Mathematics

(Chapter - 6) (Cubes and Cube Roots) (Exercise 6.1) (Class - VIII)

^						- 4	-
	11	0	CŤ	7	١m		
Q	u	u	JL				

Whi (i) (v)	ch of the following numbers are not perfect cubes: 216 (ii) 128 46656 nswer 1:	(iii) 1000	(iv) 100	
				2 216
				2 108
(i)	216			2 54
OTTALE.	Prime factors of $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$			3 27
	Here all factors are in groups of 3's (in triplets)			3 9
	Therefore, 216 is a perfect cube number.			3 3
				1
				2 128
				2 64
(::)	130			2 32
(11)	128 Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$			2 16
	Here one factor 2 does not appear in a 3's group.			2 8
	Therefore, 128 is not a perfect cube.			2 4
	Therefore, 120 is not a periode case.			2 2
				1
			2	1000
			2	500
(iii)	1000		2	250
	Prime factors of $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$		5	125
	Here all factors appear in 3's group.		5	25
	Therefore, 1000 is a perfect cube.		5	5
				1
			2	100
(iv)	100		2	50
	Prime factors of $100 = 2 \times 2 \times 5 \times 5$		5	25
	Here all factors do not appear in 3's group.		5	5
	Therefore, 100 is not a perfect cube.			1
			2	46656
			2	23328
			2	11664
			2	5832
(v)	46656	n . n . n . n . n . n . n . n	2	2916
	Prime factors of $46656 = 2 \times 2$	3 × 3 × 3 × 3 × 3	2	1458
	Here all factors appear in 3's group. Therefore, 46656 is a perfect cube.		3	729
	Therefore, 46656 is a perfect cube.		3	243
			3	81 27
			2	Δ/
			3	3
			J	1
				1

	<mark>stion 2:</mark> I the smallest number by which each of t	the following numbers must be mult	iplied to obtain a	a perfec
cub			-р	ролоо
	243 (ii) 256	(iii) 72	(iv) 675	
(v)	100			
Α	nswer 2:		2	242
			2	243
(i)	243		3	81 27
	Prime factors of $243 = 3 \times $	3	3	9
	Here 3 does not appear in 3's group. Therefore, 243 must be multiplied by 3	to make it a perfect cube	3	3
	Therefore, 243 must be multiplied by 3	to make it a perfect cube.		1
				•
			2	256
			2	128
			2	64
(ii)	256		2	32
()	Prime factors of $256 = 2 \times 2$	$2 \times 2 \times 2 \times 2$	2	16
	Here one factor 2 is required to make a	3's group.	2	8
	Therefore, 256 must be multiplied by 2	to make it a perfect cube.	2	4
			2	2
				1
			2	72
(:::·	72		2	26
(iii)	Prime factors of $72 = 2 \times 2 \times 2 \times 3 \times 3$	2	2	36 18
	Here 3 does not appear in 3's group.	,	3	9
	Therefore, 72 must be multiplied by 3	to make it a perfect cube.	3	3
				1
			3	675
(iv)	675		3	225
(IV)	Prime factors of $675 = 3 \times 3 \times 3 \times 5 \times$	5	3	75
	Here factor 5 does not appear in 3's gro		5	25
	Therefore, 675 must be multiplied by 3		5	5
			2	100
(v)	100		2	50
	Prime factors of $100 = 2 \times 2 \times 5 \times 5$		5	25
	Here factor 2 and 5 both do not appear			5
	Therefore, 100 must be multiplied by 2	$2 \times 5 = 10$ to make it a perfect cube.		1

Find the smallest number by which each of the following numbers must be divided to obtain a perfect

(iii) 135

(iv) 192

(ii) 128

Question 3:

81

(v) 704

cube:

Answer 3:

	3	81
(i) 81	3	27
Prime factors of $81 = 3 \times 3 \times 3 \times 3$	3	9
Here one factor 3 is not grouped in triplets.	3	3
Therefore, 81 must be divided by 3 to make it a perfect cube.		1
	2	128
	2	64
(ii) 128	2	32
Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$	2	16
Here one factor 2 does not appear in a 3's group.	2	8
Therefore, 128 must be divided by 2 to make it a perfect cube.	2	4
	2	2
		1
	3	135
(iii) 135	3	45
Prime factors of $135 = 3 \times 3 \times 3 \times 5$	3	15
Here one factor 5 does not appear in a triplet.	5	5
Therefore, 135 must be divided by 5 to make it a perfect cube.		1
	2	192
	2	96
(iv) 192	2	48
Prime factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$	2	24
Here one factor 3 does not appear in a triplet.	2	12
Therefore, 192 must be divided by 3 to make it a perfect cube.	2	6
	3	3
		1
	2	704
	2	352
	~	176
(v) 704	Z	170
(v) 704 Prime factors of $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 11$	2	88
Prime factors of $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 11$ Here one factor 11 does not appear in a triplet.	2 2 2	
Prime factors of $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 11$	2 2 2 2	88
Prime factors of $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 11$ Here one factor 11 does not appear in a triplet.	2 2 2 2	88 44

Question 4:

Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Answer 4:

Given numbers = $5 \times 2 \times 5$

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by $2 \times 2 \times 5$

= 20 to make it a perfect cube.

Hence, he needs 20 cuboids.

Mathematics

(Chapter - 6) (Cubes and Cube Roots) (Exercise 6.2)

(Class - VIII)

Question 1:

Find the cube root of each of the following numbers by prime factorization method:

- 64
- (ii) 512

(iii) 10648

(vii) 110592

- 15625
- (vi) 13824

(iv) 27000 (viii) 46656

- (ix) 175616
- (x) 91125

Answer 1:

- (i) 64 $\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$ $\sqrt[3]{64} = 2 \times 2 = 4$
- (ii) 512 $\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$

 $=2\times2\times2=8$

- (iii) 10648 $\sqrt[3]{10648} = \sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11}$ $= 2 \times 11 = 22$
- (iv) 27000 $\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$ $= 2 \times 3 \times 5 = 30$
- 15625 (v) $\sqrt[3]{15625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$ $= 5 \times 5 = 25$

- 64 32
- 16
- 8

- 512
- 256
- 128
- 64
- 32
- 16
- 8
- 10648
- 5324 2662
- 11 1331
- 121 11
- 11 11
- 27000
- 13500
- 6750 3375
- 1125
- 375
- 125 25

- 15625 3125
- 625
- 125 25

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3 1
	1

2	110592
2	55296
2	27648
2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3 3	9 3 1
	1

2 175616

2 43904

2 21952

2 2744

87808

10976

5488

1372

686

343

91125

30375

10125

3375

1125

375

125

25

49

(x) 91125

$$\sqrt[3]{91125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$$

 $= 3 \times 3 \times 5 = 45$

Question 2:

State true or false:

- (i) Cube of any odd number is even.
- (ii) A perfect cube does not end with two zeroes.
- (iii) If square of a number ends with 5, then its cube ends with 25.
- (iv) There is no perfect cube which ends with 8.
- (v) The cube of a two-digit number may be a three-digit number.
- (vi) The cube of a two-digit number may have seven or more digits.
- (vii) The cube of a single digit number may be a single digit number.
 Answer 2:
- (i) False Since, $1^3 = 1, 3^3 = 27, 5^3 = 125, \dots$ are all odd.
- (ii) True Since, a perfect cube ends with three zeroes. e.g. $10^3 = 1000, 20^3 = 8000, 30^3 = 27000, \dots$ so on
- (iii) False Since, $5^2 = 25, 5^3 = 125, 15^2 = 225, 15^3 = 3375$ (Did not end with 25)
- (iv) False Since, $12^3 = 1728$ [Ends with 8] And, $22^3 = 10648$ [Ends with 8]

(v) False

Since, $10^3 = 1000$ [Four digit number] And, $11^3 = 1331$ [Four digit number]

(vi) False Since, $99^3 = 970299$

[Six digit number]

(vii) True

 $1^3 = 1$ [Single digit number] $2^3 = 8$ [Single digit number]