Exercise 13.4

Question :1 Find the surface area of a sphere of radius:

- (i) 10.5 cm
- (ii) 5.6 cm
- (iii) 14 cm

Answer: (i) Radius (r) of sphere = 10.5 cm

Surface area of sphere = $4\pi r^2$

$$=4 \times \frac{22}{7} \times 10.5 \times 10.5$$

$$= 88 \times 1.5 \times 10.5$$

- $= 1386 \text{ cm}^2$
- (ii) Radius(r) of sphere = 5.6 cm

Surface area of sphere = $4\pi r^2$

$$=4 \times \frac{22}{7} \times 5.6 \times 5.6$$

$$= 88 \times 0.8 \times 5.6$$

$$= 394.24 \text{ cm}^2$$

(iii) Radius (r) of sphere = 14 cm

Surface area of sphere = $4\pi r^2$

$$=4\times\frac{22}{7}\times14\times14$$

$$=4\times44\times14$$

$$= 2464 \text{ cm}^2$$

Question :2 Find the surface area of a sphere of diameter:

- (i) 14 cm
- (ii) 21 cm
- (iii) 3.5 m

Answer: (i) Radius (r) of sphere = $\frac{Diameter}{2}$

- $=\frac{14}{2}$
- =7 cm

Surface area of sphere = $4\pi r^2$

- $=4\times\frac{22}{7}\times7\times7$
- $=88\times7$
- $= 616 \text{ cm}^2$

(ii) Radius (r) of sphere = $\frac{Diameter}{2}$

- $=\frac{21}{2}$
- = 10.5 cm

Surface area of sphere = $4\pi r^2$

- $=4 \times \frac{22}{7} \times 10.5 \times 10.5$
- $= 1386 \text{ cm}^2$

(iii) Radius (r) of sphere = $\frac{Diameter}{2}$

- $=\frac{3.5}{2}$
- = 1.75 m

Surface area of sphere = $4\pi r^2$

- $=4\times\frac{22}{7}\times1.75\times1.75$
- $= 38.5 \text{ cm}^2$

Question :3 Find the total surface area of a hemisphere of radius 10 cm. (Use $\pi = 3.14$)

Answer: Radius (r) of hemisphere = 10 cm

Total surface area of hemisphere = CSA of hemisphere + Area of circular end of hemisphere

$$=2\pi r^{2}+\pi r^{2}$$

$$=3\pi r^2$$

$$= [3 * 3.14 * 10 * 10]$$

$$= 942 \text{ cm}^2$$

Question :4 The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases

Answer:

Radius (r_1) of spherical balloon = 7 cm

Radius (r_2) of spherical balloon, when air is pumped into it = 14 cm

$$Ratio = \frac{\textit{Initial surface area}}{\textit{Surface area after pumping ballon}}$$

$$= \frac{4\pi r_1 \times r_1}{4\pi r_2 \times r_2}$$

$$= \left(\frac{r_1}{r_2}\right)^2$$

$$= \left(\frac{7}{14}\right)^2 = \frac{1}{4}$$

Therefore, the ratio between the surface areas is 1:4

Question: 5 A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of Rs 16 per 100 cm^2

Ans.: Inner radius (r) = $\frac{10.5}{2}$ = 5.25 cm

Surface area of hemispherical bowl = $2\pi r^2$

$$=2*\frac{22}{7}*5.25*5.25$$

 $= 173.25 \text{ cm}^2$

Cost of tin-plating 100 cm^2 area = Rs 16

Cost of tin-plating 173.25 cm² area = $\left(\frac{16*173.25}{100}\right)$

= Rs 27.72

Question :6 Find the radius of a sphere whose surface area is 154 cm².

Ans.:

Let the radius of the sphere be r

Surface area of sphere = 154 cm^2

$$4 \pi r^2 = 154$$

$$r^2 = \frac{154}{4\pi}$$

$$\implies r^2 = \frac{154 \times 7}{4 \times 22}$$

$$\Rightarrow r^2 = \frac{\frac{7}{154 \times 7}}{\frac{154 \times 7}{4 \times 22}}$$

$$\Rightarrow r^2 = \frac{49}{1}$$

$$\implies r^2 = \frac{49}{1}$$

$$\implies$$
 r² = 12.25

 \Rightarrow r = 3.5

Therefore, the radius of the sphere whose surface area is 154 cm² is 3.5 cm

Question :7 The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.

Ans.: Let the diameter of earth be d. Therefore, the diameter of moon will be $\frac{d}{4}$

Radius (Earth) =
$$\frac{d}{2}$$

Radius (Moon) =
$$\frac{1}{2} \times \frac{d}{4} = \frac{d}{8}$$

Surface Area of moon =
$$4\pi \left(\frac{d}{8}\right)^2$$

Surface Area of Earth =
$$4\pi \left(\frac{d}{2}\right)^2$$

$$Ratio = \frac{Surface Area of moon}{Surface Area of Earth}$$

$$=\frac{4\pi\frac{d}{64}}{4\pi\frac{d}{4}}$$

$$=\frac{4}{64}$$

$$=\frac{1}{16}$$

Question :8 A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.

Ans.: The inner radius of hemispherical bowl = 5 cm

The thickness of the bowl = 0.25 cm

Outer radius (r) of hemispherical bowl = (5 + 0.25) cm

= 5.25 cm

Outer CSA of hemispherical bowl = $2\pi r^2$

$$=2\times\times(5.25)^2$$

$$= 173.25 \text{ cm}^2$$

Question :9 A right circular cylinder just encloses a sphere of radius r (see Fig. 13.22). Find

- (i) Surface area of the sphere,
- (ii) Curved surface area of the cylinder
- (iii) Ratio of the areas obtained in (i) and (ii)

Fig. 13.22

Ans.: (i) Surface area of sphere = $4\pi r^2$

(ii) Height of cylinder = r + r = 2r

[As sphere touches both upper and lower surface of cylinder]

Radius of cylinder = r

CSA of cylinder = $2\pi rh$

$$=2\pi r\,(2r)$$

$$=4\pi r^2$$

(iii) Ratio =
$$\frac{4\pi r \times r}{4\pi r \times r}$$

$$=\frac{1}{1}=1$$

Ratio = 1:1