You Are Provided With a Partially Oxidised Sample Of Ferrous Sulphate (FeSO₄.7H₂0) Crystals. Prepare a Solution By Dissolving 14.0 g Of these Crystals Per litre & Determine the Percentage Oxidation Of the given Sample. Given M/100 KMnO₄ Solution

Chemical Equations

Molecular Equation

$$\begin{array}{c} 2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O] \\ 2FeSO_4 + H_2SO_4 + [O] \longrightarrow Fe_2(SO_4)_3 + H_2O \] \times 5 \\ \hline \\ 2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + Fe_2(SO_4)_3 \\ \hline \\ Ionic\ equation \end{array}$$

$$\begin{array}{c} MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \\ Fe^{2+} \longrightarrow Fe^{3+} + e^-] \times 5 \\ \hline \\ MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O \end{array}$$

Theory

Since the given sample contains partially oxidized ferrous sulphate, it contains both ferrous ions, Fe²⁺(unoxidised) and ferric ions Fe³⁺ (oxidised). The strength of partially oxidised sample is known. The solution of partially oxidised FeSO₄ of known strength is titrated against standard KMnO₄ solution to determine the molarity and strength of the unoxidised ferrous sulphate. From this the percentage oxidation of the sample can be calculated.

Indicator

KMnO₄ is a self-indicator.

End Point

Colourless to permanent pink (KMnO₄ in burette).

Procedure

- 1. Weigh exactly 3.50 g of the given sample of ferrous sulphate on a watch glass and dissolve in water to prepare exactly 250 ml of solution using a 250 ml measuring flask. Rinse and fill the pipette with prepared ferrous sulphate solution and pipette out 20.0 ml of it in a washed titration flask.
- 2. Rinse and fill the burette with the M/100 KMnO₄ solution.

- 3. Add one test-tube (~ 20 ml) full of dilute sulphuric acid (- 2 M) to the solution in titration flask.
- 4. Note the initial reading of the burette.
- 5. Now add KMnO₄ solution from the burette till a permanent light pink colour is imparted to the solution in the titration flask on addition of a last single drop of KMnO₄ solution.
- 6. Note the final reading of the burette.
- 7. Repeat the above steps 4—5 times to get three concordant reading.

Observations

Weight of watch glass = g
Weight of watch glass + Mohr's salt =g
Weight of mixture = 3.50 g
Volume of solution prepared = 250 ml
Molarity of KMnO₄ solution = M/100
Volume of oxalate solution taken for each titration = 20.0 ml.

S. No.	Initial reading of the burette	Final reading of the burette	Volume of the KMnO ₄ solution used
1.	_	_	— ml
2.	<u> </u>	_	— ml
3.	_	_	— ml
4.	_	_	— ml

Concordant volume = x ml (say).

Calculations

Molarity of the standard KMnO₄ solution = M/100

Volume of $\frac{M}{100}$ KMnO₄ solution required for the oxidation of 20.0 ml of the given ferrous sulphate solution = x ml.

From the chemical equations, it is clear that 2 moles of $\mathrm{KMnO_4}$ react with 10 moles of ferrous sulphate.

$$\begin{split} \therefore & \frac{M_{\text{KMnO}_4} \times V_{\text{KMnO}_4}}{M_{\text{FeSO}_4} \times V_{\text{FeSO}_4}} = \frac{2}{10} \\ & \frac{\frac{1}{100} \times x}{M_{\text{FeSO}_4} \times 20.0} = \frac{2}{10} \\ & \dot{M}_{\text{FeSO}_4} = \frac{1 \times x \times 10}{100 \times 20.0 \times 2} = \frac{x}{400} \end{split}$$

 \therefore Molarity of unoxidized ferrous sulphate = $\frac{x}{400}$

Strength of unoxidized ferrous sulphate

= Molarity × Molecular mass of FeSO₄ .7H₂O

$$= \frac{x}{400} \times 278 = y \text{ g/litre}$$

Total strength of partially oxidised sample = 14 g/litre

 \therefore Strength of oxidised ferrous sulphate = (14 - y) g/litre

% Oxidation =
$$\frac{14 - y}{14} \times 100$$
.

Instructions for the Preparation of Solutions

Provide the following:

- 1. KMnO₄ solution (1.58 g/litre)
- $2.~{\rm FeSO_4.7H_2O}$
- 3. 4N H₂SO₄.