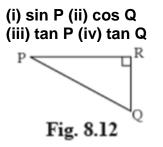
Practice set 8.1

Q. 1. In the Fig. 8.12, $\angle R$ is the right angle of $\triangle PQR$. Write the following ratios.



Answer : For any right-angled triangle,

 $sin\theta$ = Opposite side Side/Hypotenuse

cosθ = Adjacent sideSide/Hypotenuse

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$

= Adjacent sideSide/Opposite side Side

 $\sec\theta = 1/\cos\theta$

= Hypotenuse/Adjacent sideSide

 $\csc\theta = 1/\sin\theta$

= Hypotenuse/Opposite side Side

In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So for $\angle P$,

Opposite side Side = QR

Adjacent sideSide = PR

So, for $\angle Q$,

Opposite side Side = PR

Adjacent sideSide = QR

In general for the side Opposite side to the 90° angle is the hypotenuse.

So, for \triangle PQR, hypotenuse = PQ

(i) sin P = Opposite side Side/Hypotenuse

= QR/PQ

(ii) cos Q = Adjacent sideSide/Hypotenuse

= QR/PQ

- (iii) $\tan P = \sin\theta/\cos\theta$
- = Opposite side Side/Adjacent sideSide

= QR/PR

(iv) $\tan Q = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

= PR/QR

Q. 2. In the right angled ΔXYZ , $\angle XYZ = 90^{\circ}$ and a,b,c are the lengths of the sides as shown in the figure. Write the following ratios,

```
(i) sin X (ii) tan Z
(iii) cos X (iv) tan X.
Y
a
Z
```

Fig. 8.13

Answer : For any right-angled triangle,

sinθ = Opposite side Side/Hypotenuse

cosθ = Adjacent Side/Hypotenuse

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite Side/Adjacent Side

In the given triangle let us understand, the Opposite side and Adjacent side

So for $\angle X$,

Opposite Side = YZ = a

Adjacent Side = XY = b

So for $\angle Z$,

Opposite Side = XY = b

Adjacent Side = YZ = a

In general for the side Opposite side to the 90° angle is the hypotenuse.

So for \triangle XYZ, hypotenuse = XZ = c

(i) sin X = Opposite side Side/Hypotenuse

= YZ/XZ

= a/c

(ii) $\tan Z = \sin\theta/\cos\theta$

= Opposite Side/Adjacent Side

= XY/YZ

= b/a

(iii) cos X= Adjacent Side/Hypotenuse

= XY/XZ

= **b/c**

- (iv) $\tan X = \sin\theta/\cos\theta$
- = Opposite Side/Adjacent Side

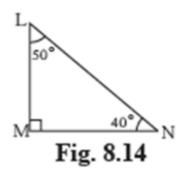
= YZ/XY

= a/b

Q. 3. In right angled Δ LMN, \angle LMN =90⁰, \angle L = 50⁰ and \angle N = 40⁰

write the following ratios.

(i) sin 50° (ii) cos 50° (iii) tan 40° (iv) cos 40°



Answer : For any right-angled triangle,

 $sin\theta$ = Opposite side Side/Hypotenuse

 $\cos\theta$ = Adjacent sideSide/Hypotenuse

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$

= Adjacent sideSide/Opposite side Side

 $\sec\theta = 1/\cos\theta$

= Hypotenuse/Adjacent sideSide

 $\csc\theta = 1/\sin\theta$

= Hypotenuse/Opposite side Side

In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So for \angle 50°,

Opposite side Side = MN

Adjacent sideSide = LM

So for $\angle 40^{\circ}$,

Opposite side Side = LM

Adjacent sideSide = MN

In general, for the side Opposite side to the 90° angle is the hypotenuse.

```
So, for \Delta LMN, hypotenuse = LN
```

(i) sin 50° = Opposite side Side/Hypotenuse

= MN/LN

(ii) cos 50° = Adjacent sideSide/Hypotenuse

= LM/LN

(iii) $\tan 40^\circ = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

= LM/MN

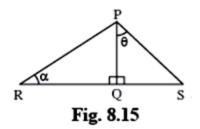
(iv) cos 40° = Adjacent sideSide/Hypotenuse

= MN/LN

Q. 4 In the figure 8.15 \angle PQR = 90⁰, \angle PQS = 90⁰, \angle PRQ = α and \angle QPS = θ Write the following trigonometric ratios.

i. sin α , cos α , tan α

ii. sin θ , cos θ , tan θ



Answer : For any right-angled triangle,

 $sin\theta$ = Opposite side Side/Hypotenuse

cosθ = Adjacent sideSide/Hypotenuse

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$

= Adjacent sideSide/Opposite side Side

 $\sec\theta = 1/\cos\theta$

= Hypotenuse/Adjacent sideSide

 $\csc\theta = 1/\sin\theta$

= Hypotenuse/Opposite side Side

(i) In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So, for Δ PQR,

So, for $\angle \alpha$,

Opposite side Side = PQ

Adjacent sideSide = QR

In general for the side Opposite side to the 90° angle is the hypotenuse.

So, for \triangle PQR, hypotenuse = PR

sin α = Opposite side Side/Hypotenuse

= PQ/PR

 $\cos \alpha$ = Adjacent sideSide/Hypotenuse

= QR/PR

 $\tan \alpha = \sin \theta / \cos \theta$

= Opposite side Side/Adjacent sideSide

= PQ/QR

(ii) In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So for Δ PQS,

So for $\angle \theta$,

Opposite side Side = QS

Adjacent sideSide = PQ

In general for the side Opposite side to the 90° angle is the hypotenuse.

So for \triangle PQS, hypotenuse = PS

 $sin\theta$ = Opposite side Side/Hypotenuse

= QS/PS

 $\cos\theta$ = Adjacent sideSide/Hypotenuse

= PQ/PS

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite side Side/Adjacent sideSide

= QS/PQ

Practice set 8.2

Q. 1. In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

sin θ		$\frac{11}{61}$		$\frac{1}{2}$				$\frac{3}{5}$	
cos θ	$\frac{35}{37}$				$\frac{1}{\sqrt{3}}$				
tan θ			1			$\frac{21}{20}$	$\frac{8}{15}$		$\frac{1}{2\sqrt{2}}$

Answer :

Sinθ	$\frac{12}{37}$	$\frac{11}{61}$	$\frac{1}{\sqrt{2}}$	1⁄2	$\frac{\sqrt{2}}{\sqrt{3}}$	$\frac{21}{29}$	$\frac{8}{17}$	$\frac{3}{5}$	$\frac{1}{3}$
Cosθ	$\frac{35}{37}$	$\frac{60}{61}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\frac{20}{29}$	$\frac{15}{17}$	4 5	$\frac{2\sqrt{2}}{3}$
Tanθ	$\frac{12}{35}$	$\frac{11}{60}$	1	$\frac{1}{\sqrt{3}}$	$\frac{\sqrt{2}}{1}$	$\frac{21}{20}$	$\frac{8}{15}$	$\frac{3}{4}$	$\frac{1}{2\sqrt{2}}$

For first column:

Sinθ	12
	37
Cosθ	35
	37
Tanθ	12
	35

 $\cos\theta = 35/37$

Adjacent side= 35,

Hypotenuse = 37

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

Opposite side² = Hypotenuse² - Adjacent²

= 37² - 35²

= 1369 - 1225

Opposite side² = 144

Opposite side = 12

For second column:

Sinθ	$\frac{11}{(1)}$
Cosθ	61 60
	61
Tanθ	11
	60

Opposite side = 11

Hypotenuse = 61

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

```
Adjacent^2 = Hypotenuse^2 - Opposite side^2
```

= 61² - 11²

= 3721 – 121

 $Adjacent^2 = 3600$

Adjacent side= 60

For third column:

Sinθ	$\frac{1}{\sqrt{2}}$
Cosθ	$\frac{1}{\sqrt{2}}$
Tanθ	1

Opposite side = 1

Adjacent side= 1

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

= 1 + 1

Hypotenuse² = 2

Hypotenuse = $\sqrt{2}$

For fourth column:

Sinθ	$\frac{\sqrt{2}}{\sqrt{3}}$
Cosθ	$\frac{1}{\sqrt{3}}$
Tanθ	$\frac{\sqrt{2}}{1}$

Opposite side = 1

Hypotenuse = 2

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

 $Adjacent^2 = Hypotenuse^2 - Opposite side^2$

 $= 2^2 - 1^2$

= 4 - 1

Adjacent² = 3

Adjacent side= $\sqrt{3}$

For fifth column:

Sinθ	$\frac{\sqrt{2}}{\sqrt{3}}$
Cosθ	$\frac{1}{\sqrt{3}}$
Tanθ	$\frac{\sqrt{2}}{1}$

Adjacent side= 1

Hypotenuse = $\sqrt{3}$

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

Opposite side² = Hypotenuse² - Adjacent²

= (√3)² - 1²

= 3 – 1

Opposite side² = 2

Opposite side = $\sqrt{2}$

For sixth column:

Sinθ	21
	29
Cosθ	20
	29
Tanθ	21
	20

Opposite side = 21

Adjacent side= 20

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

 $= 21^2 + 20^2$

Hypotenuse² = 841

Hypotenuse = 29

For seventh column:

Sinθ	$\frac{8}{17}$
Cosθ	$\frac{15}{17}$
Tanθ	$\frac{8}{15}$

Opposite side = 8

Adjacent side= 15

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

 $= 8^2 + 15^2$

Hypotenuse² = 289

Hypotenuse = 17

For eighth column:

Sinθ	$\frac{3}{5}$
Cosθ	$\frac{4}{5}$
Tanθ	$\frac{3}{4}$

Opposite side = 3

Hypotenuse = 5

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

Adjacent² = Hypotenuse² - Opposite side²

 $= 5^2 - 3^2$

= 25 – 9

 $Adjacent^2 = 16$

Adjacent side= 4

For ninth column:

Sinθ	$\frac{1}{3}$
Cosθ	$\frac{2\sqrt{2}}{3}$
Tanθ	$\frac{1}{2\sqrt{2}}$

Opposite side = 1

Adjacent side= $2\sqrt{2}$

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

 $= 1^2 + (2\sqrt{2})^2$

Hypotenuse² = 9

Hypotenuse = 3

Q. 2 A. Find the values of – $5\sin 30^{\circ} + 3\tan 45^{\circ}$

Answer : We know,

 $\sin 30^{\circ} = \frac{1}{2}$

$$\tan 45^\circ = 1$$

$$\Rightarrow 5\sin 30^\circ + 3\tan 45^\circ$$

$$\Rightarrow \frac{5 \times \frac{1}{2} + 3 \times 1}{\Rightarrow 2.5 + 3}$$

$$\Rightarrow 5.5$$

Q. 2 B. Find the values of -

 $\frac{4}{5}\tan^2 60^\circ + 3\sin^2 60^\circ$

Answer : We know,

 $\tan 60^\circ = \sqrt{3}$ $\sin 60^\circ = \sqrt{3/2}$ $\Rightarrow \frac{4}{5} \tan^2 60^\circ + 3 \sin^2 60^\circ$ $\Rightarrow \frac{4}{5} (\sqrt{3})^2 + 3 \left(\frac{\sqrt{3}}{2}\right)^2$ $\Rightarrow \frac{4}{5} \times 3 + 3 \times \frac{3}{4}$ $\Rightarrow \frac{12}{5} + \frac{9}{4}$ $\Rightarrow \frac{48 + 45}{20}$ = 93/20

Q. 2 C. Find the values of -

2sin 30⁰ + cos 0⁰ + 3sin 90⁰

Answer : We know,

 $\sin 30^{\circ} = 1/2$

$$\cos 0^{\circ} = 1$$

$$\sin 90^{\circ} = 1$$

$$\Rightarrow 2 \sin 30^{\circ} + \cos 0^{\circ} + 3 \sin 90^{\circ}$$

$$\Rightarrow \frac{2 \times \frac{1}{2} + 1 + 1}{\Rightarrow 1 + 1 + 1}$$

$$= 3$$

Q. 2 D. Find the values of –

tan 60

 $\sin 60 + \cos 60$

Answer : We know,

tan 60° = $\sqrt{3}$

 $\sin 60^\circ = \sqrt{3/2}$

 $\cos 60^{\circ} = 1/2$

 $\frac{\tan 60^{\circ}}{\Rightarrow \sin 60^{\circ} + \cos 60^{\circ}}$

$$\Rightarrow \frac{\sqrt{3}}{\frac{\sqrt{3}}{2} + \frac{1}{2}}$$

$$\Rightarrow \frac{2\sqrt{3}}{\sqrt{3}+1}$$

Q. 2 E. Find the values of -

 $\cos^2 45^0 + \sin^2 30^0$

Answer : We know,

 $\cos 45^{\circ} = 1/\sqrt{2}$

 $\sin 30^{\circ} = 1/2$

$$\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2$$
$$\Rightarrow \frac{1}{2} + \frac{1}{4}$$
$$\Rightarrow \frac{3}{4}$$

Q. 2 F. Find the values of -

 $\cos 60^{\circ} \times \cos 30^{\circ} + \sin 60^{\circ} \times \sin 30^{\circ}$

Answer : We know,

 $\sin 30^{\circ} = 1/2$

 $\sin 60^\circ = \sqrt{3/2}$

 $\cos 60^{\circ} = 1/2$

 $\cos 30^\circ = \sqrt{3/2}$

$$\Rightarrow \frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{\sqrt{3}}{2}$$
$$\Rightarrow \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}$$
$$\Rightarrow \frac{2\sqrt{3}}{4}$$
$$\Rightarrow \frac{\sqrt{3}}{4}$$

Q. 3. If $\sin\theta = 4/5$ then find $\cos\theta$.

Answer : We know,

 $sin\theta$ = Opposite side/Hypotenuse

Given:

 $\sin\theta = 4/5$

Opposite side = 4

```
Hypotenuse = 5
```

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

 $Adjacent^2 = Hypotenuse^2 - Opposite side^2$

 $= 5^2 - 4^2$

= 25 – 16

= 9

 $Adjacent^2 = 9$

Adjacent side= 3

 $\cos\theta$ = Adjacent side/Hypotenuse

= 3/5

Q. 4.

If
$$\cos \theta = \frac{15}{17}$$
 then find $\sin \theta$

Answer : We know,

 $\cos\theta = \text{Adjacent side/Hypotenuse}$

Adjacent side = 15

Hypotenuse = 17

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

Opposite side² = Hypotenuse² - Adjacent²

= 17² - 15²

= 289 - 225

= 64

Opposite side² = 64

Opposite side = 8

 $sin\theta$ = Opposite side /Hypotenuse

= 8/17

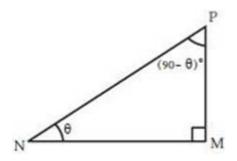
Problem set 8

Q. 1 A. Choose the correct alternative answer for following multiple choice questions.

Which of the following statements is true? A. $\sin \theta = \cos(90 \cdot \theta)$

B. $\cos \theta = \tan(90-\theta)$ C. $\sin \theta = \tan(90-\theta)$ D. $\tan \theta = \tan(90-\theta)$

Answer : Let us consider the given triangle,



In this Δ PMN,

For ∠θ,

Opposite side = PM

Adjacent side= PN

For \angle (90 – θ)

Opposite side = MN

Adjacent side = PM

 $sin\theta$ = Opposite side/Hypotenuse

= PM/PN(i)

 $\cos (90-\theta) = \text{Adjacent/Hypotenuse}$

= PM/PN (ii)

RHS of equation (i) and (ii) are equal

 $\therefore \sin\theta = \cos(90 - \theta)$

So Option A is correct.

Q. 1 B. Choose the correct alternative answer for following multiple choice questions.

Which of the following is the value of sin 90°?

A.
$$\frac{\sqrt{3}}{2}$$

B. 0
C.
$$\frac{1}{2}$$

D. 1

Answer : We know that the value of $\sin 90^\circ = 1$

So option D is correct.

Q. 1 C. Choose the correct alternative answer for following multiple choice questions.

 $2\tan 45^{\circ} + \cos 45^{\circ} - \sin 45^{\circ} =?$

A. 0

B. 1

C. 2

D. 3

Answer : We know that,

tan $45^\circ = 1$ We also know that $\cos 45^\circ = \sin 45^\circ$ So, $\Rightarrow 2 \times 1 + \cos 45^\circ - \cos 45^\circ$ = 2

So the correct option is C.

Q. 1 D. Choose the correct alternative answer for following multiple choice questions.

 $\frac{\cos 28^{\circ}}{\sin 62^{\circ}} = ?$ A. 2
B. -1
C. 0
D. 1

Answer : We know the identity that,

 $\sin\theta = \cos(90 - \theta)$

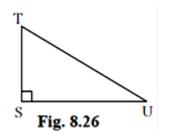
 $\sin 62^\circ = \cos (90 - 62)$

= cos 28°

Therefore [cos 28°/cos 28°] = 1

So option D is correct.

Q. 2. In right angled Δ TSU, TS = 5, \angle S = 90⁰, SU =12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.



Answer :

By applying Pythagoras theorem to given triangle we have,

 $TU^2=ST^2+SU^2$

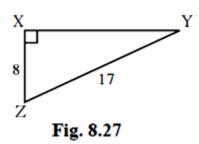
 $TU^2 = 5^2 + 12^2$

 $TU^2 = 25 + 144$

TU²=169

$TU=13Now,sinT = \frac{SU}{TU}$	$=\frac{12}{13}$
$^{\rm cosT} = \frac{ST}{TU} = \frac{5}{13}$	
$^{tanT} = \frac{SU}{ST} = \frac{12}{5}$	
$\mathrm{Similarly}, \sin U = \frac{5}{13}$	
$\cos U = \frac{12}{13}$	
$\tan U = \frac{5}{12}$	

Q. 3. In right angled Δ YXZ, \angle X = 90⁰, XZ = 8cm, YZ =17cm, find sin Y, cos Y, tan Y, sin Z, cos Z, tan Z.



Answer : For any right-angled triangle,

 $sin\theta$ = Opposite side /Hypotenuse

 $\cos\theta$ = Adjacent side/Hypotenuse

 $\tan\theta = \sin\theta/\cos\theta$

= Opposite side/Adjacent side

 $\cot\theta = 1/\tan\theta$

= Adjacent side/Opposite side

 $\sec\theta = 1/\cos\theta$

= Hypotenuse/Adjacent side

 $\csc\theta = 1/\sin\theta$

= Hypotenuse/Opposite side

In the given triangle let us understand, the Opposite side and Adjacent sides.

So for $\angle Y$,

Opposite side = XZ =8

Adjacent side= XY

So for $\angle Z$,

Opposite side = XY

Adjacent side = XZ = 8

In general for the side Opposite side to the 90° angle is the hypotenuse.

So for Δ TSU, By Pythagoras Theorem $YZ^2 = XZ^2 + XY^2$ $XY^2 = 17^2 - 8^2$ = 289 - 64 = 225 XY = 15(i) sin Y = Opposite side/Hypotenuse = XZ/YZ

- = 8/17
- (ii) cos Y = Adjacent side/Hypotenuse
- = XY/YZ
- = 15/17
- (iii) $\tan Y = \sin\theta/\cos\theta$
- = Opposite side/Adjacent side
- = XZ/XY
- = 8/15
- (i) sin Z = Opposite side/Hypotenuse
- = XY/YZ
- = 15/17
- (ii) cos Z = Adjacent side/Hypotenuse
- = XZ/YZ
- = 8/17

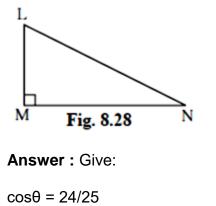
(iii) $\tan Z = \sin\theta/\cos\theta$

= Opposite side/Adjacent side

= XZ/XY

= 8/15

Q. 4. In right angled Δ LMN, if $\angle N = \theta$, $\angle M = 90^{\circ}$, $\cos\theta = 24/25$ find $\sin\theta$ and $\tan\theta$ Similarly, find $(\sin^2\theta)$ and $(\cos^2\theta)$.



 $\cos\theta$ = Adjacent side/Hypotenuse

Adjacent side = 24

Hypotenuse = 25

By Pythagoras Theorem

Hypotenuse² = Opposite side² + Adjacent²

Opposite side² = Hypotenuse² - Adjacent²

 $= 25^2 - 24^2$

= 625 - 576

= 49

Opposite side² = 49

Opposite side = 7

 $sin\theta$ = Opposite side/Hypotenuse

= 7/25 tan θ = sin θ /cos θ = Opposite side/Adjacent side = 7/24 sin² θ = (7/25)² = 49/625 cos² θ = (24/25)² = 576/625 Q. 5. Fill in the blanks.

i.
$$\sin 20^\circ = \cos 0^\circ$$

ii. $\tan 30^\circ \times \tan 0^\circ = 1$
iii. $\cos 40^\circ = \sin 0^\circ$

Answer : i. We know the following identity,

 $\sin\theta = \cos(90 - \theta)$

So sin $20^{\circ} = \cos(90 - 20)$

 $\therefore \sin 20^\circ = \cos 70^\circ$

ii. We know that,

Let the unknown angle be $\boldsymbol{\theta}$

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
$$\tan \theta = \frac{1}{\tan(30^{\circ})}$$
$$= \frac{1}{\frac{1}{\sqrt{3}}}$$
$$\tan \theta = \sqrt{3}$$
$$\theta = \tan^{-1}(\sqrt{3})$$
$$\therefore \theta = 60^{\circ}$$
$$\text{iii. We know that,}$$
$$\cos \theta = \sin (90 \cdot \theta)$$

 $\cos 40^\circ = \sin (90 - 40)$