CUET (UG)

Physics Sample Paper - 5

Solved

Time	Allowed: 45 minutes	Maximum Ma	rks: 200
Gener	1. The test is of 45 Minutes duration. 2. The test contains 50 questions out of 3. Marking Scheme of the test: a. Correct answer or the most approprious. Any incorrectly marked option will c. Unanswered/Marked for Review w	be given minus one mark (-1).	
4	•	any 40 questions	
1.	The dielectric constant K of an insulator	r can be:	[5]
	a) 5	b) 0.5	
	c) 0	d) -1	
2.	Electric force between two charged spheres is 18 units. If the distance between centres of the sphere is tripled, the electric force will be		[5]
	a) 2 units	b) 54 units	
	c) 3 units	d) 6 units	
3.	Which one of the following is the unit of electric charge?		[5]
	a) Newton	b) Coulomb	
	c) $\frac{\text{Coulomb}}{\text{volt}}$	d) Volt	
4.	The dielectric constant for metal is:		[5]
	a) 100	b) infinite	
	c) 1000	d) zero	
5.	When a capacitor is connected to a batte	ery,	[5]
	a) a current flows in the circuit for sometime and then decreases to zero	b) none of these	

	c) the current keeps on increasing	d) no current flows in the circuit at all	
6.	A variable capacitor is connected to a 20 $2\mu F$ to $X\mu F$, the decrease in energy of the second se	00 V battery. If its capacitance is changed from the capacitor is	[5]
	a) $1\mu\mathrm{F}$	b) $3\mu\mathrm{F}$	
	c) $4\mu\mathrm{F}$	d) $2\mu\mathrm{F}$	
7.	The potential difference across a cell in current of 4 A is drawn from it. The inte	an open circuit is 8 V. It falls to 4 V when a rnal resistance of the cell is:	[5]
	a) 4Ω	b) 1Ω	
	c) 2Ω	d) 3Ω	
8.	A current of 0.8 A flows in a conductor conductor will be	of 40 Ω for 1 minute. The heat produced in the	[5]
	a) 1640 J	b) 1445 J	
	c) 1569 J	d) 1536 J	
9.	The figure shows variation of current (I) device in which an alternating current fl) with time (t) in four devices P, Q, R and S. The ows is:	[5]
	a) P	b) S	
	c) R	d) Q	
10.	A positive charge is moving upward in a magnetic field that is towards the north. The particle will be deflected towards:		[5]
	a) east	b) west	
	c) north	d) south	
11.	When a charged particle enters in a unif	form magnetic field, its kinetic energy.	[5]

	a) decreases	b) becomes zero	
	c) remains constant	d) increases	
12.	A magnetic field:		[5]
	a) always exerts a force on a charged particle	b) exerts a force, if the charged particle is moving along the magnetic field line	
	c) exerts a force, if the charged particle is moving across the magnetic field line	d) never exerts a force on charged particle	
13.	A proton and an α -particle follow the same Their kinetic energies are in the ratio:	ne circular path in a transverse magnetic field.	[5]
	a) 1:4	b) $1:\sqrt{2}$	
	c) 1:1	d) 1:2	
14.	Magnetic field due to a magnet 2 cm long 10 cm from each pole is	having a pole strength of 100 Am at a point	[5]
	a) $8 \times 10^{-4} T$	b) $4 imes 10^{-5} T$	
	c) $2 imes 10^{-5} T$	d) $2 imes 10^{-4} T$	
15.	A closely wound solenoid of 800 turns and current of 3.0 A. What is its associated ma	d area of cross section $2.5 \times 10^{-4} \text{m}^2$ carries a agnetic moment?	[5]
	a) 0.4 J/T	b) 0.8 J/T	
	c) 0.6 J/T	d) 0.5 J/T	
16.	According to Gauss's law for magnetism,		[5]
	$\overset{ ext{a)}}{\oint ec{B}. \overset{ o}{ds}} = 0$	$\stackrel{ ext{b)}}{\int ec{B}. \overset{ o}{ds}} = 0$	
	$\overset{ ext{c})}{\oint ec{B}. \overset{ o}{ds}} = \mu_0$	$\stackrel{ ext{d})}{\int ec{B}. \stackrel{ ext{d}s}{ds}} = \mu_0$	
17.	The universal property among all substance	ces is	[5]
	a) ferromagnetism	b) non-magnetism	
	c) diamagnetism	d) paramagnetism	

18.	The μ_0 is also known as :		[5]
	a) magnetic dipole	b) Absolute Permittivity	
	c) Magnetic dipole moment	d) Magnetic flux	
19.		tting it perpendicular to its length. The time rm magnetic field B. Then, the time period of	[5]
	a) None of these	b) $\frac{T_o}{4}$	
	c) $\frac{T_o}{3}$	d) $\frac{T_o}{2}$	
20.	A closely wound solenoid of 2000 turns as carrying a current of 4.0 A, is suspended the horizontal plane. What is the magnetic model of the control of the c	hrough its centre allowing it to turn in a	[5]
	a) 3.18Am^2	b) 2.08 Am ²	
	c) 1.28Am^2	d) 4.38 Am^2	
21.	The intensity of magnetic field is H and the moment of a magnet is M Maximum potential energy is:		[5]
	a) 4 MH	b) 3 MH	
	c) MH	d) 2 MH	
22.		nen current in another near by coil becomes 10 al induction between the two coils will be:	[5]
	a) 100 mH	b) 1 mH	
	c) 1000 mH	d) 10 mH	
23.		lane in a region, where the magnetic field is where B_0 is constant. The magnitude of flux	[5]
	$^{a)}$ 4 B ₀ L ² Wb	b) $_{3 B_0 L^2 Wb}$	
	c) $\sqrt{29}B_oL^2 ext{Wb}$	b) $_{3} B_{0}L^{2}Wb$ d) $_{2} B_{0}L^{2}Wb$	

	a uniform magnetic field of induction IT. The magnetic field is withdrawn in 0.1 s. It is found that the induced emf across the loop is 125 mV. The angle θ is:		
	a) 30°	b) 60°	
	c) ₉₀ 0	d) 45°	
25.	Two inductors each of inductance L are joinductance?	ined in parallel. What is their equivalent	[5]
	a) 2 L	b) zero	
	c) L	d) $\frac{L}{2}$	
26.	The impedance of a series LCR circuit is		[5]
	a) $R + X_L + X_C$	b) $\sqrt{rac{1}{ ext{X}_{ ext{C}}^2} + rac{1}{ ext{X}_{ ext{L}}^2} + ext{R}^2}$	
	$^{\mathrm{c)}}\sqrt{X_L^3-X_C^2+R^2}$	d) $\sqrt{R^2+\left(X_L-X_C ight)^2}$	
27.	The power dissipated in an LCR series cir	cuit connected to an a.c. source of emf ε is	[5]
	$a) \frac{\varepsilon^2 R}{\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]}$	b) $\frac{\varepsilon^2 \left[\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2} \right]}{R}$	
	$c)\frac{\varepsilon^2 R}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$	$\mathrm{d}) \frac{\varepsilon^2 \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{R}$	
28.	-	power supply varies with time according to 0 V. Root-mean-square potential difference is	[5]
	a) 35.8 V	b) 31.8 V	
	c) 37.8 V	d) 33.8 V	
29.	The current flowing in a step down transferis	ormer 220 V to 22 V having impedance 220Ω	[5]
	a) 0.1 A	b) 0.1 mA	
	c) 1 A	d) 1 mA	
30.	The velocity of light is maximum in		[5]

A square loop of wire of each side 50 cm is kept so that its plane makes an angle θ with [5]

24.

	a) Vacuum	b) Diamond	
	c) Glass	d) Water	
31.	In vacuum, the wavelength of the electron	magnetic wave of frequency 5×10^{19} Hz is	[5]
	a) 6×10^{-12} m	b) $_{15} \times 10^{27} \text{m}$	
	c) 1.6×10^{11} m	d) 3×10^{-8} m	
32.	The velocity of light is equal to		[5]
	a) $\frac{\sqrt{\varepsilon_0}}{\mu_0}$	b) $\sqrt{\varepsilon_0\mu_0}$	
	c) $\frac{\varepsilon_0}{\mu_0}$	d) $\frac{1}{\sqrt{\varepsilon_0 \mu_0}}$	
33.		art and a convex lens is placed between them. I images on the screen are 40 cm apart. What	[5]
	a) 15 cm	b) 21 cm	
	c) 18 cm	d) 12 cm	
34.	An astronomical telescope of ten fold ang focal length of the objective is	rular magnification has a length of 44 cm. The	[5]
	a) 44 cm	b) 440 cm	
	c) 4 cm	d) 40 cm	
35.	The focal length of a concave mirror is f. focus. The magnification is	An object is placed at a distance x from the	[5]
	a) $\frac{f}{(f+x)}$	b) $\frac{(f+x)}{f}$	
	c) $\frac{f}{x}$	d) $\frac{x}{f}$	
36.		cm and the thickness at the centre is 3 mm. If 1.00 ms is 1.00 ms ⁻¹ , the focal length of the lens	[5]
	a) 15 cm	b) 30 cm	
	c) 20 cm	d) 10 cm	

37.	Which of the following is a dichroic crystal?		[5]
	a) Tourmaline	b) Selenite	
	c) Mica	d) Quartz	
38.	The angle of incidence at which the reflec	ted beam is fully polarized is called	[5]
	a) Critical angle	b) Malus angle	
	c) Brewster angle	d) Acute angle	
39.	The wavelength of a 1 keV photon is 1.24 photon?	\times 10 ⁻⁹ m. What is the frequency of 1 MeV	[5]
	a) 1.24×10^{18}	b) 1.24×10^{15}	
	c) 2.4×10^{20}	d) 2.4×10^{23}	
40.	When ultraviolet rays incident on metal plocurs by incidence of	ate then photoelectric effect does not occur. It	[5]
	a) X-rays	b) Light waves	
	c) Radio waves	d) Infrared rays	
41.	C	cessively incident on a metallic surface of energy of most energetic photoelectrons in the	[5]
	a) 1:2	b) 1:1	
	c) 1:4	d) 1:3	
42.	••	photo electrons from a metal surface of work f incident radiation is halved, then stopping	[5]
	a) 6.7 V	b) 1.1 V	
	c) 5 V	d) 2.5 V	
43.	During X-ray formation, if voltage is incre	eased	[5]
	a) intensity decreases	b) minimum wavelength decreases	
	c) minimum wavelength increases	d) intensity increases	

44.	The simple Bohr model cannot be directly applied to calculate the energy levels of an atom with many electrons. This is because		[5]
	a) of the electrons not being subject to a central force	b) of screening effects	
	c) the force between the nucleus and an electron will no longer be given by Coulomb's law	d) of the electrons colliding with each other	
45.	If a beam goes undeflected in Thomson's (given $E = 30 \text{ V cm}^{-1}$ and $B = 6 \times 10^{-4}$		[5]
	a) $6.5 \times 10^6 \text{ m/s}$	b) 6×10^6 m/s	
	c) $5.5 \times 10^6 \text{ m/s}$	d) 5 \times 10 ⁶ m/s	
46.	M_n and M_p represent the mass of neutron mass M has N neutrons and Z protons, th	n and proton respectively. An element having en the correct relation will be	[5]
	a) $M \sim N[M_n + M_p]$	b) $M > [NM_n + Z - M_p]$	
	c) $M = [N - M_n + Z - M_p]$	d) $M < [N - M_n + Z - M_p]$	
47.	The activity of a sample of radioactive m t_1). If its mean life is t , then	aterial is A_1 at time t_1 and A_2 at time $t_2(t_2 >$	[5]
	a) $A_2 = A_1 e^{(t_1 - t_2)/\tau}$	b) $A_1 t_1 = A_2 t_2$	
	c) $A_1 - A_2 = t_2 - t_1$	d) $A_2 = A_1 e^{(t_1/t_2)\tau}$	
48.	Isotopes have A. same number of protons B. same number of nucleons C. same number of neutrons D. same number of positrons.		[5]
	a) (C)	b) (D)	
	c) (B)	d) (A)	
49.	Hole is		[5]

a) Gap between valence band and conduction band
b) Particle similar to that of electron
conduction band
c) A vacancy created when an electron leaves a covalent bond.

50. TV set used in a typical house is
a) a channel
b) a repeater
c) a transmitter
d) a receiver

Solutions

1. **(a)** 5

Explanation: $K = \frac{E}{E'}$. For an insulator, E' < E, hence K > 1,

- $\therefore K = 5$
- 2. (a) 2 units

Explanation: The electrostatic forces are inversely proportional to the square of distance between two charged spheres so on tripling the distance, force decreases by 9 times, hence the force becomes 2 N.

- 3.
- **(b)** Coulomb

Explanation: The unit of electric charge is Coulomb (C).

- 4.
- (b) infinite

Explanation: The permittivity of metals is very high compared to the permittivity of free space. So dielectric constant for metal is infinite.

5. (a) a current flows in the circuit for sometime and then decreases to zero

Explanation: When an uncharged capacitor is connected to a battery, charges flow from the poles of the battery to the plates of the capacitor and this process continues till the potential across the capacitor attains the potential difference of the battery. The current flows in the circuit till the time the capacitor is charged and then it ceases.

6. (a) $1\mu F$

Explanation: Energy = $\frac{1}{2}CV^2$

In 1St case:
$$E_1 = \frac{1}{2} \times 2 \times 10^{-6} \times 200^2$$

$$=4 imes10^{-2}~\mathrm{J}$$

In
$$2^{nd}$$
 case: $E_2 = \frac{1}{2} \times (X) \times 10^{-6} \times 200^2 \text{ J}$

Decrease in energy = $E_1 - E_2$

or,
$$2 \times 10^{-2} = 4 \times 10^{-2} - 2 \times (X) \times 10^{-2}$$

or,
$$2 = 4 - 2X$$

$$\therefore X = 1 \mu F$$

- 7.
 - (b) 1Ω

Explanation: 1Ω

- 8.
- **(d)** 1536 J

Explanation: 1536 J

- 9.
 - **(b)** S

Explanation: S

10.

(b) west

Explanation: According to Fleming's left-hand rule, the particle will be deflected towards the west.

11.

(c) remains constant

Explanation: As the magnetic force always at right angle to the direction of motion of charged particle. So work done is zero, hence kinetic energy remains constant.

12.

(c) exerts a force, if the charged particle is moving across the magnetic field line **Explanation:** A magnetic field exerts a force on a charged particle if $F = qvB\sin\theta$ is non-zero.

13.

(c) 1:1

Explanation:
$$K=rac{1}{2}mv^2=rac{1}{2}m\left(rac{qBr}{m}
ight)^2=rac{1}{2}rac{q^2B^2r^2}{m}$$

Here r and B are same for both particles.

$$\therefore rac{K_p}{K_lpha} = rac{q_p^2}{q_lpha^2} \cdot rac{m_lpha}{m_p} = rac{e}{(2e)^2} \cdot rac{4m_p}{m_p} = 1:1$$

14.

(d)
$$2 \times 10^{-4} T$$

Explanation: Any point at equal distances from both the poles will lie on equatorial plane. Hence magnetic field at such a point will be given by

$$B_{equitorial} = rac{\mu_o}{4\pi} rac{m}{r^3} = rac{\mu_o}{4\pi} rac{q_m imes l}{r^3} \ = rac{10^{-7} imes 100 imes 2 imes 10^{-2}}{10^{-3}} = 2 imes 10^{-4} T$$

15.

(c) 0.6 J/T

Explanation: $m = NIA = 800 \times 3 \times 2.5 \times 10^{-4} = 0.6 \text{ J/T}$

16. (a) $\oint \vec{B} \cdot \vec{ds} = 0$

Explanation: Since magnetic monopoles do not exist, flux entering the closed surface is equal to flux leaving the surface. Hence net magnetic flux through a closed surface is zero.

17.

(c) diamagnetism

Explanation: Diamagnetism is a universal property among all substances.

18.

(b) Absolute Permittivity

Explanation: Absolute Permittivity

19.

(c)
$$\frac{T_o}{3}$$

Explanation: Initial time period of magnet

$$T_0 = 2\pi \sqrt{rac{ ext{I}}{ ext{MB}}}$$

I - moment of inertia of bar magnet

M- magnetic moment of bar magnet

when the magnet is cut into three equal pieces the magnetic moment of each piece of magnet becomes $=M'=\frac{M}{3}$

New moment of inertia of each magnet = $I' = \frac{I}{3^3} = \frac{I}{27}$

New time period of magnet is

$$T'=2\pi\sqrt{rac{ ext{I}'}{ ext{M}' ext{B}}}=2\pi\sqrt{rac{ ext{I}/27}{(ext{M}/3) ext{B}}} \ T'=rac{T_0}{3}$$

20.

(c)
$$1.28 \,\mathrm{Am}^2$$

Explanation:
$$m = NIA$$

$$=2000\times1.6\times10^{-4}\times4$$

$$= 1.28 \,\mathrm{Am}^2$$

21.

Explanation: $U_{max} = -2 \text{ MH } \cos 180^{\circ} = +2 \text{ MH}$

22.

Explanation:
$$M=-rac{e_2}{rac{\Delta i}{\Delta t}}=rac{100 imes 10^{-3}}{rac{10}{0.1}}=10^{-3}H$$

= 1 mH

23. **(a)**
$$4 \, \mathrm{B_0 L^2 Wb}$$

Explanation: Square lies in X-Y planes in $ar{B}$ so $ec{A} = L^2 \hat{k}$

$$\phi = B.A$$

$$= B_0(2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (L^2\hat{k}) = B_0 L^2[2 \times \hat{i} \cdot \hat{k} + 3 \times \hat{j} \cdot \hat{k} + 4 \times \hat{k} \cdot \hat{k}]$$

$$= B_0 L^2 [0 + 0 + 4] = 4B_0 L^2 Wb$$

24. (a)
$$30^{\circ}$$

Explanation:
$$\varepsilon = -rac{\phi_2 - \phi_1}{t}$$

$$125 imes 10^{-3} = -rac{0 - 1 imes 0.5 imes 0.5 imes \cos(90^\circ - heta)}{0.1}$$

$$125\times 10^{-3}=0.50\times 0.50\times \sin\theta$$

$$\sin \theta = \frac{125 \times 10^{-3}}{0.50 \times 0.50} = \frac{1}{2}$$

$$heta=30^\circ$$

25.

(d)
$$\frac{L}{2}$$

Explanation: If M is negligible, then for parallel combination of two inductors,

$$egin{aligned} L_{eq} &= rac{L_1 L_2}{L_1 + L_2} \ &= rac{L imes L}{L + L} = rac{L}{2} \end{aligned}$$

26.

(d)
$$\sqrt{R^2+\left(X_L-X_C
ight)^2}$$

Explanation: $\sqrt{R^2+(X_L-X_C)^2}$

27. **(a)**
$$\frac{\varepsilon^2 R}{\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]}$$

Explanation: The power dissipated in series LCR,

$$P=I^2R=rac{arepsilon^2}{\left|Z
ight|^2}R=rac{arepsilon^2R}{\left[R^2+\left(\omega L-rac{1}{\omega C}
ight)^2
ight]}$$

28.

(b) 31.8 V

Explanation: Maximum voltage across the terminals, V = 45 volt

Root-mean-square potential difference is,

$$V_{rms}=rac{V}{\sqrt{2}}=rac{45}{\sqrt{2}}=31.8 volt$$

29. **(a)** 0.1 A

Explanation: Current in the secondary coil is given by, $i = \frac{V_s}{Z} = \frac{22}{220} = 0.1A$

30. (a) Vacuum

Explanation: Velocity of light is maximum in vacuum and is equal to 3×10^8 m/s.

31. (a) 6×10^{-12} m

Explanation:
$$\lambda = \frac{v}{c} = \frac{3\times10^8}{5\times10^{19}} = 6\times10^{-12} \text{ m}$$

32.

(d)
$$\frac{1}{\sqrt{\varepsilon_0\mu_0}}$$

Explanation:
$$c=rac{1}{\sqrt{\mu_0 arepsilon_0}}$$

33.

(b) 21 cm

Distance between two positions of lens, $L_1L_2 = 40$ cm and OI = 100cm

Let distance of object from $L_1 = x$, therefore u = -x, hence x + 40 + x = 100 or x = 30 cm

For L_1 we have, u = -30 cm and v = 70 cm

Putting values in lens formula,

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{f} = \frac{1}{70} + \frac{1}{30}$$

On solving we get, f = +21 cm

34.

(d) 40 cm

Explanation: $L = f_o + f_e = 44$ and $|m| = \frac{f_o}{f_e} = 10$

This gives $f_o=40\mathrm{cm}$

35.

(c)
$$\frac{f}{x}$$

Explanation: u = f + x

Using mirror formula,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

Or,
$$\frac{1}{v} - \frac{1}{(f+x)} = -\frac{1}{f}$$

$$\therefore$$
 $V = -\frac{f(f+x)}{x}$

So, the magnification = $|\mathbf{m}| = \frac{v}{u} = \frac{f}{x}$

36.

(b) 30 cm

$$\mu = \frac{c}{v} = \frac{3}{2}$$

From figure, $R^2 = d^2 + (R - t)^2$

$$R^2 - d^2 = R^2 \left\{ 1 - \frac{t}{R} \right\}^2$$

 $1 - \frac{d^2}{R^2} = 1 - \frac{2t}{R}$ [neglecting higher terms]

Thus,
$$R=rac{d^2}{2t}=rac{(3)^2}{2 imes(0.3)}=rac{90}{6}=15cm$$

Now,
$$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$$

 $\frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{15}\right)$

f = 30 cm

37. (a) Tourmaline

Explanation: Tourmaline absorbs one of the doubly refracted beams to a greater extent than the other.

38.

(c) Brewster angle

Explanation: At Brewster's angle, a beam of unpolarised light falling on a transparent surface gets reflected as completely plane polarised light.

39.

(c)
$$2.4 \times 10^{20}$$

Explanation: $E_1 = \frac{hc}{\lambda_1}$ and $E_2 = h\nu_2$

$$\therefore h\nu_2 \times \frac{\lambda_1}{hc} = \frac{E_2}{E_1} \text{ or } \nu_2 = \frac{c}{\lambda_1} \cdot \frac{E_2}{E_1}$$

$$= \frac{3 \times 10^8}{1.24 \times 10^{-9}} \cdot \frac{10^6 \text{eV}}{10^3 \text{eV}}$$

$$= 2.4 \times 10^{20} \text{ Hz}$$

40. (a) X-rays

Explanation: When ultraviolet rays incident on metal plate then photoelectric effect does not occur, it occurs by incidence of X-rays since frequency of X-rays is greater than that of U-V rays.

41.

(d) 1:3

Explanation: the energy of first photon, $E_1 = 1eV$

energy of second photon, $E_2 = 2eV$

work function of the surface, W = 0.5eV

K.E. = Photon energy - Work function

$$\therefore \frac{K \cdot E_1}{K \cdot E_2} = \frac{1 - 0.5}{2 - 0.5} = \frac{0.5}{1.5} = \frac{1}{3}$$

42. **(a)** 6.7 V

Explanation: Energy of an incident photon,

$$h\nu = K_{\text{max}} + W_0 = 1.7 + 2.5 = 4.2 \text{ eV}$$

Now,
$$c = \nu \lambda = \nu' \frac{\lambda}{2} \Rightarrow \nu' = 2\nu$$

$$\therefore eV_0 = h\nu' - W_0 = 2h\nu - W_0$$

$$= 2 \times 4.2 - 2.5 = 6.7 \text{ eV}$$

$$\Rightarrow \nu_0 = 6.7 \text{ V}$$

43.

(b) minimum wavelength decreases

Explanation: As $\lambda_{\min} \propto \frac{1}{V}$ if voltage is increased, the minimum wavelength of X -rays emitted decreases.

44. (a) of the electrons not being subject to a central force

Explanation: The simple Bohr model cannot be directly applied to calculate the energy levels of an atom with many electrons because when we derive the formula for radius or the energy levels etc, we make the assumption that centripetal force is provided only by the electrostatic force of attraction by the nucleus. Hence, this will only work for single-electron atoms. In multi-electron atoms, there will also be repulsion due to other electrons. The simple Bohr model cannot be directly applied to calculate the energy levels of an atom with many electrons.

45.

(d)
$$5 \times 10^6 \text{ m/s}$$

Explanation: If a beam goes undeflected, then

$$F_E = F_M$$

$$qE = qvB$$

$$E = 30V \ cm^{-1} = 30 imes 100 V m^{-1}$$

$$B=6 imes 10^{-4} T$$

$$v = rac{E}{B} = rac{30 imes 100}{6 imes 10^{-4}} = 5 imes 10^6 m/s$$

46.

(d)
$$M < [N - M_n + Z - M_p]$$

Explanation: The mass of a nucleus is less than the sum of the masses of its constituent nucleons.

47. **(a)**
$$A_2 = A_1 e^{(t_1 - t_2)/\tau}$$

$$\begin{array}{l} \textbf{Explanation:} \ A_1 = -\frac{dN_1}{dt} = \lambda N_1 = \lambda N_0 e^{-\lambda t_1} \\ A_2 = -\frac{dN_2}{dt} = \lambda N_2 = \lambda N_0 e^{-\lambda t_2} \\ \therefore \frac{A_2}{A_1} = \frac{e^{-\lambda t_2}}{e^{-\lambda t_1}} = e^{(t_1 - t_2)\lambda} \\ A_2 = A_1 e^{(t_1 - t_2)\lambda} = A_1 e^{\frac{t_1 - t_2}{\tau}} \ \big[\tau = \frac{1}{\lambda} \big] \end{array}$$

48.

Explanation: Isoptopes have same number of protons.

49.

(c) A vacancy created when an electron leaves a covalent bond.

Explanation: A hole is the absence of an electron in a particular place in an atom.

50.

(d) a receiver

Explanation: The equipment that sends out a radio wave is known as a transmitter; the radio wave sent by a transmitter whizzes through the air—maybe from one side of the world to the other—and completes its journey when it reaches a second piece of equipment called a receiver. A **television antenna**, or **TV aerial**, is an antenna specifically designed for the reception of over-the-air broadcast television signal, which are transmitted at frequencies from about 41 to 250 MHz in the VHF band, and 470 to 960 MHz in the UHF band in different countries.