• If $\sin y = x$, then $y = \sin^{-1}x$ (We read it as sine inverse x)

Here, $\sin^{-1}x$ is an inverse trigonometric function. Similarly, the other inverse trigonometric functions are as follows:

- If $\cos y = x$, then $y = \cos^{-1}x$
- If $\tan y = x$, then $y = \tan^{-1}x$
- If $\cot y = x$, then $y = \cot^{-1}x$
- If sec y = x, then $y = \sec^{-1}x$
- If $\operatorname{cosec} y = x$, then $y = \operatorname{cosec}^{-1} x$
- The domains and ranges (principle value branches) of inverse trigonometric functions can be shown in a table as follows:

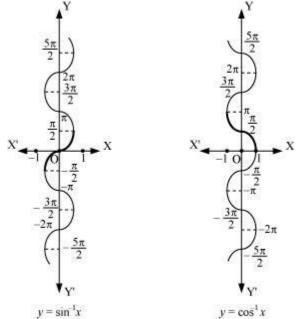
Function	Domain	Range (Principle value branches)
$y = \sin^{-1}x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1}x$	[-1, 1]	[0, π]
$y = \tan^{-1}x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1}x$	R	(0, π)
$y = \sec^{-1}x$	R – (–1, 1)	$[0, \pi] - \{\frac{\pi}{2}\}$
$y = \csc^{-1}x$	R – (–1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \{0\}$

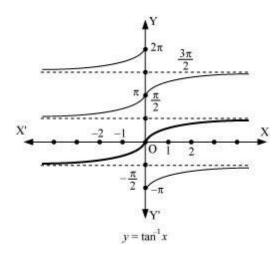
- Note that $y = \tan^{-1}x$ does not mean that $y = (\tan x)^{-1}$. This argument also holds true for the other inverse trigonometric functions.
- The principal value of an inverse tri^{tan $-1(-\sqrt{3}) = y$} gonometric function can be defined as the value of inverse trigonometric functions, which lies in the range of principal branch.

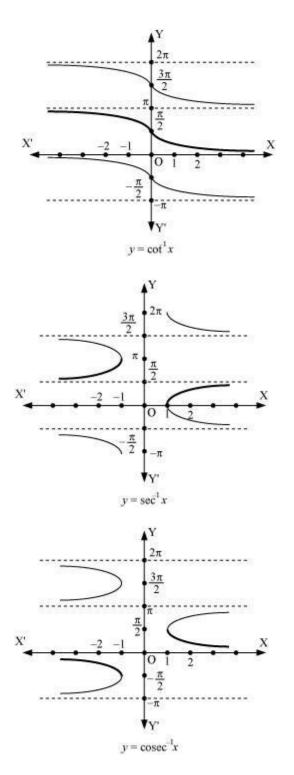
Example 1: What is the principal value of $\tan^{-1}(-\sqrt{3}) + \sin^{-1}(1)$?

Solution: Let and $\sin^{-1}(1) = z$ $\Rightarrow \tan y = -\sqrt{3} = -\tan\left(\frac{\pi}{3}\right) = \tan\left(-\frac{\pi}{3}\right)$ and $\sin z = 1 = \sin\frac{\pi}{2}$ We know that the ranges of principal value branch of \tan^{-1} and \sin^{-1} are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ respectively. Also, $\tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}\sin\left(\frac{\pi}{2}\right) = 1$ Therefore, principal values of $\tan^{-1}\left(-\sqrt{3}\right) = \frac{-\pi}{3}$ and $\sin^{-1}\left(1\right) = \frac{\pi}{2}$ $\therefore \tan^{-1}\left(-\sqrt{3}\right) + \sin^{-1}1 = \frac{-\pi}{3} + \frac{\pi}{2} = \frac{\pi}{6}$

• Graphs of the six inverse trigonometric functions can be drawn as follows:







• The relation $\sin y = x \Rightarrow y = \sin^{-1}x$ gives $\sin(\sin^{-1}x) = x$, where $x \in [-1, 1]$; and $\sin^{-1}(\sin x) = x$, where $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

This property can be similarly stated for the other inverse trigonometric functions as follows:

- cos (cos⁻¹x) = x, x ∈ [-1, 1] and cos⁻¹(cos x) = x, x ∈ [0, π]
- $\tan(\tan^{-1}x) = x, x \in \mathbf{R}$ and $\tan^{-1}(\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- cosec (cosec⁻¹x) = x, x \in \mathbf{R} (-1, 1) and cosec⁻¹(cosec x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}
- sec (sec⁻¹x) = x, x \in \mathbf{R} (-1, 1) and sec⁻¹(sec x) = x, x \in [0, \pi] \left\{\frac{\pi}{2}\right\}
- $\cot(\cot^{-1}x) = x, x \in \mathbf{R}$ and $\cot^{-1}(\cot x) = x, x \in (0, \pi)$
- For suitable values of domains;

$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x, x \in \mathbf{R} - (-1, 1)$$
$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x, x \in \mathbf{R} - (-1, 1)$$
$$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1}x, x > 0\\ \cot^{-1}x, x - 0x < \\ \cot^{-1}x, x - 0x < \end{cases}$$
$$\csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1}x, x \in [-1, 1]$$
$$\sec^{-1}\left(\frac{1}{x}\right) = \cos x, x \in [-1, 1]$$
$$\cot^{-1}\left(\frac{1}{x}\right) = \begin{cases} \tan^{-1}x, x > 0\\ \pi + \tan^{-1}x, x < 0 \end{cases}$$

Note: While solving problems, we generally use the $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$ and $\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$ when the conditions for x (i.e., x > 0 or x < 0) are not given

- For suitable values of domains;
- sin⁻¹ (-x) = −sin⁻¹x, x ∈ [−1, 1]
 cos⁻¹ (-x) = π − cos⁻¹x, x ∈ [−1, 1]
- $\tan^{-1}(-x) = -\tan^{-1}x, x \in \mathbf{R}$
- $cosec^{-1}(-x) = -cosec^{-1}x, |x| \ge 1$
- $\sec^{-1}(-x) = \pi \sec^{-1}x, |x| ≥ 1$
- $\cot^{-1}(-x) = \pi \cot^{-1}x, x ∈ \mathbf{R}$
- For suitable values of domains;

- sin⁻¹x + cos⁻¹x = ^π/₂, x ∈ [-1, 1]
 tan⁻¹x + cot⁻¹x = ^π/₂, x ∈ R
 sec⁻¹x + cosec⁻¹x = ^π/₂, |x| ≥ 1
- For suitable values of domains;

$$\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\frac{x+y}{1-xy}, xy < 1\\ \pi + \tan^{-1}\frac{x+y}{1-xy}, xy > 1 \end{cases}$$

$$\cos^{0} \tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$$

Note: While solving problems, we generally use the $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$ when the condition for *xy* is not given.

• For
$$x \in [-1, 1]$$
, $2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}$

• For $x \in (-1, 1)$, $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$ = $\cos^{-1}\frac{1-x^2}{2}$

• For
$$x^3 0$$
, 2 tan⁻¹x 1+ x^2

Example: 2 For $x, y \in [-1, 1]$, show that: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right)$

- - -

Solution: We know that $\sin^{-1}x$ and $\sin^{-1}y$ can be defined only for $x, y \in [-1, 1]$ Let $\sin^{-1}x = a$ and $\sin^{-1}y = b$ $\Rightarrow x = \sin a$ and $y = \sin b$ Also, $\cos a = \sqrt{1 - x^2}$ and $\cos b = \sqrt{1 - y^2}$ We know that, $\sin (a + b) = \sin a \cos b + \cos a \sin b$ $\Rightarrow a + b = \sin^{-1} \left[x\sqrt{1 - y^2} + y\sqrt{1 - x^2} \right]$ $\Rightarrow \sin^{-1}x + \sin^{-1}y = \sin^{-1} \left[x\sqrt{1 - y^2} + y\sqrt{1 - x^2} \right]$

Example: 3 If $\tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = x$, then find sec *x*.

Solution:

$$e^{x = \tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = \tan^{-1}\left[\frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\right]}$$

We have

$$\begin{bmatrix} \text{Using the identity } \tan^{-1}x + \tan^{-1}y \tan^{-1}\left(\frac{x+y}{1-xy}\right), \text{ where } x = \frac{5}{6} \text{ and } y = \frac{1}{11} \end{bmatrix}$$

$$\therefore x = \tan^{-1}\left[\frac{\frac{55+6}{66}}{\frac{66-5}{66}}\right]$$
$$= \tan^{-1}1$$
$$= \frac{\pi}{4}$$

 $\sec x = \sec \frac{\pi}{4} = \sqrt{2}$

Example: 4

Example: 4
Show that:
$$3\tan^{-1}x = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$$
 where $x \in \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

Solution: We know that,

 $3\tan^{-1}x = \tan^{-1}x + 2\tan^{-1}x$

$$= \tan^{-1}x + \tan^{-1}\frac{2x}{1-x^2}$$
$$= \tan^{-1}\left[\frac{x + \frac{2x}{1-x^2}}{1-x \times \frac{2x}{1-x^2}}\right]$$
$$= \tan^{-1}\left[\frac{\frac{3x - x^3}{1-x^2}}{\frac{1-3x^2}{1-x^2}}\right]$$
$$= \tan^{-1}\left(\frac{3x - x^3}{1-3x^2}\right)$$