CHAPTER-10 Vector algebra

One mark problem

1. Find the magnitude of the vector $\vec{a} = \hat{i} + \hat{j} + k$. [K]]
2. Find the magnitude of the vector $\vec{a} = 2\hat{i} - 7\hat{j} - 3\hat{k}$. [K]]
3. Find the magnitude of the vector $\vec{a} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$. [K]]
4.Define collinear vectors.	[]
5.Define negative of a vector. [K]
6.Define a unit vector. [K]
7.Define a null vector. [K	[]
8.Define cointial vector. [K]	
9.Define position vector of a point. [K]	
10.When the two vectors are said to be equal. [K]]
11.Write two different vectors having same magnitude.[U	J]
12.Write two different vectors having same direction.[U]]
13. Find the values of x and y so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal. [K]]
14.Find the unit vector in the direction of the $\vec{a} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$ [U	J]
15.Find the unit vector in the direction of the $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ [U	J]
16. If \vec{a} is a non zero vector of magnitude a and $\lambda \vec{a}$ is a unit vector , find the value of λ . [K	[]
17. For what value of λ , the vectors $\vec{a} = 2\hat{\imath} - 3\lambda\hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$ are perpendicular to each	
other? [U	J]
18. For what value of λ , is the vector $\frac{2}{3}\hat{\iota} - \lambda\hat{j} + \frac{2}{3}\hat{k}$ a unit vector? [U	J]
19. Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector. [U	[ו
20.Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear. [U	J]
21. If $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear then find a. [U	J]
22. Write the vector joining the points A(2,3,0) and B(-1,-2,-4). [U]]
23. Find the angle between two vectors $ec{a}$ and $ec{b}$ with magnitude $\sqrt{3}$ and 2 respectively and	
$\vec{a} \cdot \vec{b} = \sqrt{6}.$	J]
24.If $\vec{a} = x\hat{i} + 2\hat{j} - z\hat{k}$ and $\vec{b} = 3\hat{i} - y\hat{j} + \hat{k}$ are two equal vectors, then write the value of x+y+z.[U]	
25.Find the direction cosines of the vector $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$. [U]]

26. Write the scalar components of the vector joining the points $A = (x_1, y_1, z_1)$ and

$B = (x_2, y_2, z_2).$	[K]
27. If vector $\overrightarrow{AB} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{OB} = 3\hat{i} - 4\hat{j} + 4\hat{k}$, find the position vector \overrightarrow{OA} .	[U]
28. Find the scalar components of vector with initial point $(2,1)$ and terminal point $(-7,5)$.	
29. Find the unit vector in the direction of $\vec{a} + \vec{b}$, where $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} - \hat{k}$.	[U]
30. Find the position vector of a point R which divides the line joining two points P and Q whose	
position vectors are $\hat{i}+2\hat{j}\cdot\hat{k}$ and $\hat{-i}+\hat{j}+\hat{k}$ respectively, in the ratio 2 : 1 internally.	[U]
31.Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and	
Q (4, 1, -2).	[U]
32.Show that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$	[U]
33.Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX , OY and OZ.	[U]
Two mark problems:	
1. Find the angle between the vectors $\vec{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.	[U]
2. Find angle between the vectors $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$.	[U]
3. If $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular.	
4. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the an	gle
between them is 60° and their scalar product is $\frac{1}{2}$.	[U]
5.Find $ \vec{x} $, if for a unit vector \vec{a} , $(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 12$	[U]
6. If $\left \vec{a} + \vec{b}\right = \left \vec{a} - \vec{b}\right $, prove that \vec{a} and \vec{b} , are perpendicular.	[U]
7. Find $ \vec{b} $, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $ \vec{a} = 8 \vec{b} $.	
8. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$.	
[U]	
9.Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$. [U]	
10.If two vectors \vec{a} and \vec{b} such that $ \vec{a} =2$, $ \vec{b} =3$ and $\vec{a}\cdot\vec{b}=4$, find $ \vec{a}\cdot\vec{b} $. [U]	
11.If $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{k}$, then find $ 2\vec{b} \times \vec{a} $ [U]	
12. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i}$.	ĵ+3k
and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.	
[U] 10 5 - 14	
13.Find the area of a parallelogram whose adjacent sides are given by the vectors $a = 3i + j + 4k$ a $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.[U]	and

14. Find the area of the parallelogram whose adjacent sides determine by the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.[U] 15. Find the area of the triangle whose adjacent sides are determined by the vectors $\vec{a} = -2\hat{i} - 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - \hat{k}$.[U] 16.Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$, $|\vec{b}|=\frac{\sqrt{2}}{3}$ and $\vec{a}\times\vec{b}$ is a unit vector.Find the angle between \vec{a} and \vec{b} [U] 17. Find λ and μ , if $(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+\lambda\hat{j}+\mu\hat{k})=\vec{0}$. [U] 18. If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ? 19. Show that the points A(-2,3,5), B(1,2,3) and C(7,0, -1) are collinear. [U] 20. Show that the points A(1,2,7), B(2,6,3) and C(3,10, -1) are collinear. [U] 21. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} . 22. If either vector $\vec{a} = 0$ or $\vec{b} = 0$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example. 23.Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ [U] 24. Find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5) [U] 25. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector

parallel to its diagonal.

26.Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k} \text{ and } \vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}.$ [U]

27. Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ [U]

[U]

Three mark problems:

1. Show that the position vector of the point P, which divides the line joining the points A and B

having the position vectors \vec{a} and \vec{b} internally in the ratio m:n is $\frac{mb + na}{m+n}$

[A]

2. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$,

 $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. [U]

- 3. Find λ , if the vectors $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} \hat{k}$ and $\vec{c} = \lambda\hat{i} + 7\hat{j} + 3\hat{k}$ are coplanar. [U]
- 4.Show that the four points A, B, C and D with position vectors $4\hat{i}+5\hat{j}+\hat{k}$, $-\hat{j}-\hat{k}$, $3\hat{i}+9\hat{j}+4\hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar. [U]
- 5.Find λ , such that the four points A (3, 2, 1), B (4, λ , 5), C (4, 2, -2) and D (6, 5, -1) are coplanar. [U]

6.Show that the four points with position vectors $4\hat{i}+8\hat{j}+12\hat{k}$, $2\hat{i}+4\hat{j}+6\hat{k}$, $3\hat{i}+5\hat{j}+4\hat{k}$ and

 $5\hat{i}+8\hat{j}+5\hat{k}$ are coplanar.

[U]

7.Prove that $[\vec{a} \ \vec{b} \ \vec{c} + \vec{d}] = [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{d}]$ [U]

- 8.Prove that $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$ [U]
- 9.Show that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar if $\vec{a} \cdot \vec{b}$, $\vec{b} \cdot \vec{c}$ and $\vec{c} \cdot \vec{a}$ are coplanar. [U]
- 10. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. [U]

11. Show that the points $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$ and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$ are the vertices of a

right angled triangle

- 12.If the vertices A, B and C of a triangle are (1,2,3), (-1,0,0) and (0,1,2) respectively, then find the $\angle ABC \cdot [U]$
- 13. Three vectors \vec{a} , $\vec{b} \otimes \vec{c}$ satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4 \otimes |\vec{c}| = 2$. [U]
- 14. Find the vector of magnitude 5 units and parallel to the resultant of the vectors

 $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ and $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$

[U]

15. If \vec{a} , \vec{b} & \vec{c} are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ & each vector is orthogonal to sum of the other two vectors then find $|\vec{a} + \vec{b} + \vec{c}|$.

16.If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k} \otimes \hat{i} - 6\hat{j} - \hat{k}$ are the position vectors of points A,B,C & D respectively then find the cosine angle between $\overrightarrow{AB} \otimes \overrightarrow{CD}$.

[U]

17.If $\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath} - 2\hat{k} \& \vec{c} = \hat{\imath} + 3\hat{\jmath} - \hat{k}$ such that \vec{a} is perpendicular to $(\lambda \vec{b} + \vec{c})$ then find λ .

[U]

18. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$, $\hat{i} - 2\hat{j} - 3\hat{k}$ then find the unit vector parallel to its diagonal. Also find area of the parallelogram.

[U]

19. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k} \otimes \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ . [U]

20. If $\hat{i}, \hat{j}, \hat{k}$ are mutually perpendicular unit vectors , $\vec{\alpha} = 3\hat{i} - \hat{j}, \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$. [U]

21.If $\vec{a} = \hat{\imath} + \hat{\jmath} - \hat{k}$, $\vec{b} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$ & $\vec{c} = -\hat{\imath} + 2\hat{\jmath} - \hat{k}$ then find the unit vector perpendicular to both $\vec{a} + \vec{b} \otimes \vec{b} + \vec{c}$.

22. If $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 7\hat{k} \otimes \vec{c} = 2\hat{\imath} - \hat{\jmath} + 4\hat{k}$ then find a vector \vec{d} which is perpendicular to both $\vec{a} \otimes \vec{b}$ and $\vec{c} \cdot \vec{d} = 15$. [U]

23. If $\vec{a}, \vec{b} \otimes \vec{c}$ are mutually perpendicular vectors of equal magnitudes then prove that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to $\vec{a}, \vec{b} \otimes \vec{c}$. [U]