

BLUE PRINT

Time Allowed: 3 hours Maximum Marks: 80

S. No.	Chapter	VSA/Case based (1 mark)	SA-I (2 marks)	SA-II (3 marks)	LA (5 marks)	Total
1.	Relations and Functions	3(3)#	_	1(3)*	_	4(6)
2.	Inverse Trigonometric Functions	_	1(2)	_	_	1(2)
3.	Matrices	2(2)#	_	_	_	2(2)
4.	Determinants	1(1)	1(2)	_	1(5)*	3(8)
5.	Continuity and Differentiability	_	2(4)	2(6)	_	4(10)
6.	Application of Derivatives	1(4)	1(2)	1(3)	_	3(9)
7.	Integrals	2(2)#	1(2)*	1(3)	_	4(7)
8.	Application of Integrals	-	1(2)	1(3)	_	2(5)
9.	Differential Equations	1(1)	_	1(3)*	_	2(4)
10.	Vector Algebra	2(2)	1(2)*	_	_	3(4)
11.	Three Dimensional Geometry	3(3)#	1(2)*	_	1(5)*	5(10)
12.	Linear Programming	_	-	_	1(5)*	1(5)
13.	Probability	2(2)# + 1(4)	1(2)	_	_	4(8)
	Total	18(24)	10(20)	7(21)	3(15)	38(80)

^{*}It is a choice based question.

[#]Out of the two or more questions, one/two question(s) is/are choice based.

Subject Code: 041

MATHEMATICS

Time allowed: 3 hours

Maximum marks: 80

General Instructions:

1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.

- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

Part - A:

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

Part - B:

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. Find x and y such that
$$\begin{bmatrix} x - y & 3 \\ 2x - y & 2x + 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 12 & 15 \end{bmatrix}.$$

OR

For what value of x, the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ is a skew-symmetric matrix?

- 2. If $\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$, show that the points *P*, *Q*, *R* are collinear.
- 3. Evaluate: $\int \sin^3 x \cos^3 x \, dx$

OR

Evaluate:
$$\int_{0}^{2} (3x^2 + 2x - 1) dx$$

46 Class 12

- **4.** If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then find the value of n.
- 5. Show that the function $f: N \to N$ given by f(x) = 4x, is one-one but not onto.

OF

Let $f: R \to R$ be a function defined by $f(x) = x^3 + 4$, then check whether f is a bijection or not.

- **6.** If $\begin{bmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{bmatrix}$ is a singular matrix, then find the value of x.
- 7. Find the distance of the plane 3x 6y + 2z + 11 = 0 from the origin.

OR

Find the value of λ such that the lines $\frac{x}{1} = \frac{y}{3} = \frac{z}{2\lambda}$ and $\frac{x}{-3} = \frac{y}{5} = \frac{z}{2}$ are perpendicular to each other.

- 8. If $A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^T B^T$.
- **9.** Let *A* and *B* be independent events with P(A) = 1/4 and $P(A \cup B) = 2P(B) P(A)$. Find P(B).

OR

A and B are events such that P(A) = 0.4, P(B) = 0.3 and $P(A \cup B) = 0.5$. Then find $P(B' \cap A)$.

- **10.** Let $R = \{(3, 1), (1, 3), (3, 3)\}$ be a relation defined on the set $A = \{1, 2, 3\}$. check whether R is symmetric, transitive or reflexive.
- 11. The position vectors of points A, B, C, D are \vec{a} , \vec{b} , $2\vec{a} + 3\vec{b}$ and $\vec{a} 2\vec{b}$ respectively. Find \overrightarrow{DB} and \overrightarrow{AC} .
- 12. Evaluate : $\int_{0}^{\pi/4} \tan^3 x \ dx$
- **13.** If $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, then find the value of $P(A \mid B)$.
- **14.** Find the order and degree for the differential equation $x\frac{dy}{dx} + 2y = xy\frac{dy}{dx}$.
- **15.** Find the equation of a line passing through a point (2, -1, 3) and parallel to the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda(2\hat{i} + \hat{j} 2\hat{k})$.
- **16.** Find the number of equivalence relations on the set {1, 2, 3} containing (1, 3) and (3, 1).

Section - II

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. An owner of a car rental company have determined that if they charge customers $\stackrel{?}{\underset{?}{?}} x$ per day to rent a car, where $50 \le x \le 200$, then number of cars (n), they rent per day can be shown by linear function n(x) = 1000 - 5x. If they charge $\stackrel{?}{\underset{?}{?}} 50$ per day or less they will rent all their cars. If they charge $\stackrel{?}{\underset{?}{?}} 200$ or more per day they will not rent any car.

Mathematics 47

Based on the above information, answer the following question.

(i) Total revenue *R* as a function of *x* can be represented as

(a) $1000x - 5x^2$

(b) $1000x + 5x^2$

(c) 1000 - 5x

(d) $1000 - 5x^2$

(ii) If R(x) denote the revenue, then maximum value of R(x) occur when x equals

(a) 10

(b) 100

(c) 1000

(d) 50

(iii) At x = 220, the revenue collected by the company is

(a) ₹10

(b) ₹500

(c) ₹0

(d) ₹1000

(iv) The number of cars rented per day, if x = 75 is

(a) 675

(b) 700

(c) 625

(d) 600

(v) Maximum revenue collected by company is

(a) ₹40000

(b) ₹ 45000

(c) ₹ 55000

(d) ₹ 50000

18. In a family, on the occasion of Diwali celebration father, mother, daughter and son line up at random for a family photograph.

(i) Find the probability that son is at one end, given

that father and mother are in the middle.

(a) 1

(c) $\frac{1}{3}$

(ii) Find the probability that mother is at left end, given that son and daughter are together.

(a) $\frac{1}{2}$

(b) $\frac{1}{3}$

(d) 0

(iii) Find the probability that father and mother are in the middle, given that daughter is at right end.

(a) $\frac{1}{4}$

(b) $\frac{1}{2}$

(c) $\frac{1}{2}$

(iv) Find the probability that mother and son are standing together, given that father and daughter are standing together.

(a) 0

(b) 1

(c) $\frac{1}{2}$

(v) Find the probability that father and mother are on either of the ends, given that daughter is at second position from right end.

(a) $\frac{1}{3}$

(b) $\frac{2}{3}$

(c) $\frac{1}{4}$

(d) $\frac{2}{5}$

PART - B

Section - III

19. Find the value of the constant k so that the function f, defined below, is continuous at x = 0.

$$f(x) = \begin{cases} \left(\frac{1 - \cos 4x}{8x^2}\right), & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$$

20. Evaluate : $\int_{0}^{2\pi} \frac{dx}{e^{\sin x} + 1}$

Evaluate : $\int |x| dx$

- **21.** If 0 < x < 1, then $\sqrt{1 + x^2} \left[(x \cos[\cot^{-1} x] + \sin[\cot^{-1} x])^2 1 \right]^{1/2}$.
- **22.** Show that the function f given by $f(x) = x^3 3x^2 + 4x$, $x \in R$ is increasing on R.
- **23.** If $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} \hat{k}$, then find $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} \vec{b})$.

OR

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then find the value of $\lambda + \mu$.

- **24.** Find the area bounded by the curve $x = 3y^2 9$ and the line x = 0, y = 0 and y = 1.
- **25.** Two cards are drawn successively, without replacement, from a well-shuffled pack of 52 cards. Find the probability distribution of number of spades.
- **26.** Differentiate $(\tan^{-1} x^{1/3} + \tan^{-1} a^{1/3})$ w.r.t. x.
- 27. Given $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$, compute A^{-1} , if exists.
- **28.** If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 be the direction cosines of two lines, show that the direction cosines of the line perpendicular to both of them are proportional to $(m_1n_2 m_2n_1)$, $(n_1l_2 n_2l_1)$, $(l_1m_2 l_2m_1)$.

OR

Find the equation of a line passing through the point (-3, 2, -4) and equally inclined to the axes.

Section - IV

- 29. Determine the value of the constant k so that the function $f(x) = \begin{cases} \frac{\sqrt{1 + kx \sqrt{1 kx}}}{x}, & \text{if } -1 \le x < 0 \\ \frac{2x + 1}{x 1}, & \text{if } 0 \le x \le 1 \end{cases}$
- **30.** Find the area of the region bounded by the lines y = |x 3| and the lines x = 2, x = 4 and x-axis.
- **31.** Let $A = R \{3\}$, $B = R \{1\}$ and $f: A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$. Then, prove that f is bijective.

OF

Let $A = \{x : -1 \le x \le 1\}$ and $f : A \to A$ is a function defined by f(x) = x |x|, then check whether f is a bijection or not.

- **32.** A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.
- 33. If $\int \frac{\tan x}{1 + \tan x + \tan^2 x} dx = x \frac{K}{\sqrt{A}} \tan^{-1} \left(\frac{K \tan x + 1}{\sqrt{A}} \right) + C$,

(where C is a constant of integration), then find the value of ordered pair (K, A).

34. Find the solution of the differential equation $y^2 dx + (xy + x^2) dy = 0$.

OI

Find the particular solution of $\ln\left(\frac{dy}{dx}\right) = 3x + 4y$, y(0) = 0.

35. Show that f(x) = |x - 3|, $\forall x \in R$ is continuous but not differentiable at x = 3.

Mathematics 49

36. Minimize z = x + 2y, subject to $x + 2y \ge 50$, $2x - y \le 0$, $2x + y \le 100$, $x, y \ge 0$.

Find the maximum value of z = 11x + 8y subject to $x \le 4$, $y \le 6$, $x + y \le 6$, $x \ge 0$, $y \ge 0$.

37. If
$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
, show that $A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$.

OR

Find the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ by using adjoint method, if it exists. Also, find (adj A)².

38. Find the equation of the plane passing through the point $2\hat{i} - \hat{k}$ and parallel to the lines $\frac{x}{-3} = \frac{y-2}{4} = z + 1 \text{ and } x - 4 = \frac{1-y}{2} = 2z.$ OR

A perpendicular is drawn from the point P(2, 4, -1) to the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$. Find the equation of the perpendicular from P to the given line.

< SOLUTIONS >

...(ii)

1. We have,
$$\begin{bmatrix} x - y & 3 \\ 2x - y & 2x + 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 12 & 15 \end{bmatrix}$$

 $\Rightarrow x - y = 5$...(i)

and
$$2x - y = 12$$

Subtracting (i) from (ii), we get x = 7From (i), y = x - 5 = 7 - 5 = 2

The matrix
$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$
 is skew-symmetric.

$$\therefore A' = -A \Rightarrow \begin{bmatrix} 0 & -1 & x \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -x & 3 & 0 \end{bmatrix}$$
6. Since the given matrix
$$\begin{vmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{vmatrix} = 0$$

$$\Rightarrow x = 2$$

2. We have,
$$\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$$

 $\Rightarrow \overrightarrow{PQ} = \overrightarrow{QR}$ [By triangle law]

Thus, PQ and QR are either parallel or collinear. But, Q is a point common to them.

So, PQ and QR are collinear.

Hence, points P, Q, R are collinear.

3. Let
$$I = \int \sin^3 x \cos^3 x \, dx$$

$$\Rightarrow I = \frac{1}{8} \int (2\sin x \cos x)^3 dx$$

$$\Rightarrow I = \frac{1}{8} \int \sin^3 2x \ dx \Rightarrow I = \frac{1}{8} \int \frac{3\sin 2x - \sin 6x}{4} \ dx$$

$$\Rightarrow I = \frac{1}{32} \left\{ -\frac{3}{2} \cos 2x + \frac{1}{6} \cos 6x \right\} + C$$

We have,
$$I = \int_{0}^{2} (3x^2 + 2x - 1)dx = \left[3\left(\frac{x^3}{3}\right) + 2\left(\frac{x^2}{2}\right) - x\right]_{0}^{2}$$

= $[x^3 + x^2 - x]_{0}^{2} = (2_3 + 2_2 - 2) - (0_3 + 0_2 - 0) = 10$

4. Since,
$$\left(\frac{1}{2}, \frac{1}{3}, n\right)$$
 are the direction cosines of a line

$$\therefore \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + n^2 = 1 \implies n^2 = \frac{23}{36} \implies n = \frac{\pm\sqrt{23}}{6}$$

5. For one-one : Consider, $f(x_1) = f(x_2)$

$$\Rightarrow 4x_1 = 4x_2 \Rightarrow x_1 = x_2$$

Hence, f is one-one.

For onto: Let y be any element in N(co-domain), then $f(x) = y \implies 4x = y$

...(i)
$$\Rightarrow x = \frac{y}{4}$$
. But $\forall y \in N, \frac{y}{4} \notin N$

Thus, f(x) is not onto.

Given $f(x) = x^3 + 4$. Let $x_1, x_2 \in R$ Now, $f(x_1) = f(x_2) \implies x_1^3 + 4 = x_2^3 + 4$ $\Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$

 \therefore f(x) is one-one. Also it is onto.

Hence it is a bijection.

6. Since the given matrix is singular.

$$\begin{vmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(2+x)(5-2)-3(-5-2x)+4(1+x)=0$

$$\Rightarrow 13x = -25 \Rightarrow x = -\frac{25}{13}$$

7. We have, equation of plane is 3x - 6y + 2z + 11 = 0. Its distance from origin (0, 0, 0) is

$$\left| \frac{3 \times 0 - 6 \times 0 + 2 \times 0 + 11}{\sqrt{3^2 + (-6)^2 + (2)^2}} \right| = \frac{11}{\sqrt{9 + 36 + 4}} = \frac{11}{7} \text{ units.}$$

Direction ratios of the given lines are $(1, 3, 2\lambda)$ and $(-3, 2\lambda)$ 5, 2) respectively. Since, the lines are at right angles, so $(1) \times (-3) + (3) \times (5) + 2(2\lambda) = 0$

$$\Rightarrow$$
 -3 + 15 + 4 λ = 0 \Rightarrow λ = -3

8. Given,
$$A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$

$$\Rightarrow B^T = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\therefore A^{T} - B^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$$

9. We have, P(A) = 1/4

 $\Rightarrow P(B) = 2/5$

Now,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - P(A) P(B)$ (: A, B are independent)
 $\Rightarrow 1/4 + P(B) - (1/4) P(B) = 2P(B) - 1/4$ (Given)

Given,
$$P(A) = 0.4$$
, $P(B) = 0.3$ and $P(A \cup B) = 0.5$.
Clearly, $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
= $0.4 + 0.3 - 0.5 = 0.2$

Now,
$$P(B' \cap A) = P(A) - P(A \cap B) = 0.4 - 0.2 = 0.2 = \frac{1}{5}$$

- **10.** Given that, $R = \{(3, 1), (1, 3), (3, 3)\}$ be defined on the set $A = \{1, 2, 3\}$.
- \therefore (2, 2) \notin *R*. Therefore, *R* is not reflexive.
- \therefore $(3, 1) \in R, (1, 3) \in R$. Hence, R is symmetric.

Since, $(1, 3) \in R$, $(3, 1) \in R$ but $(1, 1) \notin R$ So, R is not transitive.

11. We have, \overrightarrow{DB} = Position vector of *B*

– Position vector of *D*

$$\Rightarrow \overrightarrow{DB} = \overrightarrow{b} - (\overrightarrow{a} - 2\overrightarrow{b}) = 3\overrightarrow{b} - \overrightarrow{a}$$

Similarly, $\overrightarrow{AC} = (2\vec{a} + 3\vec{b}) - \vec{a} = \vec{a} + 3\vec{b}$

12. Let
$$I = \int_{0}^{\pi/4} \tan^3 x \, dx = \int_{0}^{\pi/4} \sec^2 x \tan x \, dx - \int_{0}^{\pi/4} \tan x \, dx$$

Put tan x = t in first integral $\Rightarrow \sec^2 x \, dx = dt$

$$I = \int_{0}^{1} t \, dt - \int_{0}^{\pi/4} \tan x \, dx = \left[\frac{t^{2}}{2} \right]_{0}^{1} - \left[\log |\sec x| \right]_{0}^{\pi/4}$$
$$= \left(\frac{1}{2} - 0 \right) - \log \left| \sec \frac{\pi}{4} \right| + \log |\sec 0| = \frac{1}{2} (1 - \log 2)$$

13. We have,
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{13}}{\frac{9}{13}} = \frac{4}{9}$$

14. Given,
$$(1 - y)x \frac{dy}{dx} + 2y = 0$$

Order and degree for the above equation are 1 and 1 respectively.

15. The given line is parallel to the vector $2\hat{i}+\hat{j}-2\hat{k}$ and the required line is parallel to the given line. So, required line is parallel to the vector $2\hat{i}+\hat{j}-2\hat{k}$. Thus, the equation of the required line passing through (2, -1, 3) is

$$\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \mu(2\hat{i} + \hat{j} - 2\hat{k})$$

16. Equivalence relations on the set $\{1, 2, 3\}$ containing (1, 3) and (3, 1) are

$$A_1 = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$$

$$A_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 1), (3, 2),$$

$$(1, 3)\}$$

So, only two equivalence relations exist.

17. (i) (a): Let x be the price charge per car per day and n be the number of cars rented per day.

$$R(x) = n \times x = (1000 - 5x) x = -5x^2 + 1000x$$

(ii) (b): We have, $R(x) = 1000x - 5x^2$

$$\Rightarrow R'(x) = 1000 - 10x$$

For R(x) to be maximum or minimum, R'(x) = 0

$$\Rightarrow$$
 $-10x + 1000 = 0 \Rightarrow x = 100$

Also,
$$R''(x) = -10 < 0$$

Thus, R(x) is maximum at x = 100

(iii) (c): If company charge ₹ 200 or more, they will not rent any car. Then revenue collected by him will be zero.

(iv) (c): If x = 75, number of cars rented per day is given by

$$n = 1000 - 5 \times 75 = 625$$

(v) (d): At x = 100, R(x) is maximum.

Maximum revenue = $R(100) = -5(100)^2 + 1000(100)$ = ₹ 50,000

18. Sample space is given by {*MFSD*, *MFDS*, *MSFD*, *MSDF*, *MDFS*, *MDSF*, *FMSD*, *FMDS*, *FSMD*, *FSDM*, *FDMS*, *FDSM*, *SFMD*, *SFDM*, *SMFD*, *SMDF*, *SDMF*, *SDFM DFMS*, *DFSM*, *DMSF*, *DMFS*, *DSMF*, *DSFM*}

$$\therefore$$
 $n(s) = 24$

(i) (a): Let *A* denotes the event that son is at one end.

$$\therefore$$
 $n(A) = 12$

And *B* denotes the event that father and mother are in middle.

$$\therefore$$
 $n(B) = 4$

Also,
$$n(A \cap B) = 4$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{4/24}{4/24} = 1$$

(ii) (b): Let *A* denotes the event that mother is at left end.

$$\therefore$$
 $n(A) = 6$

And *B* denotes the event that son and daughter are together.

$$\therefore$$
 $n(B) = 12$

Also,
$$n(A \cap B) = 4$$

$$\therefore P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{4/24}{12/24} = \frac{1}{3}$$

(iii) (c): Let *A* denotes the event that father and mother are in middle.

$$\therefore$$
 $n(A) = 4$

And *B* denotes the event that daughter is at right end.

$$\therefore$$
 $n(B) = 6$

Also,
$$n(A \cap B) = 2$$

$$\therefore P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2/24}{6/24} = \frac{1}{3}$$

(iv) (d): Let A denotes the event that mother and son are standing together.

$$\therefore$$
 $n(A) = 12$

And *B* denotes the event that father and daughter are standing together.

:.
$$n(B) = 12$$

Also,
$$n(A \cap B) = 8$$

$$\therefore P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{8/24}{12/24} = \frac{2}{3}$$

(v) (a): Let *A* denotes the event that father and mother are on other end.

$$\therefore$$
 $n(A) = 4$

And *B* denotes the event that daughter is at second position from right end.

$$\therefore$$
 $n(B) = 6$

Also,
$$n(A \cap B) = 2$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2/24}{6/24} = \frac{1}{3}$$

19. We have, f(x) is continuous at x = 0.

Now,
$$f(0) = k$$

and
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos 4x}{8x^2}$$

$$= \lim_{x \to 0} \frac{2 \cdot \sin^2 2x}{8x^2} = \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^2 = 1$$

 \therefore f is continuous at x = 0.

$$\therefore f(0) = \lim_{x \to 0} f(x) \Rightarrow k = 1$$

20. Let
$$I = \int_{0}^{2\pi} \frac{dx}{e^{\sin x} + 1}$$

$$\Rightarrow I = \int_{0}^{2\pi} \frac{dx}{e^{\sin(2\pi - x)} + 1}$$

$$\Rightarrow I = \int_{0}^{2\pi} \frac{dx}{e^{-\sin x} + 1} \Rightarrow I = \int_{0}^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} dx \qquad \dots$$

Adding (i) and (ii), we get

$$2I = \int_{0}^{2\pi} 1 \cdot dx = 2\pi \implies I = \pi$$

Let
$$I = \int |x| \cdot 1 dx$$

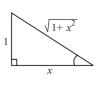
$$= |x|x - \int \frac{|x|}{x} x \, dx + K = x |x| - \int |x| \, dx + K$$

$$\Rightarrow I = x \mid x \mid -I + K \Rightarrow 2I = x \mid x \mid +K$$

$$\Rightarrow I = \frac{x |x|}{2} + C \left[\text{where } \frac{K}{2} = C \right]$$

21.
$$\cos(\cot^{-1} x) = \frac{x}{\sqrt{1+x^2}}$$

$$\sin(\cot^{-1} x) = \frac{1}{\sqrt{1 + x^2}}$$



The given expression becomes

$$\sqrt{1+x^2} \left[\left(\frac{x^2+1}{\sqrt{1+x^2}} \right)^2 - 1 \right]^{1/2} = x\sqrt{1+x^2}.$$

22. Here
$$f(x) = x^3 - 3x^2 + 4x$$

$$\Rightarrow f'(x) = 3x^2 - 6x + 4 = 3(x^2 - 2x) + 4$$
$$= 3(x^2 - 2x + 1) - 3 + 4$$
$$= 3(x - 1)^2 + 1 > 0 \ \forall x \in R$$

 \Rightarrow f is increasing on R.

23. Here,
$$\vec{a} + 3\vec{b} = \hat{i} + \hat{j} + 2\hat{k} + 3(3\hat{i} + 2\hat{j} - \hat{k})$$

$$=10\hat{i}+7\hat{i}-\hat{k}$$

and
$$2\vec{a} - \vec{b} = 2(\hat{i} + \hat{j} + 2\hat{k}) - (3\hat{i} + 2\hat{j} - \hat{k}) = -\hat{i} + 5\hat{k}$$

$$(\vec{a} + 3\vec{b}) \cdot (2\vec{a} - \vec{b}) = (10\hat{i} + 7\hat{j} - \hat{k}) \cdot (-\hat{i} + 5\hat{k})$$
$$= 10 \times (-1) + 7 \times 0 + (-1) \times 5 = -15$$

OR

We have,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -\hat{i} + \hat{j}$$

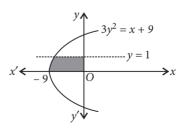
...(i) Now,
$$(\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\Rightarrow \lambda \vec{a} + \mu \vec{b} = \hat{i}(0-0) - \hat{j}(0-0) + \hat{k}(0-1)$$

$$\Rightarrow (\lambda + \mu)\hat{i} + (\lambda + \mu)\hat{j} + (\lambda)\hat{k} = -\hat{k}$$

On comparing, we get $\lambda = -1$ and $\lambda + \mu = 0$

24. We have, $x = 3y^2 - 9 \implies 3y^2 = x + 9$



Required area = area of shaded region

$$= \left| \int_{0}^{1} (3y^{2} - 9) dy \right| = \left| y^{3} - 9y \right|_{0}^{1}$$

$$= |1 - 9| = 8 \text{ sq. units}$$

P(X = 0) = P(drawing no spade cards)

$$=\frac{^{39}C_2}{^{52}C_2}=\frac{19}{34}$$

P(X = 1) = P(drawing one spade and one non-spade card)

$$=\frac{{}^{13}C_{1}\times{}^{39}C_{1}}{{}^{52}C_{2}}=\frac{13}{34}$$

P(X = 2) = P(drawing both spade cards)

$$= \frac{^{13}C_2}{^{52}C_2} = \frac{1}{17}$$

:. The probability distribution of number of spades is

X	0	1	2
P(X)	$\frac{19}{34}$	$\frac{13}{34}$	$\frac{1}{17}$

26. Let $y = \tan^{-1}x^{1/3} + \tan^{-1}a^{1/3}$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{1 + (x^{1/3})^2} \left(\frac{1}{3} x^{\frac{1}{3} - 1} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{1+x^{2/3}} \left(\frac{1}{3x^{2/3}} \right) = \frac{1}{3x^{2/3} (1+x^{2/3})}$$

27. We have,
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$$

$$\therefore |A| = \begin{vmatrix} 2 & -3 \\ -4 & 7 \end{vmatrix} = 14 - 12 = 2 \neq 0$$

So, A is a non-singular matrix and therefore it is invertible.

$$\therefore \text{ adj } A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$

Hence,
$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{2} \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$

28. Let *l*, *m*, *n* be the direction cosines of the line perpendicular to each of the given lines. Then,

$$ll_1 + mm_1 + nn_1 = 0$$
 ...(i)

and
$$ll_2 + mm_2 + nn_2 = 0$$
 ...(ii)

On solving (i) and (ii), we get

$$\frac{l}{m_1 n_2 - m_2 n_1} = \frac{m}{n_1 l_2 - n_2 l_1} = \frac{n}{l_1 m_2 - l_2 m_1}$$

Hence, the direction cosines of the line perpendicular to the given lines are proportional to $(m_1n_2 - m_2n_1)$, $(n_1l_2 - n_2l_1)$, $(l_1m_2 - l_2m_1)$.

Since, the line is equally inclined to the axes.

$$\therefore l = m = n \qquad \dots (i)$$

The required equation of line is

$$\frac{x+3}{l} = \frac{y-2}{l} = \frac{z+4}{l}$$
 [using (i)]

$$\Rightarrow \frac{x+3}{l} = \frac{y-2}{l} = \frac{z+4}{l}$$

29. We have, L.H.L. (at
$$x = 0$$
)

 $\Rightarrow x + 3 = y - 2 = z + 4$

$$= \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{1+kx} - \sqrt{1-kx}\right)\left(\sqrt{1+kx} + \sqrt{1-kx}\right)}{x} \frac{\left(\sqrt{1+kx} + \sqrt{1-kx}\right)}{\left(\sqrt{1+kx} + \sqrt{1-kx}\right)}$$

$$= \lim_{x \to 0} \frac{1 + kx - 1 + kx}{x\left(\sqrt{1 + kx} + \sqrt{1 - kx}\right)}$$

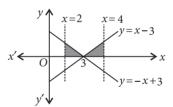
$$= \lim_{x \to 0} \frac{2k}{\sqrt{1 + kx} + \sqrt{1 - kx}} = \frac{2k}{\sqrt{1} + \sqrt{1}} = \frac{2k}{2} = k$$

R.H.L. (at
$$x = 0$$
)

$$= \lim_{x \to 0^+} f(x) = \lim_{x \to 0} \frac{2x+1}{x-1} = -1 \text{ and } f(0) = -1$$

Since f(x) is continuous at x = 0. $\therefore k = -1$.

30. We have,
$$y = \begin{cases} x-3, & \forall x \ge 3 \\ -x+3, & \forall x < 3 \end{cases}$$



$$\therefore \text{ Required area} = \int_{2}^{3} -(x-3)dx + \int_{3}^{4} (x-3)dx$$

$$= \left[3x - \frac{x^2}{2}\right]_{2}^{3} + \left[\frac{x^2}{2} - 3x\right]_{2}^{4} = \frac{1}{2} + \frac{1}{2} = 1 \text{ sq. unit}$$

31. Let x and y be two arbitrary elements in A.

...(i) Then,
$$f(x) = f(y) \Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow x = y, \forall x, y \in A$$

So, *f* is an injective mapping.

Again, let *y* be an arbitrary element in *B*, then f(x) = y

$$\Rightarrow \frac{x-2}{x-3} = y \Rightarrow x = \frac{3y-2}{y-1}$$

Clearly, $\forall y \in B$, $x = \frac{3y-2}{y-1} \in A$, thus for all $y \in B$, 33. We have, $\int \frac{\tan x}{1+\tan x+\tan^2 x} dx$

there exists $x \in A$ such that

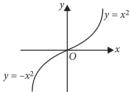
$$f(x) = f\left(\frac{3y-2}{y-1}\right) = \frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} = y$$

Thus, every element in the co-domain B has its pre-image in A, so f is a surjective. Hence, $f: A \rightarrow B$ is bijective.

OR

$$f(x) = x |x| = \begin{cases} x^2, & x \ge 0 \\ -x^2, & x < 0 \end{cases}$$

The graph shows f(x) is one-one, as any straight line parallel to x-axis cuts only at one point.



Here, range of $f(x) \in [-1, 1]$.

Thus range = co-domain.

Hence, f(x) is onto.

Therefore f(x) is one-one and onto, *i.e*, bijective.

32. Let dimensions of the rectangle be x and y(as shown).

:. Perimeter of window,

$$P = 2y + x + \pi x/2 = 10 \implies y = 5 - \frac{x}{2} - \frac{\pi x}{4}$$
 ...(i)

Area of window, $A = xy + \frac{1}{2}\pi \frac{x^2}{4}$

$$\Rightarrow A = x \left[5 - \frac{x}{2} - \frac{\pi x}{4} \right] + \frac{1}{2} \pi \frac{x^2}{4}$$
$$= 5x - \frac{x^2}{2} - \frac{\pi x^2}{8}$$

$$\therefore \frac{dA}{dx} = 5 - x - \frac{\pi x}{4}$$

Now,
$$\frac{dA}{dx} = 0 \implies x = \frac{20}{4 + \pi}$$

$$\frac{d^2A}{dx^2} = -\left(1 + \frac{\pi}{4}\right) < 0$$

Thus, A is maximum for

$$x = \frac{20}{4 + \pi}$$

From (i),
$$y = \frac{10}{4 + \pi}$$
 m

So,
$$x = \frac{20}{4+\pi}$$
 m, $y = \frac{10}{4+\pi}$ m will give maximum light.

33. We have,
$$\int \frac{\tan x}{1 + \tan^2 x} dx$$

$$= \int \frac{1 + \tan x - 1}{1 + \tan x + \tan^2 x} dx = \int \frac{1 + \tan x + \tan^2 x - \sec^2 x}{1 + \tan x + \tan^2 x} dx$$

$$= \int \left(1 - \frac{\sec^2 x}{1 + \tan x + \tan^2 x}\right) dx = x - \int \frac{\sec^2 x}{1 + \tan x + \tan^2 x} dx$$

$$=x-\int \frac{1}{1+t+t^2} dt$$
 (Putting $\tan x = t \Rightarrow \sec^2 x dx = dt$)

$$= x - \int \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = x - \frac{1}{\sqrt{3}/2} \tan^{-1} \left(\frac{t + \frac{1}{2}}{\sqrt{3}/2}\right) + C$$

$$\int_{0}^{y=x^{2}} = x - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2 \tan x + 1}{\sqrt{3}} \right) + C$$

$$K = 2, A = 3$$

34. We have,
$$y^2 dx + (xy + x^2) dy = 0 \Rightarrow \frac{dy}{dx} = \frac{-y^2}{xy + x^2}$$

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{-v^2 x^2}{v x^2 + x^2} \Rightarrow x \frac{dv}{dx} = \frac{-v^2}{v + 1} - v$$

...(i)
$$\Rightarrow x \frac{dv}{dx} = -\left(\frac{2v^2 + v}{v + 1}\right) \Rightarrow \int \left(\frac{v + 1}{v(2v + 1)}\right) dv = -\int \frac{dx}{x}$$

$$\Rightarrow \int \left(\frac{1}{\nu} - \frac{1}{2\nu + 1}\right) d\nu = -\log x + \log c$$

$$\Rightarrow \log v - \frac{1}{2}\log|2v+1| + \log x = \log c$$

$$\Rightarrow \log \left| \frac{v^2 x^2}{2v+1} \right| = \log c^2 \Rightarrow \frac{v^2 x^2}{2v+1} = c^2$$

$$\Rightarrow y^2 = c^2 \left(\frac{2y}{x} + 1\right) \Rightarrow xy^2 = c^2(x + 2y)$$

We have,
$$\ln\left(\frac{dy}{dx}\right) = 3x + 4y$$

$$\Rightarrow \frac{dy}{dx} = e^{3x} \cdot e^{4y} \Rightarrow e^{-4y} dy = e^{3x} dx$$
On integration, we get

$$-\frac{1}{4}e^{-4y} = \frac{e^{3x}}{3} + C$$

At
$$x = 0$$
, $y = 0$; we have

$$-\frac{1}{4} = \frac{1}{3} + C \implies C = -\frac{7}{12}$$

:. Solution is
$$\frac{e^{-4y}}{4} + \frac{e^{3x}}{3} = \frac{7}{12} \implies 3e^{-4y} + 4e^{3x} = 7$$

35. We have,
$$f(x) = \begin{cases} -(x-3), & \text{if } x < 3 \\ x - 3, & \text{if } x \ge 3 \end{cases}$$

Test for continuity:

L.H.L. =
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} -(x-3) = -(3-3) = 0$$

R.H.L. =
$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3} (x - 3) = 3 - 3 = 0$$

Also,
$$f(3) = 3 - 3 = 0$$

:. L.H.L. = R.H.L. =
$$f(3)$$

Hence, f(x) is continuous at x = 3.

Test for differentiability:

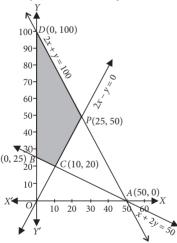
$$Lf'(3) = \lim_{h \to 0} \frac{f(3-h) - f(3)}{-h}$$
$$= \lim_{h \to 0} \frac{-(3-h-3) - 0}{-h} = -1$$

$$Rf'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{(3+h-3) - 0}{h} = 1$$

Thus,
$$Lf'(3) \neq Rf'(3)$$

Hence, f(x) is not differentiable at x = 3.

36. First we draw the lines whose equations are x + 2y = 50, 2x - y = 0 and 2x + y = 100 respectively.



The feasible region is *BCPDB* which is shaded in the figure.

The vertices of the feasible region are B(0, 25), C(10, 20), P(25, 50) and D(0, 100).

The values of the objective function z = x + 2y at these vertices are given below.

Corner points	Value of $z = x + 2y$
B(0, 25)	50 (minimum)
C(10, 20)	50 (minimum)
P(25, 50)	125
D(0, 100)	200

 \therefore z has minimum value 50 at two consecutive vertices B and C.

 \therefore z has minimum value 50 at every point of segment joining the points B(0, 25) and C(10, 20).

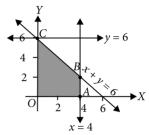
Hence, there are infinite number of optimal solutions.

OR

Convert the inequations into equations and draw the corresponding lines.

$$x + y = 6$$
, $x = 4$, $y = 6$

As x, $y \ge 0$, the solution lies in the first quadrant.



We have seen that O, A, B, C are the corner points. Hence maximum value of the objective function z will occur at one of the corner points.

B is the point of intersection of the lines x + y = 6 and x = 4 *i.e.*, B (4, 2)

We have points A(4, 0), B(4, 2) and C(0, 6)

Now, z = 11x + 8y

$$\therefore$$
 $z(A) = 11(4) + 8(0) = 44$

$$z(B) = 11(4) + 8(2) = 60$$

$$z(C) = 11(0) + 8(6) = 48$$

$$z(O) = 11(0) + 8(0) = 0$$

 \therefore z has maximum value 60 at B(4, 2).

37. We have,
$$|A| = \begin{vmatrix} 1 & \tan x \\ -\tan x & 1 \end{vmatrix} = 1 + \tan^2 x \neq 0$$

So, *A* is invertible.

$$\therefore \text{ adj } A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

Now,
$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A$$

$$\Rightarrow A^{-1} = \begin{bmatrix} \frac{1}{1 + \tan^2 x} & \frac{-\tan x}{1 + \tan^2 x} \\ \frac{\tan x}{1 + \tan^2 x} & \frac{1}{1 + \tan^2 x} \end{bmatrix}$$

$$A^{T}A^{-1} = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{1 + \tan^{2} x} & \frac{-\tan x}{1 + \tan^{2} x} \\ \frac{\tan x}{1 + \tan^{2} x} & \frac{1}{1 + \tan^{2} x} \end{bmatrix}$$

$$\Rightarrow A^{T}A^{-1} = \begin{bmatrix} \frac{1 - \tan^{2} x}{1 + \tan^{2} x} & \frac{-2 \tan x}{1 + \tan^{2} x} \\ \frac{2 \tan x}{1 + \tan^{2} x} & \frac{1 - \tan^{2} x}{1 + \tan^{2} x} \end{bmatrix}$$

$$\Rightarrow A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$
$$|A| = 2(-1 - 0) - 0(0 - 2) + 1(0 + 1) = -2 + 1 = -1 \neq 0$$

$$\therefore \text{ adj } A = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$

So, A^{-1} exists.

$$A^{-1} = \frac{1}{|A|} (\text{adj } A) = -1 \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -2 & -1 & 4 \\ -1 & 0 & 2 \end{bmatrix} \quad \frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9} \text{ are } M(\lambda - 5, 4\lambda - 3, -9\lambda + 6)$$
Direction ratios of PM are

Now,
$$(adj A)^2 = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 & -3 \\ -4 & 1 & 6 \\ -3 & 0 & 5 \end{bmatrix}$$

38. The required plane passes through the point with position vector $\vec{a} = 2\hat{i} - \hat{k}$ i.e., the point (2, 0, -1) and is parallel to the lines $\frac{x}{-3} = \frac{y-2}{4} = \frac{z+1}{1}$ and $\frac{x-4}{1} = \frac{y-1}{-2} = \frac{z}{1/2}$

i.e. parallel to the lines whose direction ratios are

$$-3, 4, 1 \text{ and } 1, -2, \frac{1}{2}$$
 i.e., $-3, 4, 1 \text{ and } 2, -4, 1$

: The equation of the required plane is

$$(\vec{r} - \vec{a}) \cdot (\vec{b} \times \vec{c}) = 0.$$

$$\Rightarrow \begin{vmatrix} x-2 & y-0 & z-(-1) \\ -3 & 4 & 1 \\ 2 & -4 & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(x-2)(4+4)-y(-3-2)+(z+1)(12-8)=0$

$$\Rightarrow$$
 8(x - 2) + 5y + 4(z + 1) = 0

$$\Rightarrow 8x + 5y + 4z - 12 = 0.$$

Its vector equation is $\vec{r} \cdot (8\hat{i} + 5\hat{j} + 4\hat{k}) - 12 = 0$

Let M be the foot of the perpendicular drawn from the point P(2, 4, -1) to the given line.

The coordinates of any point on the line

$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9} \text{ are } M(\lambda - 5, 4\lambda - 3, -9\lambda + 6)$$

$$\lambda$$
 – 7, 4λ – 7, -9λ + 7

The direction ratios of the given line are 1, 4, -9Since *PM* is perpendicular to the given line.

$$\therefore 1(\lambda - 7) + 4(4\lambda - 7) - 9(-9\lambda + 7) = 0$$

$$\Rightarrow$$
 98 λ – 98 = 0 \Rightarrow λ = 1

Putting $\lambda = 1$, we have

$$M \equiv (-4, 1, -3)$$

Now, equation of PM = equation of the perpendicular from *P* to the given line

i.e.,
$$\frac{x-2}{-4-2} = \frac{y-4}{1-4} = \frac{z+1}{-3+1}$$

i.e.,
$$\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2}$$

 \bigcirc

57 **Mathematics**