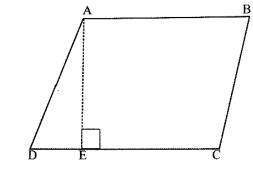
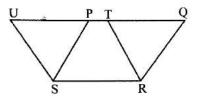
Areas of Parallelograms & Triangles

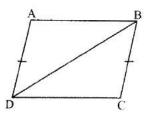


PIAD Lence

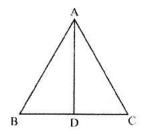
THEMATICS


FUNDAMENTALS

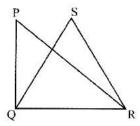
> The area of a parallelogram is the product of its base and the corresponding altitude.


Area of parallelogram $=\frac{1}{2} \times CD \times AE$

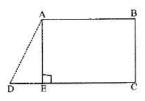
> Parallelogram on the same base and between the same parallels are equal in areas.


i.e., Area of parallelogram PQRS = Area of Parallelogram SRTU.

> A diagonal of a parallelogram divides it into two triangles of equal areas.

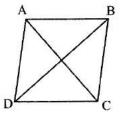

Area of $\triangle ABD$ = Area of $\triangle BCD$

> The area of a triangle is half the product of any of its side and the corresponding altitude.

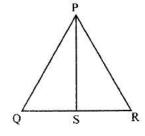


Area of $\triangle ABC = \frac{1}{2}(BC \times AD)$

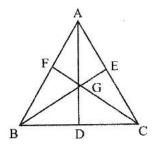
> Triangles on the same base and between the same parallel lines are equal in area.



- i.e., Area of ΔPQR = Area of ΔQRS
- > The area of trapezium is half the product of its altitude and sum of parallel lines.


Area of trapezium $ABCD = \frac{1}{2}(AB + CD) \times AE$

> The area of a rhombus is half the product of the lengths of its diagonals.


Area of Rhombus $=\frac{1}{2}AC \times BD$

> A median of a triangle divides it into two triangles of equal area.

Area of $\Delta PQS = \Delta PRS$.

- > Area of equilateral triangle is equal to $\frac{\sqrt{3}}{4}a^2$, where a is the side of the triangle.
- > If the medians of $\triangle ABC$ intersect at G, Then

Area of $\triangle AGB$ = Area of $\triangle BGC$

= Area of $\triangle AGC$.

> The formula given, by heron about the area of triangle is known as heron's formula. It is stated as Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

Where a, b, c are the sides of the triangle and s is semiperimetre. i.e., half of the perimeter of the triangle = $\frac{a+b+c}{2}$