or equated monthly installment, as the name suggests, is one part of the equally divided monthly outgoes to clear off an outstanding loan within a stipulated time frame. The EMI is dependent on multiple factors, such as:

- Principal borrowed
- Rate of interest
- Tenure of the loan
- Monthly/annual resting period

For a fixed interest rate loan, the EMI remains fixed for the entire tenure of the loan, provided there is no default or part-payment in between. The EMI is used to pay off both the principal and interest components of an outstanding loan.

Example:

A person amortizes a loan of ₹1500000 for renovation of his house by 8 years mortgage at the rate of 12% p.a. compounded monthly.

(Given $(1.01)^{96} = 2.5993$, $(1.01)^{57} = 1.7633$)

- (a) Find the equated monthly installment.
- (b) Find the principal outstanding at the beginning of 40th month.
- (c) Find the interest paid in 40th payment.

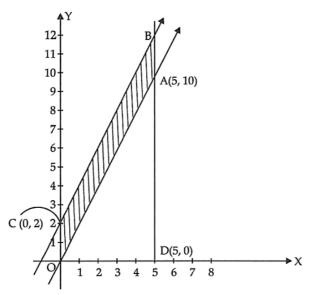
OR

[4]

Find the principal contained in 40th payment.

38. Read the following text carefully and answer the questions that follow:

The feasible region for an LPP is shown in the following figure. The CB is parallel to OA.



- i. What is the equation of line OA? (1)
- ii. What is the equation of line BC? (1)
- iii. What is the co-ordinates of point B? (2)

OR

What are the constraints for the L.P.P.? (2)

OR

A bakery in an establishment produces and sells flour-based food baked in an oven such as bread, cakes, pastries, etc. Ujjwal cake store makes two types of cake. First kind of cake requires 200g of flour and 25 g of fat and 2nd type of cake requires 100g of flour and 50 g of fat.

Based on above information answer the following questions.

- i. If the bakery make x cakes of first type and y cakes of 2nd type and it can use maximum 5 kg flour, then write the constraint.
- ii. If Bakery can use maximum 1 kg fat, then write the constraint.
- iii. Represent total number of cakes made by bakery which is represented by Z.
- iv. What is the maximum number of total cakes which can be made by bakery, assuming that there is no shortage of ingredients used in making the cakes?
- v. What are number of first and second type of cakes?

Solution

Section A

1.

(b) AB is non-singular

Explanation: If A and B are non - singular then $|AB| \neq 0$

= AB is non - singular matrix

As |AB| = |A||B|

2.

(b) a sample

Explanation: An observed set of the population that has been selected for analysis is called a sample. A sample is a small part of the whole information.

3. **(a)** 13%

Explanation: The CAGR of the revenues over the three years period spanning the "end" of 2018 to "end" of 2021 is

 $\left(\frac{\text{Final value}}{\text{Initial Value}}\right)^{\frac{1}{11}} - 1 = \left(\frac{13000}{9000}\right)^{\frac{1}{3}} - 1$ = 1.13 - 1 = 0.13 = 13%

4.

(b) (0, 5)

Explanation:

Corner Points	Z = 7x + y
(3, 0)	21
$\left(\frac{1}{2},\frac{5}{2}\right)$	6
(7, 0)	49 (minimum)
(0, 5)	5

5.

(c) x = 2Explanation: $f(x) = \frac{x}{2} + \frac{2}{x} \Rightarrow f'(x) = \frac{1}{2} + \frac{2}{x^2}$ and $f''(x) = \frac{4}{x^3}$ Now, $f'(x) = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$ $\therefore f''(2) = \frac{4}{2^3} = \frac{1}{2} > 0$ $\Rightarrow f(x)$ has a local minimum at x = 2

6.

(d) 0.4

Explanation: Let P(X = 0) = mP(X = 1) = kNow, P(X = 3) = 2k

xipipixi0m01kk20.30.6

2k 6k 3 Mean = $\sum p_i x_i$ 0 + k + 0.6 + 6k = 1.3 \Rightarrow 7k = 1.3 - 0.6 \Rightarrow k = $\frac{0.7}{7}$ = 0.1 We know that the sum of probabilities in a probability distribution is always 1. $\therefore P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1$ \Rightarrow m + 0.1 + 0.3 + 0.2 = 1 \Rightarrow m + 0.6 = 1 \Rightarrow m = 0.4 7. (c) $\frac{105}{512}$ **Explanation:** n = 10, X = 6, $p = q = \frac{1}{2}$ $P(X = 6) = {}^{10}C_6 \left(\frac{1}{2}\right)^{10} = \frac{105}{512}$ 8. (d) 1, 3 **Explanation:** $y = Ax + A^3 \Rightarrow \frac{dy}{dx} = A$ \therefore The differential equation of family of curves is $\mathbf{y} = \mathbf{x} \left(\frac{dy}{dx} \right) + \left(\frac{dy}{dx} \right)$ \therefore Order = 1, degree = 3 9. (c) 2 hours Explanation: The outlet pipe empties the one complete cistern in 3 hours Time taken to empty $\frac{2}{3}$ Part of the cistern $=\frac{2}{3}\times 3$ = 2 hours 10. **(b)** $y = \frac{1}{r^2}$ Explanation: We have, $\frac{dy}{dx} + \frac{2y}{x} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{2y}{x}$ $\Rightarrow \frac{dy}{2y} = -\frac{dx}{x}$ $\Rightarrow \int \frac{dy}{2y} = -\int \frac{dx}{x}$ $\Rightarrow \frac{1}{2}\log |\mathbf{y}| = -\log |\mathbf{x}| + \log c$ $\Rightarrow \sqrt{y}x = c$ \Rightarrow vx² = c Given that $y(1) = 1 \Rightarrow x = y = 1$ \Rightarrow c = 1 \Rightarrow yx² = 1 \Rightarrow y = $\frac{1}{x^2}$ 11. (a) 31 **Explanation:** Given $x \equiv 27 \pmod{4}$ \Rightarrow x - 27 = 4 λ , where $\lambda \in I$ \Rightarrow x = 27 + 4 λ Putting x = 0, ± 1 , ± 2 , ..., we get x = ..., 19, 23, 27, 31, 35, ...

```
But 27 < x \le 36,
so, least value of x = 31.
```

12. (a) Option (iv)

Explanation: (-2, 11]

13.

(b) 14 Explanation: u = 10 km/h d = 18 km/h Speed of man is still water = $\frac{1}{2}$ (d + u) = $\frac{1}{2}$ (10 + 18) = 14 km/h

14.

(b) half plane that neither contains origin nor the points of the line 2x + 3y = 6**Explanation:** half plane that neither contains origin nor the points of the line 2x + 3y = 6

15.

(d) $-x \ge -8$ Explanation: $-x \ge -8$

16.

(d) Standard error

Explanation: Standard error

17.

(c) $\frac{10}{3}$ Explanation: Given P = $\frac{10}{x}$ and p₀ = 4 So, 4 = $\sqrt{9 + x_0} \Rightarrow x_0 = 7$ P.S. = 7 × 4 - $\int_{0}^{7} \sqrt{9 + x} dx = 28 - \left[\frac{2}{3}(9 + x)^{\frac{3}{2}}\right]_{0}^{7}$ = 28 - $\left(\frac{128}{3} - \frac{54}{3}\right) = \frac{10}{3}$

18. **(a)** 22, 29, 35, 41

Explanation: 22, 29, 35, 41

19. (a) Both A and R are true and R is the correct explanation of A.

Explanation: We know that if A is square matrix of order n, then $|kA| = k^n |A|$ (see properties) Beason is true

Given A =
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
 (Expand by C₁)
⇒ |A| = 1(4 - 0) - 0 + 0
⇒ |A| = 4
Now, 3A =
$$\begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$$
 (Expand by C₁)
⇒ |3A| = 3(36 - 0) - 0 + 0
⇒ |3A| = 108
⇒ |3A| = 27 × 4 ⇒ |3A| = 27|A|
∴ Assertion is true.

Hence, both Assertion and Reason are true and Reason is the correct explanation of Assertion.

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation: $f(x) = \log IxI + bx^2 + ax, x \neq 0$ $\Rightarrow f'(x) = \frac{1}{x} + 2bx + a, x \neq 0$ Given x = -1 and x = 2 are extreme values of f(x). So, f'(-1) = 0 and f'(2) = 0 ⇒ -1 - 2b + a = 0 and $\frac{1}{2}$ + 4b + a = 0 Solving these equations, we get a = $\frac{1}{2}$, b = $-\frac{1}{4}$ \therefore Reason is true. Now, f'(x) $\frac{1}{x} - \frac{1}{2}x + \frac{1}{2} = \frac{2-x^2+x}{2x}$ \Rightarrow f'(x) = 0 \Rightarrow x = -1 and x = 2 f''(x) = $-\frac{1}{x^2} - \frac{1}{2} \Rightarrow$ f''(-1) = $\frac{1}{1} - \frac{1}{2} = -\frac{3}{2} < 0$ \Rightarrow x = -1 is a point of local maxima.

Also f''(2) = $-\frac{1}{4} - \frac{1}{2} = -\frac{3}{4} < 0$

 \Rightarrow x = 2 is a point of local maxima.

~ · · · ·

Hence, Assertion and Reason both are true and Reason is the correct explanation of Assertion.

Section B

		Calculati	on of 3-year moving av		
	Year	Value	3-year moving total	3-year m	oving average
	1	2	1		
	2	4	$>$ 11 $\overline{3}$	>	3.667
21.	3	5	> 16	>	5.333
	4	7	> 20	>	6.667
	5	8	> 25	>	8.333
	6	10	> 31	>	10.333
	7	13			

22. We have,

$$r = \frac{10}{100} = 0.1$$

m = 12
$$r_e = \left(1 + \frac{r}{m}\right)^m - 1$$

= $\left(1 + \frac{0.1}{12}\right)^{12} - 1$
= $(1.00833)^{12} - 1$
= $1.1047 - 1$
= 0.1047

Thus, the effective rate of interest is 10.47%, which means that the rate of 10.47% compounded annually yield the same interest as the nominal rate 10% compounded monthly.

OR

Let P be the present value of the given perpetuity. It is given that R = 8,000 and i = $\frac{4}{200}$ = 0.02

$$\therefore \mathbf{P} = \frac{R}{i} \Rightarrow \mathbf{P} = \underbrace{\underbrace{8,000}}_{0.02} = \underbrace{\$400,000}$$

Hence the present value of the given perpetuity is ₹400,000. It means that a sum of ₹400,000 invested now at 4% compounded semi-annually will fetch ₹8,000 semi-annually forever.

23. Let
$$f(x) = e^{IxI} \Rightarrow f(-x) = e^{|-x|} = e^{|x|} = f(x)$$

 $\Rightarrow f(x)$ is an even function; therefore,

$$\therefore \int_{-1}^{1} e^{|x|} dx = 2 \int_{0}^{1} e^{|x|} dx = 2 \int_{0}^{1} e^{x} dx \quad (\because 0 \le x \le 1 \Rightarrow |x| = x)$$
$$= 2[e^{x}]_{0}^{1} = 2(e^{1} - e^{0}) = 2(e - 1)$$

24. Here we have to find how much money should be invested now that would provide for an unlimited number of payments of ₹2,500 each year, the first due now. So, it is a perpetuity of ₹2,500 payable at the beginning each year, if money is worth 5% compounded annually. Thus, we have

R = 2,500 and i = $\frac{5}{100}$ = 0.05 Let P be the present value of this annuity. Then, P = R + $\frac{R}{i}$ ⇒ P = ₹(2,500 + $\frac{2,500}{0.05}$) = ₹52,500

Hence, required sum of money is ₹52,500.

OR

Cost of flat = ₹ 600000, cash payment ₹ 1000000 So, balance = ₹ 6000000 - ₹ 1000000 = ₹ 5000000 Given P = ₹ 5000000, n = 12 × 20 = 240 months, i = $\frac{7.5}{1200}$ = 0.00625

$$\therefore \text{EMI} = \frac{5000000 \times 0.00625 \times (1.00625)^{240}}{(1.00625)^{240} - 1}$$
$$= \frac{5000000 \times 0.00625 \times 4.4608}{3.4608} = ₹40279.70$$

 $\theta - \phi = 2 \cot^{-1}4$

25. In order to prove $3^{500} \equiv 2 \pmod{7}$, let us first find an integer k such that $3^k \equiv \pm 1 \pmod{7}$.

We know that $3^1 \equiv 3 \pmod{7}$ $\Rightarrow 3^2 \equiv 3 \times 3 = 9 \equiv 2 \pmod{7}$ $\Rightarrow 3^3 \equiv 3 \times 2 \pmod{7}$ $\Rightarrow 3^3 \equiv 6 \equiv -1 \pmod{7}$ Thus, we find that $3^3 \equiv -1 \pmod{7}$. Let us now express 3^{500} in terms of 3^3 . $3^{500} = (3^3)^{166} \times 3^2$ Now, $3^3 \equiv -1 \pmod{7}$ $\Rightarrow (3^3)^{166} \equiv (-1)^{166} \pmod{7} [\because a \equiv b \pmod{m} \Rightarrow a^n \equiv b^n \pmod{m}]$ \Rightarrow (3³)¹⁶⁶ \times 3² \equiv (-1)¹⁶⁶ \times 3² (mod 7) [\therefore a \equiv b (mod m) \Rightarrow ax \equiv bx (mod m)] $\Rightarrow 3^{500} \equiv 9 \pmod{7}$ But, $9 \equiv 2 \pmod{7}$. Thus, we obtain $3^{500} \equiv 9 \pmod{7}$ and $9 \equiv 2 \pmod{7}$ $\Rightarrow 3^{500} \equiv 2 \pmod{7} [\because a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}]$ Section C 26. We have, $x\frac{dy}{dx} + y = x \log x$ $\Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \log x \dots (i)$ This is linear differential equation of the form $\frac{dy}{dx}$ + Py = Q with P = $\frac{1}{x}$ and Q = log x $\therefore \text{ I.F.} = e^{\int \frac{1}{x} dx} = e^{\log x} = x [\because x > 0]$ Multiplying both sides of (i) by I.F. = x, we get $x\frac{dy}{dx} + y = x \log x$ Integrating with respect to x, we ge yx = $\int x \log x \, dx$ [Using: y (I.F.) = $\int Q$ (I.F.) dx + C] \Rightarrow yx = $\frac{x^2}{2}(\log x)\frac{1}{2}\int x dx$ $\Rightarrow yx = \frac{x^2}{2}(\log x) - \frac{x^2}{4} + C \dots (ii)$ It is given that $y(1) = \frac{1}{4}$ i.e. $y = \frac{1}{4}$ where x = 1. Putting x = 1 and $y = \frac{1}{4}$ in (ii), we get $\frac{1}{4} = 0 - \frac{1}{4} + C \Rightarrow C = \frac{1}{2}$ Putting $C = \frac{1}{2}$ in (ii), we get $xy = \frac{x^2}{2}(\log x) - \frac{x^2}{2} + \frac{1}{2} \Rightarrow y = \frac{1}{2}x \log x - \frac{x}{4} + \frac{1}{2x}$ Hence, $y = \frac{1}{2}x \log x - \frac{x}{4} + \frac{1}{2x}$ is the solution of the given differential equation. OR $\sqrt{1-x^2} + \sqrt{1-y^2} = 4(x - y)$ put x = sin θ , y = sin θ $\theta = \sin^{-1}x \phi = \sin^{-1}y$ $\sqrt{1-\sin^2\theta} + \sqrt{1-\sin^2\phi} = 4(\sin\theta - \sin\phi)$ $\frac{1}{2\cos\left(\frac{\theta+\phi}{2}\right)\cos\frac{\theta-\phi}{2}} = 2 \cdot 4\cos\left(\frac{\theta+\phi}{2}\right)\sin\left(\frac{\theta-\phi}{2}\right)$ $\frac{\cos\theta-\phi}{2} = 4 \cdot \sin\frac{\theta-\phi}{2}$ $\cos\theta + \cos\phi = 4\sin\theta - \sin\phi$ $\frac{\cos\left(\frac{\theta-\phi}{2}\right)}{\sin\left(\frac{\theta-\phi}{2}\right)} = 4$ $\frac{\theta-\phi}{2} = \cot^{-1}4$

 $\sin^{-1}x - \sin^{-1}y = 2 \cot^{-1}4$

diff. w.r.t. x we get

$$\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} =$$
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

0

Hence proved

27. We are given that

C = 30,000; n = 4; S = 4000

Annual depreciation = $\frac{C-S}{n}$

= $\frac{30000-4000}{4000}$

= 6500

Depreciation schedule

Year	Annual depreciation	Accumulated depreciation	Book Value	
0	0	0	30,000	
1	6500	6500	23,500	
2	6500	13000	17,000	
3	6500	19,500	10,500	
4	6500	26,000	4000	

28. i. MC = 30 + 2x.

As MC = $\frac{dC}{dx}$,

 $C(x) = \int (MC) dx = \int (30 + 2x) dx$

= $30x + x^2 + k$, where k is constant of integration.

Given fixed cost (in $\overline{\epsilon}$) = 120 i.e. when x = 0, C(x) = 120

 \Rightarrow 30 \times 0 + 0² + k = 120 \Rightarrow k = 120.

$$\therefore C(x) = 120 + 30x + x^2$$

∴ Total cost of producing 100 units = $120 + 30 \times 100 + 100^2 = 13120$ (in ₹). ii. Cost of increasing output from 100 to 200 = C(200) - C(100)

= $(120 + 30 \times 200 + 200^2)$ - 13120 = 33000 (in ₹).

Alternatively, we can obtain it as

 $\int_{100}^{200} (\text{MC}) dx = \int_{100}^{200} (30 + 2x) dx = \left[30x + x^2 \right]_{100}^{200}$

= $(30 \times 200 + 200^2)$ - $(30 \times 100 + 100^2)$ = 33000 (in ₹).

29. p = 50% = $\frac{1}{2}$: q = $\frac{1}{2}$

Let n be the number of bombs to be draped.

 $n \rightarrow$ atleast 2 bombs should hit target

Probability > 0.99 [i.e. 99%]

 $P(x \ge 2) \ge 0.99$

 $1 - P(x < 2) \ge 0.99$

 $1 - [P(n = 0) + P(n = 1)] \ge 0.99$

$$egin{aligned} 1 &- \left[{}^n c_0 p^0 q^n + n_{c_1} p^1 q^{n-1}
ight] \ge 0.99 \ 1 &- \left[rac{1}{2} + n imes rac{1}{2} imes \left(rac{1}{2}
ight)^{n-1}
ight] \ge 0.9. \end{aligned}$$

$$1 - \left|rac{1}{2^n} + n imes rac{1}{2} imes \left(rac{1}{2}
ight)^{n-1}
ight| \geq$$

 $egin{array}{ll} 1-rac{1}{2^n}(1+n)\geq 0.91\ 0.01\geq rac{1+n}{2^n} \end{array}$

OR

For the first die, it is given that $P(6) = \frac{1}{2}$ and other scores are equally likely. i.e., $P(1) = P(2) = P(3) = P(4) = P(5) = p_1$ (say) \therefore P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1

0.99

⇒ $5p_1 + \frac{1}{2} = 1 \Rightarrow p_1 = \frac{1}{10}$ So, for the first die, we have $P(1) = P(2) = P(3) = P(4) = P(5) = \frac{1}{10}$ and $P(6) = \frac{1}{2}$ For the second die, it is given that $P(1) = \frac{2}{5}$ and other scores are equally likely. i.e., $P(2) = P(3) = P(4) = P(5) = P(6) = p_2$ (say) $\therefore P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1$ $\Rightarrow \frac{2}{5} + 5p_2 = 1 \Rightarrow p_2 = \frac{3}{25}$

So, for the second die, we have

 $P(1) = \frac{2}{5} \text{ and } P(2) = P(3) = P(4) = P(5) = P(6) = \frac{3}{25}$ $P(1) = \frac{2}{5} \text{ and } P(2) = P(3) = P(4) = P(5) = P(6) = \frac{3}{25}$

When two dice are thrown, there may not be one on both the dice or one of the dice may show one or both of them show one. This, if X denotes 'the number of ones seen'. Then, X can take values 0, 1 and 2 such that

P(X = 0) = Probability of not getting one on both dice

= (Probability of not getting one on first die) \times (Probability of not getting one on second die)

$$= \left(1 - \frac{1}{10}\right) \times \left(1 - \frac{2}{5}\right) = \frac{9}{10} \times \frac{3}{5} = \frac{27}{50}$$

P(X = 1) = Probability of getting one on one die and another number on the other die

 $=\frac{1}{10} \times \left(1 - \frac{2}{5}\right) + \left(1 - \frac{1}{10}\right) \times \frac{2}{5} = \frac{21}{50}$

P(X = 2) = Probability of getting one on both dice = $\frac{1}{10} \times \frac{2}{5} = \frac{2}{50}$ Thus, the probability distribution of X is as given below:

		Х	0		1		2	
		P(X)	$\frac{27}{50}$		$\frac{21}{50}$		$\frac{2}{50}$	
30.	Year t	Sale y	x = t - 2019	xy		x ²		y _t
	2017	80	-2	-160		4		83.6
	2018	90	-1	-90		1		85.7
	2019	92	0	0		0		87.8
	2020	83	1	83		1		89.9
	2021	94	2	188		4		92.0
	n = 5	$\sum y = 439$	$\sum x = 0$	$\sum x$	<i>y</i> = 21	$\sum x^2 =$	10	

Now, $a = \frac{\Sigma y}{n} = \frac{439}{5} = 87.8$

$$b = \frac{2\pi g}{\Sigma r^2} = \frac{21}{10} = 2.1$$

Hence, trend equation is $y_t = 87.8 + 2.1x$

 $y_{2017} = 87.8 + 2.1(-2) = 83.6$

 $y_{2018} = 87.8 + 2.1(-1) = 85.7$

$$y_{2019} = 87.8 + 2.1(0) = 87.8$$

$$y_{2020} = 87.8 + 2.1(1) = 89.9$$

$$y_{2021} = 87.8 + 2.1(2) = 92.0$$

31. Given μ_0 = 15, n = 50, \bar{x} = 14.15, σ = 3

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{14.15 - 15}{\frac{3}{\sqrt{50}}} = \frac{-0.85 \times \sqrt{50}}{3}$$

i.

ii.
$$\therefore$$
 Z = -2 < 0

So, p-value = 2(Area under the standard normal curve to the left of Z)

= 2 × (0.0228) = 0.0456

∴ p-value = 0.0456

iii. ∵ p-value < 0.05 (Given α = 0.05) So, reject H₀

iv. Reject H₀ if
$$Z \le -Z_{\frac{\alpha}{2}}$$

 $\therefore -Z_{\frac{\alpha}{2}} = -Z_{0.025} = -1.96$
 $\therefore -2 < -1.96$
So, reject H₀

Section D 32. Given, $A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix}$ Then $A^{T} = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 5 & -2 \\ -1 & 7 & 1 \end{bmatrix}$ $X = \frac{1}{2}(A + A^{T})$ $= \frac{1}{2} \left(\begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 3 & 1 \\ 2 & 5 & -2 \\ -1 & 7 & 1 \end{bmatrix} \right)$ $= \frac{1}{2} \begin{bmatrix} 4+4 & 2+3 & -1+1 \\ 3+2 & 5+5 & 7-2 \\ 1-1 & -2+7 & 1+1 \end{bmatrix}$ $\begin{bmatrix} 1 - 1 & -2 + 7 & 1 + 1 \end{bmatrix}$ = $\frac{1}{2} \begin{bmatrix} 8 & 5 & 0 \\ 5 & 10 & 5 \\ 0 & 5 & 2 \end{bmatrix}$ $X = \begin{bmatrix} 4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1 \end{bmatrix}^{T} = \begin{bmatrix} 4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1 \end{bmatrix}^{T} = \begin{bmatrix} 4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1 \end{bmatrix} = X$ $\therefore X \text{ is a symmetric matrix}$ \therefore X is a symmetric matrix. $Y = \frac{1}{2} (A - A^{T})$ $= \frac{1}{2} \begin{pmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 3 & 1 \\ 2 & 5 & -2 \\ -1 & 7 & 1 \end{bmatrix} \end{pmatrix}$ $= \frac{1}{2} \begin{bmatrix} 4 - 4 & 2 - 3 & -1 - 1 \\ 3 - 2 & 5 - 5 & 7 + 2 \\ 1 + 1 & -2 - 7 & 1 - 1 \end{bmatrix}$ $\begin{bmatrix} 0 & -1 & -2 \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & 9 \\ 2 & -9 & 0 \end{bmatrix}$ $Y = \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & -\frac{9}{2} & 0 \end{bmatrix}$ $Y^{T} = \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & -\frac{9}{2} & 0 \end{bmatrix}^{T} = \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & -\frac{9}{2} & 0 \end{bmatrix} = Y$ $\rightarrow V \text{ is a skew-symmetric matrix.}$ \Rightarrow Y is a skew-symmetric matrix. Now,

$$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} 4 & \frac{5}{2} & 0\\ \frac{5}{2} & 5 & \frac{5}{2}\\ 0 & \frac{5}{2} & 1 \end{bmatrix} + \begin{bmatrix} 0 & -\frac{1}{2} & -1\\ \frac{1}{2} & 0 & \frac{9}{2}\\ 1 & -\frac{9}{2} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 4+0 & \frac{5}{2} - \frac{1}{2} & 0-1 \\ \frac{5}{2} + \frac{1}{2} & 5+0 & \frac{5}{2} + \frac{9}{2} \\ 0+1 & \frac{5}{2} - \frac{9}{2} & 1+0 \\ 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix} = A$$

Hence, X + Y = A.

Thus matrix A is expressed as the sum of symmetric and skew-symmetric matrices.

OR

We have,

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$

$$\therefore |A| = \begin{vmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{vmatrix} = -6 + 28 + 45 = 67 \neq 0$$

So, A is invertible

I

Let C_{ij} be the co-factors of a_{ij} in A = $[a_{ij}]$. Then,

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 2 \\ -3 & -4 \end{vmatrix} = -6, C_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 2 \\ 3 & -4 \end{vmatrix} = 14,$$

$$C_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & -3 \end{vmatrix} = -15, C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & -3 \\ -3 & -4 \end{vmatrix} = 17,$$

$$C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & -3 \\ 3 & -4 \end{vmatrix} = 5, C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 3 & -3 \end{vmatrix} = 9,$$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} = 13, C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & -3 \\ 2 & 2 \end{vmatrix} = -8,$$
and $C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$

$$\therefore adj A = \begin{bmatrix} -6 & 14 & -15 \\ 17 & 5 & 9 \\ 13 & -8 & -1 \end{bmatrix} = \begin{bmatrix} -6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1 \end{bmatrix}$$
So, $A^{-1} = \frac{1}{|A|} adj A = \frac{1}{67} \begin{bmatrix} -6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1 \end{bmatrix} \dots (i)$
The given system of equations is
 $x + 2y - 3z = -4$
 $2x + 3y + 2z = -2$
 $3x - 3y - 4z = 11$

or, AX = B, where A =
$$\begin{bmatrix} 1 & 1 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$
, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} -4 \\ 2 \\ 11 \end{bmatrix}$

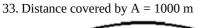
As discussed above A is non-singular and so invertible. The inverse of A is given by (i) The solution of the given system of equations is given by

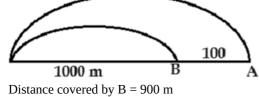
$$X = A^{-1} B$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{67} \begin{bmatrix} -6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1 \end{bmatrix} \begin{bmatrix} -4 \\ 2 \\ 11 \end{bmatrix} = \frac{1}{67} \begin{bmatrix} 24 & +34 & +143 \\ -56 & +10 & -88 \\ 60 & +18 & -11 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

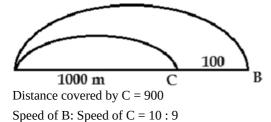
$$\Rightarrow x = 2, x = 2, x = 2, and z = 1 is the required solution$$

 \Rightarrow x = 3, y = -2 and z = 1 is the required solution.





Speed of A: speed of B = 10:9Distance covered by B = 1000



∴ A : B : C = 100 : 90 : 81 = 1000 : 900 : 81 A : B = 10 : 9 10 : 9.

When A covers 1000 meter C covers 810 metes

 \therefore Required distance cover = 1000 - 810

= 190 metre.

34. Given probability of hitting a shooting target = $p = \frac{2}{3}$.

So, q = 1 - p =
$$1 - \frac{2}{3} = \frac{1}{3}$$
.

Let the number of trials be n.

The probability of hitting target atleast once = $P(X \ge 1) = 1 - P(0)$

$$= 1 - {}^{n}C_{0}q^{n} = 1 - \left(rac{1}{3}
ight)^{n}$$

According to given,

$$\begin{split} 1 &- \left(\frac{1}{3}\right)^n > 0.99 \Rightarrow 1 - \frac{1}{3^n} > \frac{99}{100} \\ \Rightarrow 1 - \frac{99}{100} > \frac{1}{3^n} \Rightarrow \frac{1}{100} > \frac{1}{3^n} \\ \Rightarrow 100 < 3^n \\ \Rightarrow 3^n > 100 \text{ , which is satisfied if n is at least 5.} \\ \text{Hence, Rohit must shoot the target at 5 times.} \end{split}$$

OR

When a die is thrown, sample space = {1, 2, 3, 4, 5, 6}. It has six equally likely outcomes. p = probability of an odd number $= \frac{3}{6} = \frac{1}{2}$, so $q = 1 - \frac{1}{2} = \frac{1}{2}$. As the die is thrown 5 times, so there are 5 trials i.e. n = 5. $P(\mathbf{r}) = {}^{5}C_{r}p^{r}q^{5-r} = {}^{5}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{5-r} = {}^{5}C_{r}\left(\frac{1}{2}\right)^{5}$ i. Probability of an odd number exactly 3 times = P(3) $= {}^{5}C_{3}\left(rac{1}{2}
ight)^{5} = rac{10}{32} = rac{5}{16}$ ii. Probability of an odd number atleast 4 times = $P(X \ge 4)$ = P(4) + P(5) = ${}^{5}C_{4}\left(\frac{1}{2}\right)^{5} + {}^{5}C_{5}\left(\frac{1}{2}\right)^{5}$ $= \left({}^5C_4 + {}^5C_5
ight) \left({1\over 2}
ight)^5 = (5+1) imes {1\over 32} = {3\over 16} \ .$ iii. Probability of an odd number maximum 3 times = P (X \leq 3) = 1 - (P(4) + P(5)) = $1 - \frac{3}{16}$ (see part (ii)) $=\frac{13}{16}$ 35. FC = P × $\left(\frac{(1+r)^{nt}-1}{r}\right)$ 2,00,000 = P × $\left(\frac{(1+0.015)^{4\times10}-1}{0.015}\right)$ Now, calculate the value inside the parentheses: $(1.015)^{40}$ - 1 = 1.8140 - 1 = 0.8140

$$2,00,000 = P \times \left(\frac{0.8140}{0.015}\right)$$

Now, calculate the value inside the second set of parentheses: $\frac{0.8140}{0.015} \approx 54.267$ Now, solve for P:

 $P = \frac{2,00,000}{54.267}$

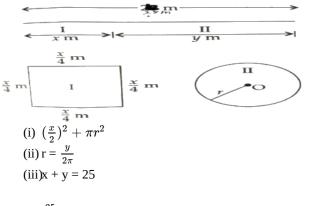
P ≈ ₹ 3,684.81

So, Anil must set aside approximately \gtrless 3,684.81 at the end of each quarter for 10 years to accumulate \gtrless 2,00,000 with a 6% quarterly compounded interest rate.

Section E

36. Read the text carefully and answer the questions:

A piece of wire of length 25 cm is to be cut into pieces one of which is to bent into the form of a square and other into the form of a circle.



 $\frac{25\pi}{\pi+4}$

OR

37. Read the text carefully and answer the questions:

EMI or equated monthly installment, as the name suggests, is one part of the equally divided monthly outgoes to clear off an outstanding loan within a stipulated time frame. The EMI is dependent on multiple factors, such as:

- Principal borrowed
- Rate of interest
- Tenure of the loan
- Monthly/annual resting period

For a fixed interest rate loan, the EMI remains fixed for the entire tenure of the loan, provided there is no default or part-payment in between. The EMI is used to pay off both the principal and interest components of an outstanding loan.

Example:

A person amortizes a loan of ₹1500000 for renovation of his house by 8 years mortgage at the rate of 12% p.a. compounded monthly.

 $(\text{Given } (1.01)^{96} = 2.5993, (1.01)^{57} = 1.7633)$

(i) ₹24379.10

(ii) ₹ 1055326.20

(iii)₹ 10553.26

₹ 13825.84

OR

38. i. The point A(5, 10) lies on the equation y - 2x = 0, therefore the equation of line OA is y - 2x = 0.

ii. Point on line BC i.e., C(0, 2) lies on the equation y - 2x = 2, therefore equation of line BC is y - 2x = 2.

iii. Point B is the intersection point of line BC and BD.

So, substituting x = 5 in y - 2x = 2, we get y = 12

Thus, required coordinates are (5, 12).

OR

The required constraints for L.P.P. are

$$\begin{split} y &\geq 2x \\ y - 2x &\leq 2 \\ x &\leq 5 \\ x &\geq 0, y \geq 0 \end{split}$$

i. Maximum quantity of flour that can be used by bakery = 5 kg $\,$

 $\Rightarrow 200x + 100y \le 5000$

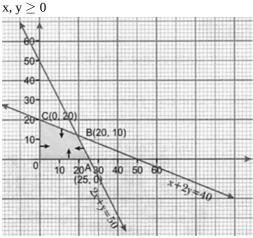
 $\Rightarrow 2x + y \leq 50$

ii. Maximum quantity of fat that can be used by bakery = 1 kg

 $\Rightarrow 25x + 50y \le 1000$

$$\Rightarrow$$
 x + 2y \leq 40

- iii. Total No. of cake of first type = x
 - Total No. of cake of second type = y
 - \therefore Total no. of cakes = x + y
 - $\therefore Z = x + y$
- iv. We have
 - Z = x + y, which is to be maximise under constraints
 - $2x+y\leq 50$
 - $x + 2y \leq 40$



Here, OABC is the feasible region which is bounded.

The co-ordinates of comer points are O(0,0), A (25, 0), B (20,10), C(0, 20)

Now we evaluate Z at each corner points.

Comer Point	$\mathbf{Z} = \mathbf{x} + \mathbf{y}$
O(0, 0)	0
A(25, 0)	25
B (20, 10)	$30 \leftarrow Maximum$
C(0, 20)	20

Hence, maximum no. of cakes = 30

v. From above table we get

Maximum number of cakes are 30

x = 20 and y = 10

i.e. No. of first kind of cakes = 20

No. of second kind of cakes = 10