Class XII Session 2024-25 Subject - Applied Mathematics Sample Question Paper - 9

Time Allowed: 3 hours

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with total weightage of 12 marks.
- 3. Section A: It comprises of 20 MCQs of 1 mark each.
- 4. Section B: It comprises of 5 VSA type questions of 2 marks each.
- 5. **Section C:** It comprises of 6 SA type of questions of 3 marks each.
- 6. Section D: It comprises of 4 LA type of questions of 5 marks each.
- 7. Section E: It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study.
- 8. Internal choice is provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D.You have to attempt only one of the alternatives in all such questions.

Section A

- 1. If A is a matrix of order 3 and |A| = 8, then |adj A| =
 - a) 1 b) 2³
 - c) 2⁶ d) 2

A grain wholeseller visits the granary market. While going around to make a good purchase, he takes a handful [1] of rice from random sacks of rice, in order to inspect the quality of farmers produce. The handful rice taken from a sack of rice for quality inspection is a

a) Statistic	b) Sample
c) Parameter	d) Population

3. The present value of a sequence of payment of ₹1000 made at the end of every 6 months and continuing forever, **[1]** if money is worth 8% per annum compounded semi-annually is

a) 2500	b) 15,000
c) 1000	d) 25,000

4. Linear programming of linear functions deals with:

Maximum Marks: 80

[1]

[1]

	a) Minimizing	b) Optimizing	
	c) Maximizing	d) Normalizing	
5.	If $\mathrm{A} = egin{bmatrix} -3 & x \ y & 5 \end{bmatrix}$ and A = A', then		[1]
	a) x = 5, y = -3	b) x = -3, y = 5	
	c) x = y	d) x = 1, y = 2	
6.	A dice is thrown twice, the probability of occurring of	5 atleast once is	[1]
	a) $\frac{5}{12}$	b) $\frac{35}{36}$	
	c) $\frac{11}{36}$	d) $\frac{7}{12}$	
7.	If m is the mean of Poisson distribution, then $P(r = 0)$	is given by:	[1]
	a) e	b) _m -e	
	c) e ^m	d) e-m	
8.	Integrating factor of the differential equation $\left(1-y^2 ight)$	$\left(rac{dx}{dy} + xy ight)$ = ay is	[1]
	a) $\frac{1}{\sqrt{1-y^2}}$	b) $\frac{1}{y^2 - 1}$	
	C) $\frac{1}{\sqrt{y^2 - 1}}$	d) $\frac{1}{1-y^2}$	
9.	If in a 600 m race, A can beat B by 50 m and in a 500	m race, B can beat C by 60 m. Then, in a 400 m race, A	[1]
	will beat C by:		
	a) 70 m	b) $77\frac{1}{2}$ m	
	c) 77 m	d) 81.33 m	
10.	The value of $\begin{vmatrix} 2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6 \end{vmatrix}$ is		[1]
	a) 2 ⁹	b) 2 ⁶	
	c) 2 ¹³	d) 0	
11.	A jar full of whisky contains 40% alcohol. A part of the	nis whisky is replaced by another containing 19% alcohol	[1]
	and now the percentage of alcohol is found to be 26%	. The quantity of whisky replaced is	
	a) $\frac{2}{5}$ part	b) $\frac{2}{3}$ part	
	c) $\frac{3}{5}$ part	d) $\frac{1}{3}$ part	
12.	If $x \in R$, $ x \ge -7$, then		[1]
	a) x ∈ [-7, 7]	b) x \in ($-\infty$, -7) \cup [7, ∞)	
	c) $x \in R$	d) x \in ($-\infty$, -7) \cup (7, ∞)	
13.	A tank has a leak that would empty it in 10 hours. A ta	ap is turned on which delivers 4 litre a minute into the tank	[1]

and now it emptied in 12 hours. The capacity of the tank is

a) 1800 litres	b) 648 litres
c) 1440 litres	d) 1200 litres

14.	Solution set of inequat	10115 x = 2	.y ≥ 0, 2	$x - y \leq 1$	-2, x ≥ (, y ∠ U I	5.					[1]
	a) First quadrant				b) I	Empty						
	c) Closed halfplane	2			d) l	nfinite						
15.	Corner points of the fe objective function. Th	-				(3, 0), (6,	0), (6, 8)) and (0,	5). Let z	= 4x + 6y	y the	[1]
	a) any point on the points (0, 2) and	-	ent joinii	ng the		b) the mid-point of the line segment joining the points (0, 2) and (3, 0) only						
	c) (3, 0) only				d) (0, 2) only	y					
16.	A specific characterist	specific characteristic of a sample is known as a									[1]	
	a) parameter				b) v	b) variance						
	c) statistic				d) I	opulatio	n					
17.	The value of $\int \frac{1}{x+x \log x}$	$\frac{1}{x}dx$ is										[1]
	a) log (1 + log x)	b) 2	b) $x + \log x$									
	c) x log (1 + log x)	d) 1	d) 1 + log x									
18.	For the given values 15, 23, 28, 36, 41, 46, the 3-yearly moving averages are:							[1]				
	a) 22, 29, 35, 41	b) 2	b) 24, 29, 35, 41									
	c) 24, 28, 35, 41				d) 2	22, 28, 35	, 41					
19.	Assertion (A): If A =	L	1	L 0 -	- 1							[1]
	Reason (R): If A and	B are squa	are matrio	ces of sar	me order,	then (A ·	+ B)(A +	B) is equ	ual to A ²	+ AB +]	$BA + B^2.$	
	a) Both A and R ar	e true and	R is the	correct	b) I	Both A ar	nd R are t	rue but F	R is not th	he		
	explanation of A				(correct ex	planatio	n of A.				
	c) A is true but R is	s false.			d) /	A is false	but R is	true.				
20.	Let $f(x) = x^4 - 2x^2 + 5$			-								[1]
	Assertion (A): The ra Reason (R): The grea	0	,	-	v – J							
								1.7				
	a) Both A and R ar explanation of A		R is the	correct	-	Both A ar correct ex			tis not ti	he		
	c) A is true but R is					A is false	-					
		s iuise.			Section		but IX 13	uuc.				
21.	Calculate five yearly r	noving av	erages of	the num			o have s	tudied in	a school	given be	low:	[2]
	Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
	No. of students	442	407	467	502	E10		520	507	E15	E 41	-

22. A simple interest of ₹ 1000 is paid on a certain sum of money at 10% p.a for 4 years. Find the sum.

No. of students

OR

Jyoti buys a car for which she makes down payment of ₹3,50,000 and the balance is to be paid in 3 years by monthly installments of ₹34,000 each. If the financer charges interest at the rate of 12% per annum and uses flat rate method,

[2]

find the actual price of the car.

23. By using property of definite integrals, evaluate
$$\int_{0}^{1} |2x - 1| dx$$
 [2]

24. If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$, find $3A^2 - 2B + I$
OR

Find the values of x, if $\begin{vmatrix} x+1 & x-1 \\ x-3 & x+2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix}$

In what ratio must a grocer mix two varieties of tea worth ₹ 60 per kg and ₹ 65 per kg so that by selling the [2] mixture at ₹ 68.20 per kg may gain 10%?

Section C

26. Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, [3] approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose? [Given log_e 0.989 = 0.01106 and log_e 2 = 0.6931]

OR

Solve: $(x^2 + 1)\frac{dy}{dx} + 2xy - 4x^2 = 0$ subject to the initial condition y(0) = 0.

- 27. Find the purchase price of a ₹600, 8% bond, dividends payable semi-annually redeemable at par in 5 years, if the [3] yield rate is to be 8% compounded semi-annually.
- A company suffers a loss of ₹1,000 if its product does not sell at all. Marginal revenue and Marginal cost [3] functions for the product are given by MR = 50 4x and MC = -10 + x respectively. Determine the total profit function, break-even points and the profit maximization level of output
- 29. The income of a group of 10,000 persons was found to be normally distributed with mean ₹ 750 p.m. and [3] standard deviation ₹ 50. Show that of this group about 95% had income exceeding ₹ 668 and only 5% had income exceeding ₹ 832. What was the lowest income among the richest 100?

OR

In a binomial distribution the sum and product of the mean and the variance are $\frac{25}{3}$ and $\frac{50}{3}$ respectively. Find the distribution.

30. Given below are the consumer price index numbers (CPI) of the industrial workers.

2016 2017 2019 2020 Year 2014 2015 2018 190 220 **Index number** 145 140 150 200 230

[3]

Find the best fitted trend line by the method of least squares and tabulate the trend values.

31. A random sample of 17 values from a normal population has a mean of 105 cm and the sum of the squares of [3] deviations from this mean is 1225 cm². Is the assumption of a mean of 110 cm for the normal population reasonable? Test under 5% and 1% levels of significance. Also, obtain the 95% and 99% confidence limits. (Given t_{16} (0.05) = 2.12 and t_{16} (0.01) = 2.921)

Section D

32. A manufacturer has three machines installed in his factory. Machines I and II are capable of being operated for at **[5]** most 12 hours whereas Machine III must operate at least for 5 hours a day. He produces only two items, each requiring the use of three machines. The number of hours required for producing one unit each of the items on the three machines is given in the following table:

Item Number of hours required by the machine
--

	I	II	III
А	1	2	1
В	2	1	$\frac{5}{4}$

He makes a profit of \gtrless 6.00 on item A and \gtrless 4.00 on item B. Assuming that he can sell all that he produces, how many of each item should he produce so as to maximize his profit? Determine his maximum profit. Formulate this LPP mathematically and then solve it.

OR

A farm is engaged in breeding pigs. The pigs are fed on various products grown on the farm. In view of the need to ensure certain nutrient constituents (call them X, Y and Z), it is necessary to buy two additional products, say, A and B. One unit of product A contains 36 units of X, 3 units of Y, and 20 units of Z. One unit of product B contains 6 units of X, 12 units of Y and 10 units of Z. The minimum requirement of X, Y and Z is 108 units, 36 units and 100 units respectively. Product A costs \gtrless 20 per unit and product B costs \gtrless 40 per unit. Formulate the above as a linear programming problem to minimize the total cost, and solve the problem by using graphical method.

- 33. Show that the solution set of the following linear in equations is an unbounded set: $x + y \ge 9$, $3x + y \ge 12$, $x \ge [5]$ 0, $y \ge 0$
- 34. Find the probability distribution of the number of green balls drawn when 3 balls are awn, one by one, without [5] replacement from a bag containing 3 green and 5 white balls.

OR

A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k ²	2k ²	7k ² + k

Find each of the following:

i. k

ii. $P(X \le 6)$

iii. $P(X \ge 6)$

iv. P(0 < X < 5)

35. A loan of ₹ 400000 at the interest rate of 6.75 % p.a. compounded monthly is to be amortized by equal payments **[5]** at the end of each month for 10 years. Find

i. the size of each monthly payment.

ii. the principal outstanding at the beginning of 61st month.

iii. the interest paid in 61st payment.

iv. the principal contained in 61st payment.

v. total interest paid.

Given $(1.005625)^{120} = 1.9603$, $(1.005625)^{60} = 1.4001$)

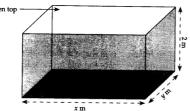
Section E

[4]

36. Read the text carefully and answer the questions:

A factory owner wants to construct a tank with rectangular base and rectangular sides, open at the top, so that its depth is 2 m and capacity is 8 m³. The building of the tank costs ₹280 per square metre for the base and ₹180

per square metre for the sides.



- (a) If the length and the breadth of the rectangular base of the tank are x metres and y metres respectively, then find a relation between x and y.
- (b) If C (in \mathbb{F}) is the cost of construction of the tank, then find C as a function of x.
- (c) Find the value of x for which the cost of construction of the tank is least.

OR

Find the least cost of construction of the tank.

37. **Read the text carefully and answer the questions:**

An equated monthly installment (EMI) is a set monthly payment provided by a borrower to a creditor on a set day, each month. EMIs apply to both interest and principal each month, and the loan is paid off in full over some years.

How is EMI calculated?

There are two ways in which EMI can be calculated. These methods are:

- **The flat rate method:** When the loan amount is progressively being repaid, each interest charge is computed using the original principal amount in the flat rate method.
- **The reducing balance method:** The reducing balance technique, compared to the flat rate method, determines the interest payment according to the outstanding principal.

Example:

A loan of ₹250000 at the interest rate of 6% p.a. compounded monthly is to be amortized by equal payments at the end of each month for 5 years.

 $(\text{Given } (1.005)^{60} = 1.3489, (1.005)^{21} = 1.1104)$

- (a) Find the size of each monthly payment.
- (b) Find the principal outstanding at beginning of 40th month.
- (c) Find interest paid in 40th payment.

OR

Find principal contained in 40th payment.

38. Find the inverse of the matrix :

$$A = egin{bmatrix} -1 & 1 & 2 \ 3 & -1 & 1 \ -1 & 3 & 4 \end{bmatrix}$$

and hence show that $AA^{-1} = 1$.

OR

Using matrix method, solve the following system of equations for x, y and z :

x - y + z = 42x + y - 3z = 0x + y + z = 2 [4]

[4]

Solution

Section A

1.

(c) 2⁶

Explanation: |A| = d|adj A| = $|A|^{n-1}$ Here, n = 3, |A| = 8|adj A| = 8^2 |adj A| = $(2^3)^2 = 2^6$

2.

(b) SampleExplanation: Sample

3.

(d) 25,000 **Explanation:** The given annuity is a perpetuity. present value of perpetuity = $\frac{cash flow}{Interest rate}$ Here, cash flow = ₹1000 interest rate = $\frac{8/2}{100}$ = $\frac{4}{100}$ = 0.04 So, present value = $\frac{1000}{0.04}$ = ₹25,000

4.

(b) Optimizing Explanation: Optimizing

5.

(c) x = yExplanation: $A = \begin{bmatrix} -3 & x \\ y & 5 \end{bmatrix} \Rightarrow A' = \begin{bmatrix} -3 & y \\ x & 5 \end{bmatrix}$ $\therefore A = A' \Rightarrow x = y$

 \therefore Option (x = y) is the correct answer.

6.

(c)
$$\frac{11}{36}$$

Explanation: Here, n = 2, p = $\frac{1}{6}$, $q = \frac{5}{6}$
P(X ≥ 1) = 1 - P(0) = 1 - ${}^{2}C_{0}\left(\frac{5}{6}\right)^{2} = 1 - \frac{25}{36} = \frac{11}{36}$

7.

(d) e^{-m}

Explanation: Given is the mean of a Passion distribution.

Let's assume that a discrete random Variable.

x follow Poission distribution for over an infinite number of trials and a small finite probability of success then PMF of this random variable x is $P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$

Here λ is rate parameter and is equal to the mean

i.e. λ = μ

So posission distribution with its mean 'm'

$$P(x) = rac{m^x e^{-m}}{x!}$$

$$\therefore P(0) = \frac{m^0 e^{-m}}{0!}$$
$$\Rightarrow P(0) = e^{-m}$$

(a) $\frac{1}{\sqrt{1-y^2}}$ Explanation: $\frac{dx}{dy} + \frac{y}{1-y^2}x = \frac{ay}{1-y^2}$, which is linear in x. I.F. $= e^{\int \frac{y}{1-y^2} dy} = e^{-\frac{1}{2}\log(1-y^2)} = \frac{1}{\sqrt{1-y^2}}$

9.

(d) 81.33 m Explanation: When A cover 600 m, B cover 550 m When B cover 500 m, C cover 440 m When B cover 400 m, C cover = $\frac{440}{500} \times 400 = 88 \times 4 = 352$ m In a 400 m race, B beat C by = 400 - 352 = 48 m When A cover 400 m, B cover = $\frac{550}{600} \times 400 = \frac{1100}{3}$ m = 366.67 m In a 400 m, race A beat B by = 400 - 366.67 = 33.33 m ∴ In a 400 m race, A beat C by = 48 + 33.33 = 81.33 m

10.

(d) 0

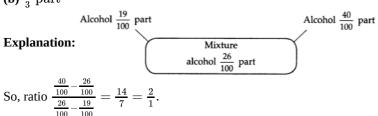
Explanation: Taking 2², 2³ and 2⁴ common from R¹, R² and R³ respectively, we get

$$2^{2} \cdot 2^{3} \cdot 2^{4} \begin{vmatrix} 1 & 2 & 2^{2} \\ 1 & 2 & 2^{2} \\ 1 & 2 & 2^{2} \end{vmatrix}$$
(Operate $C_{2} \rightarrow \frac{1}{2} C_{2}$)
= $2^{9} \cdot 2 \begin{vmatrix} 1 & 1 & 2^{2} \\ 1 & 1 & 2^{2} \\ 1 & 1 & 2^{2} \end{vmatrix}$ = $2^{10} \times 0 = 0$ ($\because C_{1}$ and C_{2} are same)

 \therefore Option (d) is the correct answer.

11.

(b) $\frac{2}{3}$ part



 \therefore The quantity of whisky replaced by 19% alcohol $= \frac{2}{2+1}$ i.e. $\frac{2}{3}$ part

12.

(c) $x \in R$ Explanation: $x \in R$

13.

(c) 1440 litres

Explanation: Let' say the capacity of the cistern is x litres so it is leaking at $\frac{x}{10}$ litres per hour Tap fills in 4 litres a min i.e. $60 \times 4 = 240$ litres per hour Now, with tap turned on, the water leakage per hour is $(\frac{x}{10} - 240)$ It takes, 12 hours to be emptied now, so per hour leakage is $\frac{x}{12}$ so $\frac{x}{10} - 240 = \frac{x}{12}$

on solving for x,

x = 14400

14.

(b) Empty

Explanation: There will be no common region.

15. **(a)** any point on the line segment joining the points (0, 2) and (3, 0)

Explanation: Here the objective function is given by:

F = 4x + 6y

Corner points	$\mathbf{Z} = \mathbf{4x} + \mathbf{6y}$
(0, 2)	12(Min.)
(3, 0)	12(Min.)
(6, 0)	24
(6, 8)	72(Max.)
(0, 5)	30

Hence, it is clear that the minimum value occurs at any point on the line joining the points (0, 2) and (3, 0)

(c) statistic

Explanation: statistic

17. **(a)**
$$\log(1 + \log x)$$

Explanation: $I = \int \frac{1}{x+x \log x} dx$ $I = \int \frac{dx}{x(1+\log x)}$ Put $1 + \log x = t$ $\Rightarrow \frac{1}{x} dx = dt$ $I = \int \frac{1}{t} dt$ $\Rightarrow I = \log |t| + C$ $I = \log (1 + \log x) + C$

18. **(a)** 22, 29, 35, 41

Explanation: 22, 29, 35, 41

19.

(d) A is false but R is true.

Explanation: Assertion: Given, $A^2 = kA - 2I$

$$\Rightarrow AA = kA - 2I
\Rightarrow \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} = k \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\Rightarrow \begin{bmatrix} 9-8 & -6+4 \\ 12-8 & -8+4 \end{bmatrix} = \begin{bmatrix} 3k & -2k \\ 4k & -2k \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3k-2 & -2k \\ 4k & -2k-2 \end{bmatrix}$$

By definition of equality of matrix, the given matrices are equal and their corresponding elements are equal. Now, comparing the corresponding elements, we get

 $3k - 2 = 1 \Rightarrow k = 1$ $\Rightarrow -2k = -2 = k = 1$ $\Rightarrow 4k = 4 \Rightarrow k = 1$ $\Rightarrow -4 = -2A - 2 \Rightarrow k = 1$ Hence, k = 1 **Reason:** We have, (A + B)(A + B) = A(A + B) + B(A + B) = A² + AB + BA + B²

(d) A is false but R is true.

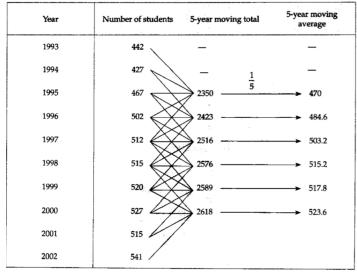
Explanation: $f(x) = x^4 - 2x^2 + 5 \Rightarrow f'(x) = 4x^3 - 4x$

^{16.}

⇒ f'(x) = 4x (x - 1) (x + 1) ⇒ f'(x) = 4x (x² - 1 ⇒ f'(x) = 4x (x - 1) (x + 1). For critical points, f'(x) = 0 ⇒ x = 0, -1, 1. Now, f(-2) = $(-2)^4 - 2(-2)^2 + 5 = 16 - 8 + 5 = 13$ f(2) = $2^4 - 2(2)^2 + 5 = 16 - 8 + 5 = 13$ f(-1) = $(-1)^4 - 2(-1)^2 + 5 = 1 - 2 + 5 = 4$ f(0) = 0 - 2 × 0 + 5 = 5 f(1) = 14 - 2(1)^2 + 5 = 4 So, the range of f is [4, 13] ∴ Assertion is false. Also, f attains it maximum value at x = -2 and x = 2 ∴ Reason is true.

Section B

21. Calculation of 5-year moving averages:



22. Let P be ₹ x, S.I. = ₹ 1000, r = 10% p.a., n = 4 years $\therefore \frac{x \times 10 \times 4}{100} = 1000$ \Rightarrow x = 2500 \therefore Sum = ₹ 2500

Let the amount of loan be ₹P EMI = ₹34000, i = $\frac{12}{12 \times 100}$ = 0.01, n = 3 × 12 = 36 EMI = $\frac{P+Pni}{n}$ $\Rightarrow 34000 = \frac{P(1+36 \times 0.01)}{36} = \frac{P \times 1.36}{36}$ $\Rightarrow P = \frac{34000 \times 36}{1.36} \Rightarrow P = 900,000$ \therefore Price of the car = down payment + loan = ₹350000 + ₹900000 = ₹1250000 23. $\int_{0}^{1} |2x - 1| dx = \int_{0}^{\frac{1}{2}} |2x - 1| dx + \int_{\frac{1}{2}}^{1} |2x - 1| dx$ $= \int_{0}^{\frac{1}{2}} -(2x - 1) dx + \int_{\frac{1}{2}}^{1} (2x - 1) dx$ $= [-(x^{2} - x)]_{0}^{\frac{1}{2}} + [(x^{2} - x)]_{\frac{1}{2}}^{1}$ $= -(\frac{1}{4} - \frac{1}{2}) - 0 + 0 - (\frac{1}{4} - \frac{1}{2}) = \frac{1}{4} + (\frac{1}{4}) = \frac{1}{2}$ OR

24. Given, A =
$$\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$
 and B = $\begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$
3A² - 2B + I
= $3\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} - 2\begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $3\begin{bmatrix} 4 - 3 & -2 - 2 \\ 6 + 6 & -3 + 4 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $3\begin{bmatrix} 1 & -4 \\ 12 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $\begin{bmatrix} 3 & -12 \\ 36 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $\begin{bmatrix} 3 & -12 \\ 36 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $\begin{bmatrix} 3 & -0 + 1 & -12 - 8 + 0 \\ 36 + 2 + 0 & 3 - 14 + 1 \end{bmatrix}$
= $\begin{bmatrix} 4 & -20 \\ 38 & -10 \end{bmatrix}$
We have $\begin{vmatrix} x + 1 & x - 1 \\ x - 3 & x + 2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix}$

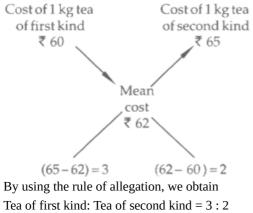
We have |x - 3 + 2| = |1 - 3| $\Rightarrow (x + 1)(x + 2) - (x - 1)(x - 3) = 4 \times 3 - 1 \times (-1)$ $\Rightarrow (x^2 + 2x + x + 2) - (x^2 - 3x - x + 3) = 12 + 1$ $\Rightarrow -2x - 1 = 13$ $\Rightarrow -2x = 14$ $\Rightarrow x = -7$

25. We have,

S.P. of mixture = ₹ 68.20 and Gain = 10%

$$\therefore \text{ C.P.} = \frac{SP}{1 + \frac{Gain}{100}}$$
$$\Rightarrow \text{ C.P.} = \left(\frac{68.20}{1 + \frac{10}{100}}\right) = \left(\frac{682}{11}\right) = \text{ f } 62$$

The allegation grid is as given below:



Hence, the grocer must mix in the ratio 3 : 2

Section C

OR

26. Let A be the quantity of radium present at time t and A_0 be the initial quantity of radium.

Therefore, we have, $\frac{dA}{dt} \propto A$ $\frac{dA}{dt} = -2A$ $\frac{dA}{A} = -2dt$ $\int \frac{dA}{A} = -\lambda t dt$ $\log A = -\lambda t + c \dots (i)$ Now, $A = A_0$ when t = 0 $\log A_0 = 0 + c$ $c = \log A_0$ Put value of c in equation

 $\log A = -\lambda t + \log A_0$ $\log \left(\frac{A}{A_0}\right) = -\lambda t \dots (ii)$ Given that, In 25 years, bacteria decomposes 1.1 %, so A = (100 - 1.1)% = 98.996 %= 0.989 A_0, t = 25 Therefore, (ii) gives, $\log \left(\frac{0.989A_0}{A_0}\right) = -25\lambda$ $\log (0.989) = -25\lambda$

 $\lambda = -\frac{1}{25} \log (0.989)$ Now, equation (ii) becomes, $\log \left(\frac{A}{A_0}\right) = \{\frac{1}{25} \log (0.989)\} t$ Now A = $\frac{1}{2}A_0$ $\log \left(\frac{A}{2A}\right) = \frac{1}{25} \log (0.989) t$ $\frac{-\log 2 \times 25}{\log (0.989)} = t$ $-\frac{0.6931 \times 25}{0.01106} = t$ t = 1567 years

Required time = 1567 years

OR

The given differential equation can be written as

$$\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{4x^2}{1+x^2}$$
...(i)
This is a linear differential equation of the form $\frac{dy}{dx}$ + Py = Q, where

$$P = \frac{2x}{1+x^2} \text{ and } Q = \frac{4x^2}{1+x^2}$$

:. I.F. = $e^{\int Pdx} = e^{\int \frac{2x}{(1+x^2)dx}} = e^{\log(1+x^2)} = 1 + x^2$

Multiplying both sides of (i) by I.F. = $(1 + x^2)$, we get

 $(1 + x^2)\frac{dy}{dx} + 2xy = 4x^2$

Integrating both sides with respect to x, we get

$$y(1 + x^2) = \int 4x^2 dx + C$$
 [Using: $y(I.F.) = \int Q(I.F.) dx + C$]

 $\Rightarrow y (1 + x^2) = \frac{4x}{3} + C \dots (ii)$

It is given that y = 0, when x = 0. Putting x = 0 and y = 0 in (i), we get $0 = 0 + C \Rightarrow C = 0$

Substituting C = 0 in (ii), we get $y = \frac{4x^3}{3(1+x^2)}$, which is the required solution.

27. Face value of the bond $C = \gtrless 600$

Nominal rate of interest i = 8% or 0.08

As dividends are paid semi-annually

Therefore, Rate of interest per period $i_d = \frac{0.08}{2} = 0.04$

Therefore, periodic dividend payment R = C \times i_d = 600 \times 0.04 = 24

So, semi-annual dividend R is ₹24

Yield rate is 8% = 0.08, compounded semi annually

Therefore $i = \frac{0.08}{2} = 0.04$

No. of years n = 5

Therefore, no. of dividend periods (n) = 5 \times 2 = 10

Purchase price (V) of the bond is given by

$$egin{aligned} & \mathrm{V} = R \left| rac{1 - (1 + i)^{-n}}{i}
ight| + C(1 + i)^{-n} \ &= 24 \left| rac{1 - (1 + 0.04)^{-10}}{0.04}
ight| + 600(1 + 0.04)^{-10} \ &= 24 \left| rac{1 - (1.04)^{-10}}{0.04}
ight| + 600(1.04)^{-10} \end{aligned}$$

 $= 24 \left[\frac{1 - 0.6755}{0.04} \right] + 600(0.6755)$

$$= 194.7 + 405.3 = 600$$

Therefore, purchase price of bond is ₹600.

28. Let P denote the profit function. Then,

 $\frac{dP}{dx} = MR - MC$ $\Rightarrow \frac{dP}{dx} = (50 - 4x) - (-10 + x)$ $\Rightarrow \frac{dP}{dx} = 60 - 5x \text{ and } \frac{d^2P}{dx^2} = -5$

For maximum value of P, we must have

 $\frac{dP}{dx} = 0 \Rightarrow 60 - 5x = 0 \Rightarrow x = 12$

Clearly, $\frac{d^2 P}{dx^2} = -5 < 0$ for all x.

So, profit P is maximum when 12 units are produced. Thus, the profit maximization level of output is 12 units.

Now, $\frac{dP}{dx} = 60 - 5x$

 $\Rightarrow \mathbf{P} = \int (60 - 5x) dx + k \dots \text{ [On intergrating]}$ $\Rightarrow \mathbf{P} = 60\mathbf{x} - \frac{5}{2}x^2 + k \dots \text{ (i)}$

where k is the constant of integration

It is given that the company suffers a loss of \gtrless 1000, if its product does not sell at all i.e. P = -1000 at x = 0. Substituting these values in (i), we obtain k = -1000.

Putting k = -1000 in (i), we obtain:

 $P = 60x - \frac{5}{2}x^2 + 1000$

This is the total profit function. For break-even points

 $P = 0 \Rightarrow 60x - \frac{5}{2}x^2 + 1000 = 0 \Rightarrow 5x^2 - 120x + 2000 = 0$

$$\Rightarrow x^2 - 24x + 400 = 0$$

This equation does not give real values of x. So, there is no break-even point.

29. Let X denote the income. Then X is normally distributed with mean $\mu = \gtrless$ 750 and standard deviation $\sigma = \gtrless$ 50. Let Z be the standard normal variate. Then,

 $Z = \frac{X-\mu}{\sigma}$ or, $Z = \frac{X-750}{50}$ When X = 668, we obtain: $Z = \frac{668-750}{50} = -\frac{82}{50} = -1.64$ Now, P(X > 668)= P(Z > -1.64) $= P(-1.64 < Z \le 0) + P(Z \ge 0) = P(0 \le Z < 1.64) + 0.5 = 0.4495 + 0.5 = 0.9495$ Thus, 94.95% persons had income exceeding ₹ 668 When X = 832, we obtain: $Z = \frac{832-750}{50} = 1.64$ $\therefore P(X > 832)$ = P(Z > 1.64) $= P(Z \ge 0) - P(0 \le Z \le 1.64) = 0.5 - 0.4495 = 0.0505$ Thus, 5.05 % persons had income exceeding ₹ 832 Now, probability of selecting a person out of richest 100 persons = $\frac{100}{10000}$ = 0.01 In order to find the lowest income among the richest 100, we have to find the value k of X such that $P(X \ge k) = 0.01$ When X = k, we obtain $Z = \frac{k-750}{50} = Z_1(Say)$ Now, P(X > k) = 0.01 $= P(Z \ge Z_1) = 0.01$ $= 0.5 - P(0 \le Z \le Z_1) = 0.01$ $= P(0 \le Z \le Z_1) = 0.49$ $= Z_1 = 2.33$ $=\frac{k-750}{50}=2.33 \Rightarrow k=750+50 \times 2.33 \Rightarrow k=866.5$ Hence, the lowest income among the richest 100 was ₹ 866.50 OR

We have, Sum of the mean and variance = $\frac{25}{3}$

 \Rightarrow np + npq = $\frac{25}{3}$ $\Rightarrow np(1+q) = \frac{\frac{3}{25}}{3} \dots (i)$ Product of the mean and variance = $\frac{50}{3}$ \Rightarrow np(npq) = $\frac{50}{3}$...(ii) Dividing eq. (ii) by eq. (i), we have, $rac{\mathrm{np(npq)}}{\mathrm{np(1+q)}} = rac{50}{3} imes rac{3}{25}$ $\Rightarrow rac{npq}{1+q} = 2$ \Rightarrow npq = 2(1 + q) $\Rightarrow np(1 - p) = 2(2 - p)$ $\Rightarrow np = \frac{2(2-p)}{(1-p)}$ Substituting this value in np + npq = $\frac{25}{3}$, we have, $rac{2(2-p)}{(1-p)}(2-p) = rac{25}{3}$ $\Rightarrow 6(4 - 4p + p^2) = 25 - 25p$ $\Rightarrow 6p^2 + p - 1 = 0$ $\Rightarrow (3p - 1) (2p + 1) = 0$ $\Rightarrow p = \frac{1}{3}$ or $\frac{-1}{2}$ As p cannot be negative, therefore possible value of p is $\frac{1}{3}$ $q = 1 - p = \frac{2}{3}$ \Rightarrow np + npq = $\frac{25}{3}$ $\Rightarrow n\left(\frac{1}{3}\right)\left(1+\frac{2}{3}\right)=\frac{25}{3}$ \Rightarrow n = 15 : $P(X = r) = {}^{15} C_r \left(\frac{1}{3}\right)^r \left(\frac{2}{3}\right)^{15-r}$, r = 0, 1, 2 15

30. Note that the number of years is Odd

 \Rightarrow n = odd Procedure:

i. Take middle year values as As i.e. A = 2017

ii. Find $X = x_i - A$

iii. Find $X^2 \mbox{ and } XY$

Year	Index number (Y)	$X = x_i - A = x_i - 2017$	X ²	ХҮ	Trend value Y _t = a + bX
2014	145	-3	9	-435	182.1 + (-3) × 16.6 = 132.3
2015	140	-2	4	-280	182.1 + (-2) × 16.6 = 148.9
2016	150	-1	1	-150	182.1 + (-1) × 16.6 = 165.5
2017	190	0	0	0	182.1 + (0) × 16.6 = 182.1
2018	200	1	1	200	182.1 + (1) × 16.6 = 198.7
2019	220	2	4	440	182.1 + (2) × 16.6 = 215.3
2020	230	3	9	690	182.1 + (3) × 16.6 = 231.9
n = 7	$\sum Y = 1275$	$\sum X = 0$	$\sum X^2 = 28$	$\sum XY = 465$	$\sum Y_t$ = 1274.7

 $a = \frac{\sum Y}{n} = \frac{1275}{7} = 182.14$ and $b = \frac{\sum XY}{2} = \frac{465}{28} = 16.6$

$$\sum X^2 = 28$$

Therefore, the required equation of the straight-line trend is given by

y = a + bX

$$\Rightarrow$$
 y = 182.1 + 16.6 X

31. We have,

 μ = Population mean = 110, \bar{X} = Sample mean = 105

n = Sample size = 17 and,
$$\sum_{i=1}^{17} (x_i - \bar{X})^2 = 1225$$

 $\therefore s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^2$
 $\Rightarrow s^2 = \frac{1225}{17} = 72.0588 \Rightarrow s = \sqrt{72.0588} = 8.4887$

We define, Null Hypothesis H_0 : There is no significant difference between the sample mean and population means i.e. assumption that mean of the population is 110 cm is valid.

Alternate hypothesis H₁: Assumption that mean of the population is 110 cm is not valid. Let t be the test statistic given by

$$t = \frac{X - \mu}{\frac{s}{\sqrt{n-1}}} \Rightarrow t = \frac{105 - 110}{8.4887} \times \sqrt{17 - 1} = \frac{-5 \times 4}{8.4887} = -2.3561$$

 \Rightarrow |t| = 2.3561

The sample statistic follows Student's t -distribution with v = (17 - 1) = 16 degrees of freedom.

We shall now compare this calculated value with the tabulated value of t for 16 degrees of freedom at 5% and 1% levels of significance.

At 5% level of significance: It is given that $t_{16}(0.05) = 2.12$

We find that Calculated $|t| = 2.3561 > 2.12 = t_{16}(0.05)$

i.e. Calculated |t| > Tabulated $t_{16}(0.05)$

So, we reject the null hypothesis at 5% level of significance. Hence, the assumption that the population has a mean of 110 cm is not correct.

The confidence limits at 5% level of significance are

$$\bar{X} - \frac{s}{\sqrt{n-1}} t_{16}(0.05)$$
 and $\bar{X} + \frac{s}{\sqrt{n-1}} t_{16}(0.05)$
or 105 - $\frac{8.4887}{4} \times 2.12$ and 105 + $\frac{8.4887}{4} \times 2.12$
or 105 - 4.499 = 100 501 and 105 + 4.499 = 10

or, 105 - 4.499 = 100.501 and 105 + 4.499 = 109.499

The confidence interval is [100.501,109.499]

At 1% level of significance: It is given that $t_{16}(0.01) = 2.921$

Clearly, calculated $|t| < tabulated t_{16}(0.01)$

So, we accept the null hypothesis at 1% level of significance. Hence, the assumption that the mean of the population is 110 cm is valid.

The confidence limits at 1% level of significance are

$$\bar{X} - \frac{s}{\sqrt{n-1}} t_{16}(0.01) \text{ and } \bar{X} + \frac{s}{\sqrt{n-1}} t_{16}(0.01)$$

or, 105 - $\frac{8.4887}{4} \times 2.921$ and 105 + $\frac{8.4887}{4} \times 2.921$

or, 105 - 6.199 = 98.801 and 105 + 6.199 = 111.199

The confidence interval at 1% level of significance or at 99% confidence level is [98.801, 111.199]

Section D

32. Let x units of item A and y units of item B be manufactured. Therefore, x, $y \ge 0$

As we are given,

Item	Number of hours required by the machine						
	Ι	II	III				
A	1	2	1				
В	2	1	$\frac{5}{4}$				

Machines I and II are capable of being operated for at most 12 hours whereas Machine III must operate at least for 5 hours a day. According to the question, the constraints are

 $x+2y \leq 12$

 $2x + y \leq 12$

$$x + \frac{5}{4}y \ge 5$$

He makes a profit of ₹6.00 on item A and ₹4.00 on item B. Profit made by him in producing x items of A and y items of B is 6x + 4y

Total profit Z = 6x + 4y which is to be maximized

Thus, the mathematical formulation of the given linear programming problem is

Max Z = 6x + 4y, subject to x + 2y ≤ 12 2x + y ≤ 12 x + $\frac{5}{4}y \geq 5$ x, y ≥ 0 First, we will convert the inequations into equations as follows: x + 2y = 12, 2x + y = 12, x + $\frac{5}{4}y = 5$, x = 0 and y = 0 The region represented by x + 2y ≤ 12 The line x + 2y = 12 meets the coordinate area at A(12, 0) and B(0, 6) respectively. By initiality these points

The line x + 2y = 12 meets the coordinate axes at A(12, 0) and B(0, 6) respectively. By joining these points, we obtain the line x + y = 12. Clearly (0, 0) satisfies the x + 2y = 12. So, the region which contains the origin represents the solution set of the inequation $x + 2y \le 12$

The region represented by $2x + y \le 12$

The line 2x + y = 12 meets the coordinate axes at C(6, 0) and D(0, 12) respectively. By joining these points, we obtain the line 2x + y = 12. Clearly (0, 0) satisfies the 2x + y = 12. So, the region which contains the origin represents the solution set of the inequation $2x + y \le 12$

The region represented by $x + \frac{5}{4}y \ge 5$

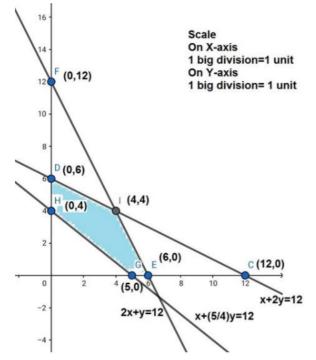
The line $x + \frac{5}{4}y \ge 5$ meets the coordinate axes at E(5, 0) and F(0, 4) respectively. By joining these points, we obtain the line $x + \frac{5}{4}y = 5$. Clearly (0, 0) satisfies the $x + \frac{5}{4}y \ge 5$. So, the region which does not contain the origin represents the solution set of the inequation $x + \frac{5}{4}y \ge 5$

The region represented by $x \ge 0$, $y \ge 0$:

Since every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x \ge 0$ and $y \ge 0$

The feasible region determined by the system of constraints

 $x + 2y \le 12$, $2x + y \le 12$, $x + \frac{5}{4}y \ge 5$, $x, y \ge 0$ are as follows:



Thus the maximum profit is of ₹40 obtained when 4 units each of items A and B are manufactured

The corner points are $D(0, 6)$, $I(4, 4)$, $C(6, 0)$, $G(5, 0)$, and $H(0, 4)$. The values of Z at these corner	points are as follows:
---	------------------------

Corner points	Z = 6x + 4y
D	24
Ι	40
С	36
G	30
Н	16

The maximum value of Z is 40 which is attained at I(4, 4).

OR

The data given in the problem can be summarized in the following tabular form:

Product	Nutrient constituent			Const in ₹	
Product	X	Y	Z	Const in a	
А	36	3	20	20	
В	6	12	10	40	
Minimum Required	108	36	100		

Let x units of product A and y units of product B are bought to fulfill the minimum requirement of X, Y and Z and to minimize the cost.

The mathematical formulation of the above problem is as follows:

Minimize Z = 20x + 40y

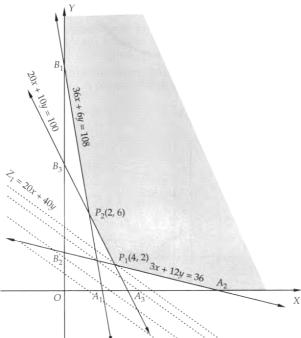
Subject to $36x + 6y \ge 108$

 $3x + 12y \geq 36$

 $20x + 10y \geq 100$

and, x, y, $z \ge 0$

The set of all feasible solutions of the above LPP is represented by the feasible region shaded darkly in Figure. The coordinates of the corner points of the feasible region are A_2 (12, 0), P_1 (4, 2), P_2 (2, 6) and B_1 (0,18).



Now, we have to find a point or points in the feasible region which give the minimum value of the objective function. For this, let us give some value to Z, say 20, and draw a dotted line 20 = 20x + 40y. Now, draw lines parallel to this line which have at least one point common to the feasible region and locate a line that is nearest to the origin and has at least one point common to the feasible region. Clearly, such a line is $Z_1 = 20x + 40y$ and it has a point $P_1(4, 2)$ common with the feasible region. Thus, $Z_1 = 20x$

+ 40y is the minimum value of Z, and the feasible solution which gives this value of Z is the comer $P_1(4, 2)$ of the shaded region. The values of the variables for the optimal solution are x = 4, y = 2. Substituting these values in Z = 20x + 40y, we get Z = 160 as the optimal value of Z.

Hence, 2 units of product A and 4 units of product B are sufficient to fulfill the minimum requirement at a minimum cost of ₹160 33. First, we will find the solutions of the given equations by hit and trial method and afterward we will plot the graph of the

equations and shade the side with grey color containing common solutions or intersection of the solution set of each inequality. You can choose any value but find the two mandatory values which are at x = 0 and y = 0, i.e., x and y-intercepts always. x + y > 9

x	0	5	9
у	9	4	0

$3x + y \ge 12$			
х	0	2	4
у	12	6	0
$x \ge 0, y \ge 0$			
$Y_{12}^{11} 3x + y \ge 12$	•		

11 12 13 14 15 16 17 18 X

34. Let X be a random variable denoting the total number of green balls drawn in three draws without replacement. Clearly, there may be all green, 2 green, 1 green or no green at all. Therefore, X can take values 0, 1, 2, and 3. Let G_i denote the event of getting a green ball in ith draw.

Now, we have,

P (X = 0) = Probability of getting no green ball in three draws $\Rightarrow P (X = 0) = P(\overline{G_1} \cap \overline{G_2} \cap \overline{G_3}) = P(\overline{G_1})P(\overline{G_2}/\overline{G_1})P(\overline{G_3}/\overline{G_1} \cap \overline{G_2}) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{5}{28}$ F (X = 1) = Probability of getting one green ball in three draws $\Rightarrow P (X = 1) = P \left(\left(G_1 \cap \overline{G_2} \cap \overline{G_3} \right) \cup \left(\overline{G_1} \cap G_2 \cap \overline{G_3} \right) \cup \left(\overline{G_1} \cap \overline{G_2} \cap G_3 \right) \right)$ $\Rightarrow P (X = 1) = P \left(G_1 \cap \overline{G_2} \cap \overline{G_3} \right) + P \left(\overline{G_1} \cap G_2 \cap \overline{G_3} \right) + P \left(\overline{G_1} \cap \overline{G_2} \cap G_3 \right) + P(\overline{G_1})P(\overline{G_2}/\overline{G_1})P \left(\overline{G_3}/\overline{G_1} \cap \overline{G_2} \right)$ $\Rightarrow P (X = 1) = \frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{15}{28}$ P (X = 2) = P $\left(\left(G_1 \cap G_2 \cap \overline{G_3} \right) \cap \left(\overline{G_1} \cap G_2 \cap G_3 \right) \cup \left(G_1 \cap \overline{G_2} \cap G_3 \right) \right)$ $\Rightarrow P (X = 2) = P(G_1) P \left(G_2/G_1 \right) P \left(\overline{G_3}/G_1 \cap G_2 \right) + P(\overline{G_1}) P \left(G_2/\overline{G_1} \right) P \left(G_3/\overline{G_1} \cap G_2 \right)$ $+ P \left(G_1 \right) P \left(\overline{G_2}/G_1 \right) P \left(G_3/G_1 \cap \overline{G_2} \right)$ $\Rightarrow P (X = 2) = \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} + \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} + \frac{3}{8} \times \frac{5}{7} \times \frac{2}{6} = \frac{15}{56}$ and, $(G_1) = \left((G_1 \cap G_2 \cap G_2) - (G_1) \cap G_2 - (G_2) \right) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$

X	0	1	2	3
P(X)	$\frac{5}{28}$	$\frac{15}{28}$	$\frac{15}{56}$	$\frac{1}{56}$
	,	OR	,	,

i. We know that the sum of all the probabilities in a probability distribution is always unity. Therefore, we have,

P (X = 0) + P (X = 1) ++ P { X = 7 } = 1 ⇒ 0 + k + 2k + 2k + 3 k + k² + 2k² + 7 k² + k = 1 ⇒ 10k² + 9k - 1 = 0 ⇒ (10k - 1) (k + 1) = 0 ⇒ 10k - 1 = 0 ⇒ k = $\frac{1}{10}$ ii. P (X < 6) = P(X = 0) + P(X = 1) + P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5) ⇒ P (X < 6) = 0 + k + 2k + 2k + 3k + k² ⇒ P (X < 6) = k² + 8k

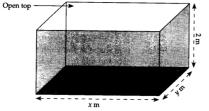
$$\begin{array}{l} \Rightarrow P(X < 6) = \left(\frac{1}{10}\right)^2 + \frac{8}{10} \quad ...[\because k = \frac{1}{10}] \\ \Rightarrow P(X < 6) = \frac{81}{100} \\ \text{iii. P(X \ge 6) = P(X = 6) + P(X = 7) \\ \Rightarrow P(X \ge 6) = 2k^2 + 7k^2 + k \\ \Rightarrow P(X \ge 6) = 9k^2 + k \\ \Rightarrow P(X \ge 6) = \frac{9}{100} + \frac{1}{10} \quad ...[\because k = \frac{1}{10}] \\ \Rightarrow P(X \ge 6) = \frac{19}{100} \\ \text{iv. P(0 < X < 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) \\ \Rightarrow P(0 < X < 5) = k + 2k + 2k + 3k \\ \Rightarrow P(0 < X < 5) = 8k \\ \Rightarrow P(0 < X < 5) = \frac{8}{10} = \frac{4}{5} \quad ...[\because k = \frac{1}{10}] \\ \text{35. i. Given P = ₹ 400000, n = 120, i = \frac{6.75}{1200} = 0.005625 \\ \therefore EMI = \frac{400000 \times 0.005625 \times (1.005625)^{120} - 1}{(1.005625)^{120} - 1} \\ = \frac{400000 \times 0.005625 \times 1.9603}{0.9603} = ₹4593. \\ \text{ii. Principal outstanding at the beginning of 61 months} \\ = \frac{EMI[(1+i)^{n-k+1} - 1]}{i(1+i)^{n-k+1}} = \frac{4593[(1.005625)^{120-61+1} - 1]}{0.005625 \times 1.4001} \\ = ₹ 13336.89 \\ \text{iii. Interest paid in 61st payment} = \frac{EMI [(1+i)^{n-k+1} - 1]}{(1+i)^{n-k+1}} \\ = \frac{4593 \cdot 1312.52}{i \times 1312.52} \\ \text{iv. Principal paid in 61st payment} = EMI - Interest paid in 61st period \\ = ₹ 4593 \cdot ₹ 1312.52 = ₹ 3280.48 \\ \text{v. Total interest paid = n × EMI - P \end{array}$$

= 120 × 4593 - 400000 = ₹ 151160.

Section E

36. Read the text carefully and answer the questions:

A factory owner wants to construct a tank with rectangular base and rectangular sides, open at the top, so that its depth is 2 m and capacity is 8 m³. The building of the tank costs ₹280 per square metre for the base and ₹180 per square metre for the sides.



- (i) Given volume = 8 m³ and height = 2 m So, $x \times y \times 2 = 8 \Rightarrow xy = 4$
- (ii) Area of sides of the tank = $2(x + y) \times h = 4(x + y) m^2$

∴ The cost of construction of the sides of the tank = ₹ $180 \times 4(x + y) = ₹720 (x + y)$

The cost of construction of the base of the tank = $\mathbb{E} x \times y \times 280 = \mathbb{E} 4 \times 280 = \mathbb{E} 1120$ (using part (x × y × 2 = 8 \Rightarrow xy = 4))

So, C = ₹ [1120 + 720 (x + y)]
⇒ C = 1120 + 720
$$\left(x + \frac{4}{x}\right)$$

(iii) $\frac{dC}{dx} = 0 + 720 \left(1 - \frac{4}{x^2}\right)$ and $\frac{d^2C}{dx^2} = \frac{5760}{x^3}$.
Now, $\frac{dC}{dx} = 0 \Rightarrow \left(1 - \frac{4}{x^2}\right) = 0 \Rightarrow x^2 = 4 \Rightarrow x = 2$
 $\left[\frac{d^2C}{dx^2}\right]_{x=2} = \frac{5760}{8} > 0$
⇒ C is minimum when x = 2

OR

The least cost of the tank = ₹ $\left[1120 + 720 \left(2 + \frac{4}{2} \right) \right]$

= ₹(1120 + 2880) = ₹ 4000

37. Read the text carefully and answer the questions:

An equated monthly installment (EMI) is a set monthly payment provided by a borrower to a creditor on a set day, each month. EMIs apply to both interest and principal each month, and the loan is paid off in full over some years.

How is EMI calculated?

There are two ways in which EMI can be calculated. These methods are:

- **The flat rate method:** When the loan amount is progressively being repaid, each interest charge is computed using the original principal amount in the flat rate method.
- **The reducing balance method:** The reducing balance technique, compared to the flat rate method, determines the interest payment according to the outstanding principal.

Example:

38.

A loan of ₹250000 at the interest rate of 6% p.a. compounded monthly is to be amortized by equal payments at the end of each month for 5 years.

Here
$$A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

So, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$
Thus, $x = 2, y = -1, z = 1$