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HYDRODYNAMICS

Between 1 and 2 fluid particles are in nearly circular motion and therefore have centripetal
acceleration. The force for this acceleration, like for any other situation in an ideal fluid,
can only come from the pressure variation along the line joining 1 and 2. This requires
that pressure at 1 should be greater than the pressure at 2 i.e.

PP

so that the fluid particles can have required acceleration. [f there is no turbulence. the
motion can be taken as irrotational. Then by considering

_(ﬁ Vedli=0

along the circuit shown we infer that
Vo> v
(The portion of the circuit near 1 and 2 are

streamlines while the other two arms are at
right angle to streamlines)

In an incompressible liquid we also have div ¥ = 0

By electrostatic analogy we then find that the density of streamlines is proportional to the
velocity at that point.

From the conservation of mass
VS = v S5, ¢y

But 5, < 5, as shown in the figure of the problem, therefore
vy > v,
As every streamline is horizontal between 1 & 2, Bernoull’s theorem becomes
P+ —;— pv2 = constant, which gives
p]<p2§iSV1>V2
As the difference in height of the water column is Ah, therefore
P, —p = pgAh (2)

From Bernoull’s theorem between poinis 1 and 2 of a streamtine

1 1 2
P1+§PV3=P2+§PV2

1
or, Pr-pi= 3P0 - V)
or pgih = % p(vf -3 (3} (using Eq. 2)
using (1) in (3), we get l [ t ,
2gAh 5 >

v = S5, 2 _ s

Hence the sought volume of water flowing per see

2gAh
Q=v3§=575 E:Eg"'?
3~ 9
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Applying Bemoulli’s theorem for the point A and B,
1
Pa= Pato PV as, = 0
|
or, 5PV =Ppa-pp= Ahpog
2 {28k
So, v\ ————
P
\ /2Ah
Thus, rate of flow of gas, @ = Sv= S beatia i 1

p
The gas flows over the tube past it at B. But at A the gas becomes stationary as the gas
will move info the tube which already contains gas.

In applying Bernoulli’s theorem we should remember that %+ 1 vt gz is constant along

a streamline. In the present case, we are really applying Bernoulli’s theorem somewhat
indirectly. The streamline at A is not the streamline at B. Nevertheless the result is correct.
To be convinced of this, we need only apply Bernoull’s theorem to the streamline that
goes through A by comparing the situation at A with that above B on the same level. In

steady conditions, this agrees with the result derived because there cannot be a transverse
pressure differential.

Since, the density of water is greater than that of kerosene oil, it will collect at the bottom.
Now, pressure due to watcr level equals A, p, g and pressure due to kerosene oil level

equals A, p, g. So, net pressure becomes i, p, g+ A, p, &
From Bernoulli’s theorem, this pressure energy

will be converted into kinetic energy while
flowing through the whole A.

. 1 3
ie. hypg+hp, =3PV

1 / P2 ———= 2 =
Hencev = 2th +h,— = 3m/s = -
{1 2"1]8 A==

Let, H be the total height of water column and the hole is made at a height # from the
bottom. H

Then from Bermoulli’s theorem — - -
1 -
Spvi= (H-h)pg

> 8%

or,v=Y(H - k) 2g, which is directed horizontally.

R

For the horizontal range, [= v ¢

=VZgH<-h) -\/% = 2V(Hh - KD

RN
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2
Now, for maximum I, d H:h_h =0

which yields h= %- 25 cm.

Let the velocity of the water jet, near the orifice be v/, then applying Bernoullis theorem,
1 2 1 2
PV =hopgtspv

or, V=V -2h, )
Here the pressure term on both sides is the same and equal to atmospheric pressure. (In
the problem book Fig. should be more cleat.)

Now, if it rises upto a height h then at this height, whole of iis kinetic-energy will be

converted into potential energy. So,
12

l 2 -
> pVv pgh or h %
V2 .
= -izuho = 20 cm, [using Eq. {1)]
Water flows through the small clearance into the orifice. Let d be the clearance. Then

from the equation of continuity
(2nRd)v,= (2nrd)v= (2nRd) v,

or v Ri=vr=wvR, 1 |

where v; , v; and v are respectively the inward [//////////////J’////// (L

radial velocities of the fluid at 1, 2 and 3.
Now by Bernoulli’s theorem just before 2 and _ __ _ _|_

just after it in the clearance A fan Ik-/?z T T
1 9 == ;} - A" 1R ==
Pyt hpg=po+ 5PV, @ Z=2he b |E===
—= )t | ===
Applying the same theorem at 3 and 1 we find =X o= _.,I_qr?: —
that this also equals 2 3 l\‘lkr‘; l 1
|

1 1
P+ 2PV =Pt 3P 3
(since the pressure in the orifice is p, )

From Egs. (2) and (3) we also hence

vy =V 2gh ©)]

1 v
and P'Po'l-ipl(l-[;:)]
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Then, work done = Fl L)
Applying Bemoulii's theorem for poinis

A and B,p= %
and v is the velocity at point B. Now, force

on the piston,

pv2 where p is the density

e

e - w—— e e —m
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1Y

UJI'-'

RN
|
|

2
where A is the cross section area of piston.

Also, discharge through the erifice during time
interval £ = Svr and this is equal to the volume
of the cylinder, i.e.,

— o ——

F-pA-%pva

— — . —

AR
L]
v

V=St or v= vy

5 3

From Eq. (1), (2) and (3) work done
é—gé-l- SoV/S e (a5 Al= V)
Let at any moment of time, water level in the vessel be H then speed of flow of water
through the orifice, at that moment will be
ve V2gH
In the time interval di, the volume of water ejected through orifice,
dVe= svdt
On the other hand, the volume of water in the vessel at time ¢ equals
V=SH
Differentiating (3) with respect to time,
dv dH

I—S-‘;‘— or dV=SdH

1 1
- 2pV2All 5 PA

M
2)

4

Egs. (2) and (4)

SdH= svdt or dt-:% dH

V2gH
fo-isf 8

S.a/2h
t= —-v--
§ g

In a rotating frame (with constant angular velocity) the Eulerian equation is

av"

dt

In the frame of rotating tube the liquid in the "column® is practically static because the
orifice is sufficiently small. Thus the Eulerian Eq. in projection form along 7 (which is

from (2)

Integrating,
Thus,

—6p+p§'+2p(17"xaﬂ+pwz?=p
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the position vector of an arbitrary liquid element of lenth dr relative to the rotation axis)

reduces 1o
-dp 9
— . 2
4 PO r=0 D 3 5 5
or, dp = p(rn2 rdr A = ‘:-::’:‘::;'F%ﬁ
P r e
$0, fdp = pmz_r rdr < 7 R
2o ¢-mn 0 -
2
Thus p(r) = py + B%— [;2 - (l*h)z] 1)
Hence the pressure at the end B just before the orifice i.c.
2
p() = py + E5-@1h - ) @

Then applying Bemoull’s theorem at the orifice for the points just inside and outside of
the end B

Pyt —;—p w? (21h~ hz) =p, + —;'-pv2 ( where v is the sought velocity)

So, v = ok V—,-’-—

Y 1 = :
The Euler’s equation 1s p i f-Vp=-V(p+pga where z is vertically upwards.

W

d? a;. - o
Now i -é—t-+(v-‘7) v. (1)
But V)=V %vz)—?x Curl ¥ @

we consider the steady (i.e. av7at = 0) flow of an incompressible fluid then p = constant.

.and as the motion is jrrotational Curl V=0

=21 2 -
So from (1) and (2) pV(Ev)--—V(p+pgz)
= 1
or, V(p+—2-pv2+pgz)-0
1.2
Hence przpv + p gz = constant.

Let the velocity of water, flowing through A be v, and that through B be v, then discharging
rate through A = Q, = Sv, and similarly through B= Svg.

Now, force of reaction at A,

Fy= pQava= PSY
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Hence, the net force,

2 2 —> —»
F=pS(vi-vp) as F, 1| Fy 1)

Applying Bernoulli’s theorem to the liquid
flowing out of A we get

—>] 1

1
Po + Pgh = Py + 5 PV,

and similarly at B

1

Py + pg Uit AR) = py + = pvj STeiT
Hence (v% -v) }21 = Ahpg E_:__-_:—_::-:':.;
Thus F = 2pgSAh = 050N — =

Consider an clement of height dy at a distance y from the top. The velocity of the fluid
coming out of the element is
v= Y2 8y

The force of reaction dF due to this is dF = pdsz, as in the previous problem,

= plbdy)2gy ,

Integrating F=pgb f 2y dy
h-1

=pgblh"~(h=1)"] = pghl 2h~D
{The slit runs from a depth £ -/ to a depth & from the top.)

Let the velocity of water flowing through the tube at a certain instant of time be u, then

i= %, where ( is the rate of flow of water and & #* is the cross section area of the tube.
mr

From impulse momentam theorem, for the siream of water striking the tube comer, in

x—direction in the time interval dt, S a——
Fodt= —pQudt or Fy= -pQu e
and similarly, F, = p Q u ==
Therefore, the force exerted on the water stream T e — *
by the tube, —— = S '
e —» e - =
Fa—pQui+pQuj ::__-::_:__-:__:O - l
According to third law, the reaction force on = - ol(
the tube’s wall by the stream equals (- F) —= o = (,\‘\i
o ™ . ”m\
=pQui-pQuj. = == LAY
Hence, the sought moment of force about 0 oo

becomes T
—

- v
and \¥|= 210 070 Nm
nrt
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1.32% Suppose the radius at A is R and it decreases uniformaly to r at B where § = nR? and
s = 7. Assume also that the semi vectical angle at 0 is ¢ Then
R r oy

L, L, «x

So y=r+

LR; : Lr . (- Ly
whete y is the radius at the point P distant x from the vertex O. Suppose the velocity with
which the liquid flows out is V at A, v at B and u at P. Then by the equation of continuity
ARV = nrly = :ryzu
The velocity v of efflux is given by
v =V2gh
and Bernoulli’s theorem gives

1, 1
Ptz =po+ o pv

|
1

v s

’,f!

l".:
o

C)‘

"'l
H

where p, is the pressure at P and p, is the

atmospheric pressure which is the pressure just 1
outside of B. The force on the nozzle tending T T 0
to pull it out is then r

F = f (P, - pg) sin® 2myds

We have subtracted p, which is the force due to atmosphenic pressure the factor sin @

gives horizontal component of the force and ds is the length of the element of nozzle
surface, ds = dx sec 6 and

R-r
tam.9=-L2__L1
Thus
LZ
1 452 2 R-r
F-fz(v '“)PZ“J’ ‘LZ"LI
Ll

R
/4
= :tpfvz[l-T)ydy
y
r
1{2 2 2 R - ¥y
.npvzz(ﬁ r +R2 r!) pgh( 2

= pgh (§-5)%/S = 602N on puiting the values.

Note : If we ry to calculate F from the momentum change of the liquid flowing out wi
will be wrong even as regards the sign of the force.

There is of course the effect of pressure at S and s but quantitative derivation of F fron
Newton’s law is difficult.
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1.330 The Euler’s equation is p —- ar = {-Vp in the space fixed frame where f« —pgk

1.331

downward We assume jncompressible fluid so p is constant.

Then f =-V (pg z) where z is the hejght vertically upwards from some fixed origin. We
go to rotating frame where the eguation becomes

pig:—= -—V‘(p+pgz)+pm2?:'2p(;wxu_f)

the additional terms on the right are the well known coriolis and centrifugal forces. In the
frame rotating with the liquid v~ = 0 so

?(p-ﬁ pgz—-;-pmzrz) =0

or p+pgz—%pm2r2- constant
On the free surface p = constant, thus

zm ‘2"—; 7 + constant
If we choose the origin at point 7 = 0 (i.e. the axis) of the free surface then “cosntant” = 0 and

z= —r2 (The paraboloid of revolution)

At the bottom z = constant
So p= %pmzrz-r constant
If p = p, on the axis at the bottom, then

p=po+ % po’r.

When the disc rotates the fuild in contact with, corotates but the fluid in contact with the
walls of the cavity does not rotate. A velocity gradient is then set up leading to viscous forces.

At a distance r from the axis the linear velocity is @ r so there is a velocity gradient

ggh_r both in the upper and lower clearance. The corresponding force on the element whose

radial width is dr is

n 2nrdr 25 (from the formular F = T]A ax )
The torque due to this force is
M 2nrdr mTr r
dnd the net torque considering both the upper and lower clearance is
R
W
2 jﬂ' n2n? dr .
= nR*om/h

So power developed is
P= aR*o™/h= 9-05 W (on putting the values).
(As instructed end effects i.e. rotation of fluid in the clearance r > R has been neglected.)
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1.332 Let us consider a coaxial cylinder of radius r and thickness dr, then force of friction or

viscous force on this elemental layer, F = in rin %E

This force must be constant from layer 1o layer so that steady motion may be possible.

o, Eaomiman @
Integrating,
v ar .-..'
dr il
Ff—;_—= anqfdv L ,._.R___".'_-_._,_R.l_.,.._:::,:;. s
" : =y
i
13y
or, Fln (—"—) =2minv o)) \
R,
Putting r= R,, we get
R,
Fln -Rz = 2nlny,
From (2) by (3) we get,
Inr/R,
v= Y iaR/R,

Note : The force F is supplied by the agency which tries to carry the inner cylinder with
velocity v, .

1.333 (a) Let us consider an elemental cylinder of radius 7 and thickness dr then from Newton’s
formula

do 2do
F=2narinr > 2ailnr ar

and moment of this force acting on the element,

,-\‘n" i 1!

N=2nr ln%—r— 23‘”‘31(\ e

dr

of, 2rlndo=N ? 2
As in the previous problem N is constant when
conditions are steady R2
r
Integrating, 2rlin fd w=N r3
N1 1
- == 3
or, 2rinw Z[R% ’2] ()]
Putting r=R, w= w,, we get

N[1 1
2alnoy= | —-—3 (4
2[“? Rz]



From (3) and (4),
R:RZ

W= w2R2 R2

1 1
R 7
RERZ
R3-R*

(t) From Eq. (4),

N, = %- 4o,

165

1334 (a) Let dV be the volume flowing per second through the cylindrical shell of thickness

dr then,

A .
dV = —(2nrdr)v0(1—g)- 2:rtv0(r--§5]dr

and the total volume,
R

3 2
r R =
V= 2Jtvof (r—F)dr- 211:1?0*4—-

(b) Let, dE be the kinetic energy, within the above cylindrical shell. Then
dT = %-(dm) v %(2Jtrla‘rp)v2

1 : r 27 r
= Eiln!p)rdrvf){l—}?)a n!pvoir-#-»R——

Hence, total energy of the fluid,
R

2
27 r TR
T= nlpvgf(r—}ji—-f?)dr-
0

(c) Here frictional force is the shearing force on the tube, exerted by the fluid, which

dv
equals - S ar

Given, v= (1 —%)
dv r
SO, '(F'—zvof—{z
2y
And at S |

' dr R
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Then, viscous force is given by, F= —n (2nR)) [g";)
r=R

2v,
= -2nRnl o-uke 4nn vyl
(d) Taking a cylindrical shell of thickness dr and radius r viscous force,

dv
F= ‘11(23”[);,

Let Ap be the pressure difference, then net force on the element = Ap n F+2n nir g;_‘i

But, since the flow is steady, F,_,= 0

r

_2,.;},],-.3_: —2u1nr(_2v°R2
oT, - -
S a7

The loss of pressure head in travelling a distance ! is seen from the middle section to be
hy— h;= 10 cm. Since b, - k= h; in our problem and h; - Ay =15em =5 +h, - by,
we see that a pressure head of 5 cm remains incompensated and must be converted into
kinetic energy, the liquid flowing out. Thus

= Amv /R

2
%= pgAh where Ah= hy- h,

Thus v=y 2gAh = 1 m/s

We know that, Reynold’s number (R,) is defined as, R, = p vI/7), where v is the velocity
[ is the characteristic length and v the coefficient of viscosily. In the case of circular cross
section the chracteristic length is the diameter of cross-section d, and v is taken as average
velocity of flow of liquid.

v
Now, R ‘1 (Reynold’s number at x, from the pipe end) = pd vy where v, is the velocity

mm
at distance x,

pdyv, R, dyv

and similarl R = 50 —m=
Y, € " R, d,v,
2
From equation of continuity, A, v, = Ay v,
or, Jtrfvl-nr%vz or dyvyri= dyvyr,

dv, r, r,e %t
o e m e s ox = A
2Va T e

Thus R_‘z_ e s

i

We know that Reynold’s number for turbulent flow is greater than that on laminar flow

pvd _ 2pyviTy 2P,V
Now, RY)y= —= ———— and (R) = ——
Y (R n m R.), n
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But, (R), = (R);
PV
50 Vg = ———

= 5 hm/s on ing the values.
- Py putting

Vped

We have R = and v is given by

4n
6xnrve -r'(p-pog
(p = density of lead, p, = density of glycetine.)
2 1
Ve 9—n'(P"Po)8’2' m(p—%)sd2

1 1

Thus —=
2 18 112

(P-p)Epd’

and  d=[97%/py{p - p) 1> = 52 mm on putting the values.

md—v- mg-6nrnrv
dr g n

dv _6anr
or &t T, VT8

dv 6nrmr
or d‘-i-kv gk -

kd & K d v _ &

or e E—i-ke Ve ge  of e v=ge
or ve¥ = %e’“+C or vw= %+Ce"“r (where C is const.)
Since va () for (= 0,0-%+C
So Cwm —%
Thus v= %(l-e‘”)

The steady state velocity is %

v differs from i— by n where e "=n
or t= llnn
k
47[’_3
- rpP
Thus .1..= 3 4rzp_ dzg

k- "6anr 18n 187
We have neglected buoyancy in olive oil.



