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Questions and Problems

1. Fundamentals of Mechanics

1.1. A wind is blowing with a constant velocity v in the
direction denoted by the arrow in the figure. Two air-
planes start out from a point A and fly with a constant
speed c. One flies against the wind to a point B and then
returns to point 4, while the other flies in the direction
perpendicular to the wind to a point C and then returns
to point A. The distances AB and AC are the same.
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Which plane will return to point A first and what will be

the ratio of the flight times of the two planes?

1.2. A boat is moving across a river whose waters flow
with a velocity u. The velocity of the boat with respect
to the current, v,, is directed at an angle a to the line
perpendicular to the current. What will be the angle 0 at
which the boat moves with respect to this line? What
will be the velocity v of the boat with respect to the river
banks? What should be the angle at which the boat moves
directly across the current with given w and v?

1.3. From a point A on a bank of a channel with still
waters a person must get to a point B on the opposite
bank. All the distances are shown in the figure. The per-
son uses a boat to travel across the channel and then
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walks along the bank to point B. The velocity of the
boat is v; and the velocity of the walking person is v,.
Prove that the fastest way for the person to get from A

Fig. 1.3

to B is to select the angles a; and @, in such a manner
that (sin a,/(sin a,) = v,/v,.

1.4. An object slides without friction down an inclined
plane from a point B to a point C that is distant a from
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a point A. At what height 2 (or at what angle @) is the
sliding time minimal?

1.5. The time dependence of the lengths of the paths of
two bodies moving in a straight line is given by curves a
and b, respectively. What curve corresponds to accelerat-
ed motion and what curve to decelerated motion?

1.6. A material particle is moving along a straight line
in such a manner that its velocity varies as shown in the
ﬁgurq. At which moment in time numbered successively on
the time axis will the acceleration of the particle be max-
lmal? How should one use the graph to determine the
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average velocity of motion over the time interval from
t; to t,?

1.7. The velocity of a particle moving in a straight line
varies with time in such a manner that the v vs. ¢ curve
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is represented by one half of an ellipse. The maximal ve-
locity is vy, and the total time of motion is t. What is
the path traversed by the particle and the average veloci-
ty over t? Can such motion actually occur?
1.8. The velocity of a particle decreases in relation to
the path traversed according to the linear law v = v, —
azx. After what time will the particle get to a point B
v

v .
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that lies on the axis of abscissas distant z,, from the ori~
gin of coordinates?

1.9. The velocity of a particle moving in a straight line
increases according to the linear law v = v, + kz. How
does the acceleration change in the course of such mo-
tion? Does it increase or decrease or stay constant?
1.10. The figure shows the “timetable” of a train, the de-
pendence of the speed of the train on the distance trav-
eled. How can this graph be used to determine the average
speed over the time interval it took the train to travel
the entire distance?
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1.11. A rod of length I leans by its upper end against a
smooth vertical wall, while its other end leans against
the floor. The end that leans against the wall moves uni-
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formly downward. Will the other end move uniformly,
too?

1.12. An object is thrown upward with an initial veloc-
ity v,. The drag on the object is assumed to be propor-
tional to the velocity. What time will it take the object
to move upward and what maximal altitude will it
reach?

1.13. At a certain moment in time the angle between
the velocity vector v of a material particle and the acce-
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leration vector w of that particle is 8. What will be the
motion of the particle at this moment for different 0’s:
rectilinear or curvilinear, accelerated or uniform or de-
celerated?

1.44. A particle is moving along an expanding spiral in
such a manner that the particle’s normal acceleration
remains constant. How will the linear and angular veloc-
ities change in the process?
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1.15. A particle is moving in a circular orbit with a
constant tangential acceleration. After a certain time ¢
has elapsed after the beginning of motion, the angle be-
tween the total acceleration w and the direction along
the radius R becomes equal to 45°. What is the angular
acceleration of the particle?

1.16. An object is thrown at an angle o to the horizon-
tal (0° << a << 90°) with a velocity v,. How do the nor-

Fig. 1.15 Fig. 1.16

mal acceleration w, and the tangential acceleration wy
vary in the process of ascent if the drag is ignored?

1.17. At the foot of a hill a certain velocity is imparted
to a sled, as a result of which the sled moves up the hill

N
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to a point A and then down the hill. What are the direc-
tions of the normal and tangential components of the
acceleration at point A?

1.18. An object moves without friction along a concave
surface. What are the directions of the normal and tan-
gential components of the acceleration at the lowest pos-
sible point?

1.19. A stunt rider on a unicycle is riding around the
arena of a circus in a circle of radius R. The radius of the
wheel of the unicycle is r and the angular velocity with
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which the wheel rotates is w. What is the angular accele-
ration of the wheel? (Ignore the fact that the wheel axisis
inclined.)

1.20. A liquid has been poured into a cylindrical vessel
of mass M (the mass of the vessel bottom can be ighored)
and height H. The linear density of the liquid, that is, the
ratio of the mass of the liquid column to its height, is §.
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What is the height z of the column of liquid at which the
common center of gravity of the liquid plus the vessel is
in the lowest position?

1.21. A cone-shaped funnel is being rotated with con-
stant angular velocity o. An object is placed on the inner

Fig. 1.22 Fig. 1.24

wall of the funnel. The object can freely move along the
generatrix of the cone, but during the motion of the
fpnx}el the body is in a state of equilibrium. Is this equi-
librium stable or unstable?

l..22. A vessel filled with water is moving horizontally
with constant acceleration w. What shape will the surface
of the liquid have?
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1.23. A liquid has been poured into a cylindrical vessel,
‘What shape will the surface of the liquid have if the
vessel is rotated uniformly about its axis with an angular
velocity w?

1.24. A piece of cork has been attached to the bottom
of a cylindical vessel that has been filled with water and
is rotating about the vertical axis with a constant angu-
lar velocity . At some moment the cork gets free and
comes to the surface. What is the trajectory along which
the cork moves to the surface: does it approach the wall
or the axis or does it move vertically upward?

1.25. A force acting on a material particle of mass m
first grows to a maximum value Fp, and then decreases to
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zero. The force varies with time according to a linear
law, and the total time of motion is t;,. What will be the
velocity of the particle by the end of this time interval if
the initial velocity is zero?

1.26. Along which of the two trajectories, the horizon-
tal line ac’b or the broken line consisting of two straight
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segments (ac and ¢b), will the work performed by a force
in displacing an object be greater if the friction is the
same for all three straight segments?
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1.27. An object of mass m is sliding down a hill_ of ar-
pitrary shape and, after Lraveling a certain horlzoptal
path, stops because of friction. The friction cogfﬁment
may be different for different segments of the entire path
but it is independent of the velocity and direction of
motion. Find the work that a force must perform to re-
turn the object to its initial position along the same
ath.

I1),28. The dependence of the polential energy of an
object on its position is given by the equation W = az?®
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(a parabola). What is the law by which the force acting
on the object varies?

1.29. An object whose density is p,y, falls from a certain
height into a liquid whose density is priq. In the figure
the potential energy W of the object is plotted along the
vertical axis and the position of the object (its altitude)
is plotted along the horizontal axis. The potential energy
of the object at the level of the liquid is taken zero and
the positive direction of the vertical axis (the W axis) is
the one pointing upward from the liquid’s surface. De-
termine which of the five straight lines, I-5, corresponds
to an object with the highest density and which to an
object with the lowest density. Is there a straight line
among these five for which po, = (1/2) pjiq? The arrows
on the straight lines point in the direction of motion of
the object.

2—-01569 17



1.30. The dependence of (he potential energy W of the
interaction between two objects on the distance r sepa-
raling them is shown in the figure. What will be the
distances between the objects that correspond lo equilib-
rium positions? Al whal distance will the equilibrium
be stable? (Answer the same question for unstable equi-
librium.) What segments of the curve correspond to a re-
pulsive force and what segments, to an attractive force?
1.31. A load of mass m, is hanging from a string. A bul-
let flying horizontally hits the load. Three cases are pos-
sible here, namely, (1) the bullet pierces the load and,
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retaining a fraction of its velocity, continues its flight,
(2) the bullet gets stuck in the load, and (3) the bullet
recoils from the load. In which of these three cases will
the load be deflected by an angle o with the greatest
magnitude and in which will it be deflected by an angle
with the smallest magnitude?

1.32. Two spheres of equal mass collide, with the colli-
sion being absolutely elastic but not central. Prove that
in this case the angle between the velocities after collision
must be 90°.

1.33. A sphere of mass m, impinges with a velocity v,
on a sphere of mass m, that is at rest, with m, > m,. The
collision is absolutely elastic but not central. By what
maximal angle 6 will the impinging sphere be deflected?
1.34. Two spheres of equal mass are moving at right
angles with velocities that are equal in magnitude. At
the moment of collision the velocity vector of sphere I is
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directed along the straight line connecting the centers of
the spheres. The collision is absolutely elastic. Plot the
velocity vectors before and after collision in different
coordinate systems: (1) in the laboratory system (in this
system the velocilies of the spheres are those specified
above), (2) in the coordinate system connected with the
center of mass of the two spheres, and (3) and (4) in the
coordinate systems linked to each of the spheres.

1.35. The centers of the spheres 7, 2, and 3 lie on a
single straight line. Sphere 7 is moving with an (initial)
velocity v, directed along this line and hits sphere 2.
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Sphere 2, acquiring after collision a velocity v,, hils
sphere 3. Both collisions are absolutely elastic. What must
be the mass of sphere 2 for the sphere 3 to acquire max-
imum velocity (the masses m; and m4 of spheres 7 and
3 are known)?

1.36. A sphere of mass m; moving with a velocity v,
hits a sphere of mass m, that is at rest. The collision is
absolutely elastic and central. The velocities of the
spheres after collision are u, and u,, respectively. What
are the mass ratios for the following values of velocities:
uy =0, u;, <0, and u, > 0?

1.37. A device often used to illustrate the laws of uni-
formly accelerated motion is the Atwood machine. The
machine consists of two loads of mass m, and m, at-
tached to the ends of a limp but inextensible string. The
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string runs over a pulley. The acceleration with which the
loads move is

my—mg
my—+my

= )

whereas the angular acceleration of the pulley is ignored,
Is the last assumption true for exact calculations?

1.38. Strings are wound around a shaft and a sheave of
equal mass, and a load is attached to the end of each
string (the loads have equal mass). Which of the two loads

Shaft
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Fig. 1.38 Fig. 1.41

will descend with a greater acceleration and which of the
rotating objects, the shaft or the sheave, has a greater an-
gular acceleration?

1.39. A vacuum cleaner standing on the floor turns
through a small angle when switched on and then stops.
Why does this happen?

1.40. A number of types of helicopters, among which
are the Soviet-made “Mi” helicopters and the Westland
Whirlwinds designed for use by Queen Elizabeth II,
utilize one main rotor and a small vertical tail rotor.
What is the function of this second rotor?

1.41. A rod whose lower end is sliding along the hori-
zontal plane starts to topple from the vertical position.
What will be the velocity of the upper end when this
end hits the ground?

1.42. A thin rod of length 2R and mass m is standing
(vertically) on a perfectly smooth floor. The state of equi-
librium in which the rod is at rest is unstable, and the rod
falls. Find the trajectories that the various points of the
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rod describe and the velocity with which the upper end
of the rod hits the floor.

1.43. A homogeneous rod AB is lying on a perfectly
smooth floor. A bullet hits the rod and gets stuck in it.
The direction of the bullet’s initial velocity v, is perpen-
dicular to the rod, and the point where the bullet hits
the rod lies at a distance z from the middle of the rod.
The mass of the bullet is m and the mass of the rod is M.

Fig. 1.43 Fig. 1.44

Will a velocity directed in opposition to v, be imparted
to end A at the first moment after the collision?

1.44. The axis AB of a gyroscope is mounted in a frame
that can rotate about the axis CD. This frame is mount-
ed, via vertical supports CC’ and DD’, on a horizon-
tal platform which, in turn, can rotate about the axis
EF. At first the platform is at rest and the gyroscope is
rotating in the direction designated by arrow 7. Then
the platform begins to rotate in the direction designated
by arrow 2. How will the gyroscope’s axis change its
position in space?

1.45. A top is spinning in the direction designated by the
arrow in the figure. In what direction does the preces-
sion of the top occur?

1.46. A shaft whose diameter is d and length is / is ro-
tating without friction in bearings with an angular veloc-
ity ,. A sleeve of height 2 and outer diameter D is
fitted on the shaft (the materials of the sleeve and the
shaft are the same). At first the sleeve is not connected
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with the shaft and is at rest. Then at some moment the
sleeve is clamped to the shaft. What will be the common
angular velocity of the shaft plus the sleeve?
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1.47. A disk and a sphere roll off two inclined planes of
the same altitude and length. Which of the two objects
will get to the bottom of the respective plane first? How
does the result depend on the masses and diameters of
the disk and the sphere?

1.48. A spacecraft is circling the earth E along an ellip-
tical orbit. How must the velocity of the spacecraft at
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perigee P and apogee A he changed so that the spacecraft
follow a circular orbit?

1.49. Several artificial salellites of the same mass are
circling the earth along circular orbits of different radii.
How do the kinetic, potential, and total energies and
angular momenta of the satellites depend on the radii of
the orbits?

1.50. Three orbital space stations are circling the earth
along different orbits: one along a circular orbit and the
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other two along elliptical orbits whose l.najor axes are
equal to the diameter of the circular Ol'blt’. The masses
of the stations are the same. Will the energies and angu-
lar momenta of the stations coincide or will they be
different? .

1.51. A spacecraft is circling the earth along a circular
orbit and retains its orientation with respect to thg eartl}.
Is zero gravity inside the spacecraft absolute in this
case?

1.52. A comet flies into the solar system from remote
outer space. The trajectory of the comel is a branch of
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a hyperbola. Can the comet become a satellite of the sun
S if the interaction of the comet with the planets of the
solar system is ignored?

1.53. What shape will a round disk have if viewed from
a system of coordinates with respect to which the disk is
moving with a certain velocity directed along the diame-
ter of the disk?

1.54. An isosceles right triangle is moving with respect
to a system of coordinates with a velocity v directed
along the hypotenuse. When viewed from this system, the
triangle appears to be an equilateral triangle. Find the
velocity with which the triangle is moving with respect
to this system.

1.55. The various relationships that exist between time
intervals, coordinates, and velocities in the special theory
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of relativity are conveniently illustrated via a system
of coordinates in which on the axes we lay off either
distance and time multiplied by the speed of light or
time and distance divided by the speed of light. Curves
that represent motion in such systems are known as world
lines. Various world lines are shown in the figure in the
z/c vs. t coordinates. What does each line represent? Is
there a line that contradicts the main principles of rela-
tivity theory?

1.56. A world line is directed at an angle 0 to the z/c
axis (see Problem 1.55). What is the ratio of the kinetic
energy calculated via the formula of relativity theory to
the value calculated via the formula of classical mech-
anics? Take the specific case of 8 = 60° as an example.
1.57. Two systems are moving with respect to each
other with a certain velocity. The motion of one system

t t 1 t
|
|
8 e/ \I
3}
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0 X/C
t t t
45°
0 x/c 0 x/c 0 x/C
(c) (d) (e)

Fig. 1.55 Fig. 1.57

in terms of the coordinates z/c and t of the other system
is represented by a world line directed at an angle 0 to
the z/c axis. After a time interval T reckoned from the
origin of coordinates has elapsed, one system sends a sig-
nal to the other. After what time will the second system
receive the signal?

1.58. Three systems, A, B and C, are moving with res-
pect to each other in such a manner that with respect to
system B the velocities of A and C coincide in magnitude
and are directed toward B (Figure (a)). When system 4
comes alongside system B (Figure (b)), the clocks in the
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two systems are synchronized. At this moment system A
begins emitting signals directed at B and separated by
equal time intervals T,. This continues until 4 comes
alongside C (Figure (c)), with N signals being set over
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the entire interval between the encounters. At this mo-
ment the clock in C is synchronized with the clock in 4
and system C starts Lo send signals directed at B thal are
separated by the same time intervals 7,. Find the differ-
ence in readings of the clock in B and C when these two
systems come alongside (Figure (d)).



Answers and Solutions

1. Fundamentals of Mechanics

1.1. If AB = AC = I, then the times of flight from A
to B and from B to A are, respectively, I/(c — v) and
l/(c 4+ v). The entire flight time is

l ! 2le
b=t cFv  a—n°
For the second airplane to fly from A to C, its velocity
must be directed at an angle to the direction of the wind

Fig. 1.1

in such a manner that the resulting velocity directed to-
ward C is equal to (¢ — v*)!? in magnitude. The entire
flight time of this airplane will be

2
LV e R

t

The second airplane will arrive before the first, and the
flight time ratio is

t,/t, =V 1—v?/ct.
1.2. The figure shows that

wztana_}_ u

tan 0= - .
Vg COS O Up COS &

Velocity v can be found from the equation
(vo sin @ + u)? + v} cos? a = v?,
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which yields
2
v:vol/i-{-Z%sina—{— (—:}:—) .

The boat will travel directly across the river if 6 = 0.
Under this condition, sin o = —u/v,. Obviously, the
boat can travel at right angles to the current only if v,
is greater than u.

1.3. The time of travel by boat from A to C is

ty= Vm/vi-
The time of travel by foot from C to B is
b=V @D/
The total time of travel is

Vz:+a2 © Vid—2? 02 .

1 Ve

t=fytt,=

The extremum condition is di/dx = 0, or
_di: z . d—z
dz v V2 tat Ve l/m

Since
T . d—zx .
——=———-=sina; and ——————=sina,,
Vata Vid—ap+02
we can write sin «,/v, = sin a,/v,, whence
sina;  »
sina, vy °

We can easily see that the extremum corresponds to the
minimum of time of travel.
1.4. The time of travel along straight line BC is deter-

mined by the length S of segment BC and the acceleration
w. The figure shows that

V@12 _ h
S=Va+h, w= VA g.

Since S = wt*/2, we can write

21 5 & h
Va:4 h2= 2 Vara 2,

2@k
b= 1/; —r

whence
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Nullifying the derivative (the extremum condition),

dt h?—a?

[

yields & = a.
The same result is oblained if we express § and w in
terms of a:

S = alcos ¢, w = gsin a,
f— /2 a
'_V g sina-cosa *

Nullifying the derivative dt/da, we find that o = 45°.
1.5. The acceleration in rectilinear motion is the second
derivative of the distance traveled with respect to time.
For a concave curve the second derivative is positive, while
for a convex curve the second derivative is negative,
whereby curve (a) corresponds to decelerated motion and
curve (b) to accelerated motion.

1.6. By definition, acceleration is the time derivative of
velocity, w = dv/d¢. For rectilinear motion the vector
equation can be written in scalar form. The acceleration
is the highest when the derivative is the greatest, that is,
when the curvature of the curve is maximal. The curva-
ture is determined by the slope of the tangent line to the
particular point on the curve. This corresponds to mo-
ment 2 on the time axis. Note that for curvilinear motion
the question contains an ambiguity, since to determine
the acceleration we must know the radius of the trajectory
at every moment in the course of the motion in addition
to the magnitude of the velocity. To find the average veloc-
ity, we must know the distance traveled by the particle
in the course of a definite time interval. In terms of the
velocity vs. time graph, the distance traveled is the area
of the figure bounded by the curve, the time axis, and
the vertical straight lines passing through the initial and
final moments of time on the time axis. Analytically the
distance is calculated via the integral

ty
S= S vdt,
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whence the average velocity is
1y
S vde
V=4
1.7. In terms of the velocity vs. time graph, the distance
traveled is determined by the area bounded by the curve

X and the time axis. This

T area is
S= —I[I—vmt.
Xm . . .
The average velocity is
_sS_T,
v=7T g tme

t Such motion cannot be re-
Fig. 1.8 alized in practical terms
since at the initial and final
moments of the motion the acceleration, which is dv/dt,
is infinitely large in absolute value.
1.8. The particle will never get to point B but will ap-
proach it without bound. Indeed, from the equation
UV ="vy, —ar we get
dz_ _ gt.
Vo— az

Integration of this expression yields

In ( Vol ) = —at,

— /e

whence
z=2(1—e). (1.8.1)

The limit value z, = v,/a can be attained only at
t — co. The dependence of z on ¢ defined by Eq. (1.8.1)
is represented by the curve shown in the figure.

1.9. The acceleration

W=—=— — =k (v, k)

increases with x. The same result can be obtained from
the following line of reasoning: at constant acceleration
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the relationship between the velocity and the distance
traveled is given by the formula

2 . 152
v = u; + 2wz,

so that the velocity increases in proportion to the square
root of the distance. Hence, for the velocity to increase
linearly with z, the acceleration must increase.

1.10. The train covers the distance dz in the course of
dt = dz/v (z), where v (z) is the speed with which it
travels over dz. The total time of motion is

The average speed is determined by dividing the distance
covered by the train by the entire time of motion:

S

@ d
4
§v(z)

If the graph cannot be represented by a formula, it can
be reconstructed into the 1/v vs. z graph. In this case the
integral in the denominator of the expression for v,y
can be evaluated by graphical means.

1.11. The speed with which the lower end of the rod
moves, v, = dz/df, can be written in the form

dy dz

v——_—

T dt dy

Since z = Y12 — y? we can write

Vay

4= ¥y
dy ~ ~ yi—g '
whence
Vi = — Yy ﬂ-*_— ylvyl
® Vie=4 dt Vie—g2'

Thus, the speed of the lower end gets smaller and smaller

and vanishes at y = 0. _
1.12. Since the drag is proportional to the velocity of the
object, so is the acceleration caused by this force (with a
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minus sign). Hence, by Newton’s second law,

dv
'd—t--_‘- —g—rv,

where r is the proportionality factor. Whence
v

t
. S%ﬁr_rgdt'

Yo

<

Integration yields*

(£ o=t

I - (1.12.1)
”/r[ "\ For v = 0 this yields

tm= In (1+’gﬂ) .
(1.12.2)

To find the maximal altitude, we rewrite (1.12.1) in the
form

Fig. 1.12

d r
_dtﬁz(uo+§)e-‘—§- (1.12.3)

Integrating this equation up to ¢, we find that
1 .
h=(v+ &) T—emy—£1.  (1.12.4)

Bearing in mind that at the point of greatest ascent v =
dh/dt =0 and combining this result with (1.12.3),
we get

(v0+5) e "m=E (1.12.5)

r r
Combining (1.12.4) with (1.12.5) yields

h— Yo—8m
reap

Substituting #, from (1.12.2), we arrive at the final re-

sult
Y )
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When drag is extremely low, or rv,/g < 1, we can employ
the expansion

In(t42) m e 1 (),

g g 2\ g

This results in the well-known formula
b2
=g

* The section of the curve that lies below the t axis (see the
figure) corresponds to the descent of the object after the
object has reached the maximal altitude. The rate of descent
asymptotically approaches the value at which the force of
gravity is balanced by the drag.

1.13. The acceleration vector can be decomposed into
two components, the tangential acceleration w;, which is
directed along the same straight line as the velocity of
the particle, and the normal acceleration w,, which is
perpendicular to the velocity. For instance, for 6 > 90°
(see Figure (a) accompanying the problem) the tangential
acceleration is directed opposite to the particle’s velocity
and the motion in this case is decelerated, w << 0. The
presence of a nonzero normal acceleration suggests that
the motion is curvilinear. The situation for the other
cases is as follows: for 6 << 90° (Figure (b)) the motion is
curvilinear and accelerated, for 8 = 90° (Figure (c)) the
motion is curvilinear and uniform, and for 0 = 180°
(Figure (d)) the motion is rectilinear and decelerated,
w << 0. Of course, characterizing the motion by the angle
between the velocity v and the acceleration w is meaning-
ful only for a definite moment in time. Subsequent mo-
tion may change this characteristic.

1.14. The normal acceleration is

wy, = v¥/R = o’R,

whence the linear velocity grows in proportion to the
square root of the curvature radius of the spiral, while
the angular velocity decreases by the same law.

1.15. When the angle between the total acceleration and
the radius becomes equal to 45°, the normal acceleration
becomes equal to the tangential acceleration. Since
w, = o*R and w; = eR, we have ®® = ¢, and since
® = et, we have €22 = g, with the result that

e = 1/t
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1.16. The acceleration with which the object moves is
the acceleration of gravity, which at all points of the
trajectory is directed vertically downward. From the
figure that accompanies the problem we see that as the
object ascends the tangential acceleration decreases while
the normal acceleration grows. At the highest possible
point the tangential acceleration is zero while the normal
acceleration is equal to the acceleration of gravity.
1.17. Since at point A the sled’s velocity is zero, so is the
normal acceleration w, = v?/R. The tangential accelera-
tion is directed down the
hill along the tangent to
the surface of the hill.
The figure accompanying
the answer shows the forces
that act on the sled. These
are the force of gravity mg
and the reaction force N
exerted by the surface of
the hill. The resultant F
is directed downward along
the hill.  According to
Newton's second law, the
acceleration vector points in the same direction as the
resultant. If there is friction, the resultant vector does
not change direction but becomes somewhat shorter,
with the result that the tangential acceleration becoines
smaller, too.

1.18. The acceleration vector points in the direction of
the resultant of the forces acting on the object. At the
lowest possible point only the force of gravity and the re-
action force act on the body, provided that there is no
friction. This means that at this point the object experi-
ences no tangential acceleration. Since the object is mov-
ing along a curvilinear trajectory with a certain veloci-
ty, there is a normal acceleration, which is directed to-
ward the center of curvature of the trajectory. This acce-
leration is generated by the difference between the reac-
tion force exerted by the surface and the force of gravi-
ty.

1.19. In the course of time At the angular velocity vector
will vary from @, to @, without changing its length. The
direction of the vector will change by an angle of Ag.
This angle is equal, on the one hand, to | Ae |/® and,

Fig.§1.17
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on the other, to AS/R, where AS stands for the displace-
ment of the center of the wheel.* This displacement is
equal to QRAt, where Q is the angular velocity of the
cenler of the wheel. Thus,

| Ao |/wo=QRAt/R and &= lim Lo _ 6.
At~ At

When the wheel is rotating, the point at which it touches
the arena will shift in the course of Al by a distance of
roAt on the wheel and by
RQAt on the arena. Hence, o
and Q arc linked by the fol-
lowing formula: or = QR,
whence

_ 2 T
E=0 5.
* It is assumed that A9 < 1 rad.

1.20. The height of the cen-
ter of mass of the vessel with
the liquid is delermined by
the formula

M (H/2)4-m (r/2 Fig. 1.19
h(,:_-%, (1.20.1)

where m is the mass of the liquid. We rewrite (1.20.1)
by replacing the mass of the liquid with 8z:
1 MU 82
he=~ N ER TR (1.20.2)
Nullifying the derivative of k with respect to z,
dhe 1 20z (M - 82) — 6 (M H +- §22) _

dr ~ 2 (M 62)2 =0,
we get
o ME . MH M .
X2 == i 6—2+T—T‘ (1.20.3)

Of course, only the positive value of the root has physi-
cal meaning. Substituting this value into (1.20.2), we
will find the position of the center of mass. After elemen-
tary transformations we get

M2 | M M
he=) 5 +F — %
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We have found that the posilion of the center of mass co-
incides with the level of the liquid.

Here are some particular cases:

(1) 8H = M (the liquid lilling the vessel completely
has a mass equal to the mass of the vessel). Then

he=xz=H()2—1) ~ 0.414.

(2) 8l < M. Let us transform (1.20.3) to the form
M

e (V 15 —1).

The fraction in the radicand is considerably less than uni-
ty. Expanding (1 -|- 8H/M)'? in a series and retaining
only three terms, we get

e (1 ),
or
hczxz%(i——g%)

The level of the liquid is below the middle of the vessel
by an insignificant distance.
(3) 8H> M. Let us transform (1.20.3) to the form
M
(1/ SHT T SH 6H Wi‘) '
Bearing in mind that (M/8H)Y2> M/0H, we can assume

that the expression inside the parentheses in the above
formula is simply (M/6H)Y?, whence

he = x ~ H (M/SH) 2.

The level of the liquid is above the bottom of the vessel
by an insignificant distance.’

1.21. For the object to be in a state of equilibrium in re-
lation to the wall of the funnel the resultant of the forces
acting on the object must impart an acceleration to the
object together with the funnel. These forces are the force
of gravity and the reaction force exerted by the funnel.
Since the force of gravity is constant in this problem and
the resultant must be directed horizontally, the direction
and magnitude of the reaction force are determined uni-
quely. But the latter has a different value at different
distances from the funnel axis. At a constant angular ve-
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locity of the funnel, the greater the radius of rotation the
greater the reaction force. For this reason (see the figure
accompanying the answer), as the object moves farther
from the funnel axis, the resultant of the force of gravity
and the reaction force acquires a component directed up-
ward, while as the object moves closer Lo the axis, the re-
sultant acquires a component directed downward. In

Fg. 1.2 Fig. 1.22

the first case the object tends to move away from the axis
still further and rises, while in the seccond case il tends to
move Ltoward the axis and lowers. Thus, the state of equi-
librium is unstable.

1.22. It is convenient to think of the vessel with water
as a noninertial system. In this case, on each particle of
water there acts, in addition to the force of gravity, a
force of inertia equal to the product of the particle’s mass
by the acceleration taken with the minus sign. The sur-
face of water is a plane perpendicular to the vector of the
resultant of these two forces. The slope of this surface in
relation to the horizontal plane is

tan o = wlg.

1.23. Just like in the answer to the previous problem,
we can assume the vessel with the liquid to be a noniner-
tial system, in which a force of inertia equal to —mw =
—m?z acls on every particle of mass m. The resul-
tant of Lhis force and the force of gravity is perpendicular
to the surface of the liquid. The derivative dy/dx, equal
to the slope of the line tangent to the surface at a given
point, is

ﬂ:tana= maw? .

dz mg
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integratring, we find that

2
_ 0% 2

y"ng

The surface of the liquid is shaped in the form of a parabo-
loid of revolution.

1.24. Just like in the answers to Problems 1.22 and 1.23,
the vessel can be assumed to be a noninertial system. In
such a system, every mass clement of water, say, an ele-
ment whose volume is equal to the volume of the piece of
cork, is in a state of equilibrium due to three forces:

g\)w

Fig. 1.23

the force of pressure of the surrounding water, the force
of gravity, and the force of inertia, which is equal to the
product of the element’s mass by the normal acceleration
of that element taken with the minus sign (Figure (a)).
There are also three forces acting on the piece of cork that
replaces the element of water: the force of pressure of the
surrounding water is the same but the forces of gravity
and inertia are lower. As Figure (b) shows, the net force
(the difference between Lhe force of pressure and the
forces of gravity and inerlia) make Lhe cork rise to Lhe
surface and, at the same time, move toward the axis of
the vessel.

A similar line of reasoning forces us to conclude that
an object with a density greater Lhan the density of waler,
when immersed inlo a rotaling vessel with water, will
sink and, in the process, move Loward the wall of the ves-
sel.
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1.25. According to Newlon's second law,
t
5 F dt —Amv.
0

In the case at hand,
t

S Ft=Fot/2,
0
whence
v = Ft/2m.

1.26. The work performed along ac’ is
A, = ac’ mgk.

The work performed against the forces of friction on the
inclined segment ac is

’
A, = acmgkcosa = -~ mgk cosa = ac’'mgk.
2 g cos a g g

We see that the Lwo quantilies coincide, and so, obvious-
ly, do the similar quantities for ¢'d and cb. The change in
the potential energy about ac’d and acb is zero. Thus, the
work performed against the forces of friction along
ac’b and that performed against the forces of friciion
along acb coincide.

1.27. The initial polential energy of the object with res-
pect Lo the bottom of the hill, mgh, has been used up for
work against the force of friction. In returning the body
to its initial position, the force performs the same work
and, in addition, imparts to the object the initial poten-
tial energy. As a result, the total work will be 2mgh.
1.28. The work performed on an elementary segment of
displacement is equal to the decrease in potential energy:

d4 = —dW.

The same work can he represented as the product of force
by displacement:

d4 = F da.
Hence

Fx: -——(Fz—-Zax.
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Forces known as quasiclastic also obey this law.

1.29. When the object is immersed in the liquid, two
forces act on it: the force of gravily and Archimedes’
force. If V is the volume of the object, the resultant of
these two forces is

r=v (Pob - pliq)g-

For pop > p1yq» @s the object is immersed in the liquid,
its potential cnergy continues to fall below zero, but slow-
er than it would in air. The rate of this decrease is the
higher the greater the value of pgy. Straight line 7 in the
figure accompanying the problem corresponds to an object
sinking in a liquid. When pg, = py;q, the potential encr-
gy remains constant (straight line 2 coinciding with the
z axis). If pgp << p1yq> the potential encrgy of the object
begins to increase when the object sinks into the liquid
(straight lines 3, 4, §), and the rate of this increase is the
higher the lower the value of p,,. The potential energy,
while growing, cannot exceed the initial potential energy
of the object in air (the dashed horizontal line), and the
object can attain this level only when the medium exerts
no drag on it. If this is the case, the object will sink to a
certain level in the liquid, stop, and then return to the
surface with the same speed at the surface as it had when
it entered the liquid. Once out of the liquid, the object
will rise 1o the height determined by the initial polential
energy. After this it drops back into the liquid, and so
on. Of course, under real conditions the drag exerted by
the medium will slow down the object, and the greater
the viscosity of the liquid the faster this happens.

If the densily of the material of the object is one-half
the density of the liquid, pgy == (1/2)py;q, then

I = Vpge.

In this case the difference between Archimedes’ force and
the force of gravity is equal (in absolute value) to the
latter but is directed in opposition to the force of gravity.
The slope of the straight line must be the same as that of
the straight line that represenls the variation of the po-
tential energy of a falling object. Straight line 4 has such
a slope.
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1.30. The formula that links the force acting on an object
with the potential energy of the object,
F, dw

=~

shows that equilibrium, which occurs when the force is
zero, sels in when dW/dr = 0. There are two such points
on the curve, point 2 and point 4. Since when the object
moves away from point 2 its potential energy increases
while when it moves away from point £ its potential ener-
gy decreases, at point 2 equilibrium is stable and at point
4 it is unstable. The fact that a system always tends to
a state in which its potential energy is minimal implies
that repulsive forces act on the 7-2 and 4-5 segments and
an attractive force acts on the 4-2 segment.

1.31. Momentum conservation for the given problem can
be written thus:

MUy = MUy - My, (1.31.1)

where m, is the bullet’s mass, m, the load’s mass, v,
the initial velocity of the bullet, u, the final velocity of
the bullet, and u, the velocity acquired by the load as a
result of the collision. From (1.31.1) it follows that

uzz”%_"‘). (1.31.2)
If the bullet fliecs through the load, after it has left the
load it has a velocity that is surely greater than u,.

We write u; = u, 4+ V. Substituting this expression into
(1.31.1), we get

my (vo—7V)
my—-my

Uy = (1.31.3)
If the bullel gets stuck in the load, then u, = u, and,
hence,

_ miVy
2= g (1.31.4)
Finally, if the bullet recoils from the load, the velocity it
acquires after collision, u,, is negative and (1.31.2) can
be writlen in the form

my (o | uy 1) (1.31'5)

Uy = ma
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A comparison of (1.31.3), (1.31.4), and (1.31.5) shows that
the load acquires the highest velocity (and the greatest de-
flection, as a result) when the bullet recoils from it, while
the lowest velocity is acquired when the bullet pierces
the load.

1.32. For the sake of convenience we employ a coordinale
system in which the velocily of one of the spheres prior
to collision is zero. According to the energy counservalion
law, in the case of an absolutely elastic collision we have

mlvﬁ o mlu% mgu%

2 2 T2 o0

where m, and m, are the masses of the spheres, v, is the
velocitiy of the first sphere prior to collision, and u,
. and u, are the velocities of
My the spheres after collision.
| \\ Since the masses of the spheres
8 : \ are the same, we can write
| A\ - o= u? - u?
T —> Mo 0o ™ 2*
'P: -7 The velocity vector v, is the
|

rd

P hypotenuse of a right triangle
-7 whose sides are the velocity
Mty vectors u; and u,, and hence
Fig. 1.33 the angle between u, and w,

is 90°.
1.33. Let u, and u, be the final velocilies of the impinging
sphere and the one that was at rest prior to collision, res-
pectively, and 0 is the angle between u, and v,. The equa-
tions that express the laws of conservation of energy and
momentum (for each projection) have the following form:

myy  mqui mou2
= 5t (1.33.1)
myvy = myu, cos 8 + myu, cos @, (1.33.2)
myu; sin 0 + myu, sin ¢ = 0. (1.33.3)

If m;, m,, and v, are fixed, then u,, u,, 0, and ¢ are
linked through three equations. For this reason two of the
four variables can be excluded and the variable 8 can be
expressed in terms of the third remaining variable, say,
u;. Taking m,u, cos 0 to the left-hand side of Eq. (1.33.2),
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squaring the result and Eq. (1.33.3), and adding the two
squares, we get

m} (U5 — 2ugu, cos 0 - ul) = miu;.
Replacing u, with its value oblained from (1.33.1) and

carrying out the necessary lransformations, we arrive at
a quadratic equation for u,, namely,

— M

u? ——2 vocosﬂxu,—l—m T, vi=0, (1.33.4)

whose solution has the form

cos 0 + m2 Y _sin?0 ve- (1.33.5)
(eos0 1/ (5 )

U= m1+
This equation shows (hat the maximal angle 0 is deler-
mined by the condition

sin 8, = my/m,. (1.33.6)

For values of 8 smaller than 0, two cases are possible,
since two distinct values of u, correspond to one value of
0. For example, for m;/m, = 3 and sin 8 = 0.2, the veloc-
ity u; may have two values, 0.93v, and 0.53v,. The first
collision is commonly known as soft, while the second is
commonly known as hard. The extreme case of soft col-
lision is the grazing collision (or even Lhe case where one
sphere misses the other), while the extreme case of hard
collision is the head-on collision, after which the ve-
locity of the impinging sphere becomes
my—mgy
Uy = Vo

Condition (1.33.6) can be obtained in another manner
as well. For instance, if we express cos 0 via (1.33.4),
namely,

1 uy
cos0=m(m,+mz) % (mi_mz)

and nullify the derivative of cos 6 with respect to u,,
we can find the minimal value of cos 6 or the maximal val-
ue of sin 8. The motion of the impinging sphere can also
be considered using the system of coordinates linked wilh
the center of mass of the two spheres. If in the laboratory
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system the coordinates of the spheres are z, and z,, then
the coordinale of the center of mass is

_ myZytmaTy
T mgtmy

while the velocity of the center of mass is

2

Vo= —21
¢ mytme 0

Correspondingly, the velocity of the impinging sphere in
this system prior to collision is

Ug = Uy — V¢ = Uy

As a result of the collision the veclor vy retains its
length but turns through a certain angle depending on the
distance between the center of the second sphere and

MyVo R myUo '“1-\70
‘ MYy
m, U,
m,U, m,G
myU;
11\261 /
(a) (b) ()
Fig. 1.33

the direction of flight of the immpinging sphere prior Lo col-
lision. The velocity wu; is equal to the sum of v, and v,.
The momentum vectors of both spheres are shown in the
figure for three cases: soft collision (Figure (a)) and hard
collision (Figure (b)) for m,/m, =3 and sin 6 —= 0.2
and the case with sin 0 = my/m,; -= 1/3 (Figure (c)).
The velocity of the impinging sphere after collision is
U= m—T_;_v—;’nz cos 0 = 0.707v,,

The above-discussed problem is important for the theo-

ry of atomic collisions. For instance, if a potassium ion
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impinges on a helium atom (m,/m, = 10), as aresultofan
elastic collision the ion may be deflected by an angle no
greater than 5.7°.
1.34. We will consider cach case in the order that it ap-
pears in the problem.

(1) The directions of the velocities of the spheres in the
laboratory system are shown in the figure accompanying

RN \

W

O /

()

(d)
Fig. 1.34

the problem. If at the moment of collision we project the
velocities of the spheres and the corresponding momenta
on two axes one of which coincides with the direction of
the initial velocity of sphere I and the other with that
of the initial velocity of sphere 2, then in the first of
these two directions the spheres exchange the respective
projections of the velocities, just like in a head-on elastic
collision. Sphere I stops in the process. Since in the colli-
sion the force acts along the straight line connecting the
centers of the spheres, the initial velocity of sphere 2
is conserved, with the velocily of sphere 7, which is per-
pendicular to the initial velocity of sphere 2, added to it.
As a result the velocity of sphere 2 becomes equal to the
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geometric sum of the initial velocities of both spheres,
that is, v}/ 2 (Figure (a)).

(2) To determine the velocities of the spheres in the cen-
ter-of-mass system, we decompose the velocity vector
of each sphere into two perpendicular and equal compo-
nents, Viq, U;p and V4, Upp. The components vy, and
Upq are equal in magnitude and point in the same direc-
tion. Obviously, the common center of mass moves in
the same direction and with the same velocily, v, with
respect to the laboratory system. Therefore, in the system
linked with the center of mass there are only the veloci-
ties v, and v,,. The velocities of the spheres after colli-
sion can be obtained if we subtract v, from the velocities
of the spheres in the laboratory system. The other veloc-
ities are shown in Figure (b).

(3) In the system linked with sphere I, the sphere, ob-
viously, remains at rest during the entire collision process.
The velocity of sphere 2 in this system can be obtained by
subtracting geometrically the initial velocity of sphere /
from the velocity of sphere 2 in the laboratory system.
Since the velocity of sphere I after collision is equal, in
the laboratory system, Lo zero and is also zero in the sys-
tem linked with sphere 7, the velocity of sphere 2 in
this system after collision is the same asin the laboratory
system (Figure (c)).

(4) In the system linked with sphere 2, the velocily
of sphere 7 is obtained by subtracling geometrically the
initial velocity of sphere 2 from the velocity of sphere 1.
After collision the velocity of sphere 7 is equal, in abso-
lute value, to the final velocity of sphere 2 in the labora-
tory system and points in the opposite direction (Figure
(d)).

In conclusion we would like to bring the reader’s atten-
tion to the fact that the angular momenta of the spheres
with respect to the center of mass remain constant during
the entire collision process. In collision, the center of
mass is the point where the spheres touch and the angular
momentum of sphere 7 is zero and remains such after
collision. The angular momentum of sphere 2 is equal,
prior to collision, to the product of momentum mv by
the arm R. After collision the momentum of sphere 2

becomes mv V2, but the arm is now R/} 2, so the product
is the same and the angular momentum is conserved. Of
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course, since the system consisting of the spheres is isolat-
ed, the angular momentum is conserved in the entire
process of motion.

1.35. After collision, sphere 2 acquires the velocity

— Zmu (1.35.1)

27 mytmy
Sphere 3 acquires the following velocity after collision:
_ 2mauy
8 my-t-mg*
Substituting the value of u, from (1.35.1), we get
— 4m1m2v1
T (mylomg) (my - my)

The extremal value of u; can be found by nullifying the
derivative of u; with respect to m,:

Us

du, 4dmyv, (mymg— m3)

d_mz T [(my-tmy) (mo-t-mg) ]2

From this it follows that

my = V myms.

We can easily see that this value corresponds to the
maximum of u,.

Here are some particular cases.

(1) my > m,. In this case

Uy —T g,
3Nm1+m2 t

If we also assume that m; > m,, then
ug ~ 4v,.

If sphere I were to hit sphere 3 directly (without the
intermediate sphere 2), the highest velocity of sphere 3
for m, > m, would be roughly 2v,.

In some fantastic projects of interplanetary flight it has
been suggested that the spaceship be accelerated to the
necessary speed through a series.of collisions with inter-
mediate objects whose masses must be calculated in the
appropriate manner.

(2) my; = my. In this case my= m; = my and uz; = v,.

(3) my <« my. Assuming that my > m;, we get

ug =~ 4v,m,/mg.
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Here the velocity of sphere 3 is approximater double the
velocity without an intermediate object, sphere 2.
1.36. The velocities of the spheres after collision are
. mp—nly _ 2my
1 .....m1+m2v0, uz_m1+mz

Vo-

Here are some particular cases.

(1) u; < 0if m; << m,. Since in this case 2m; << m; +
my, we have 0 << u, << v,.

(2) u, =0 if m; = m,. Then u, = v,.

3) uy >0 if my > m,. Then 2m; > m; + m, and
Uy < Uy < 20,.
1.37. The equations of motion for the loads and the
pulley can be written as follows:

mw =mg — Iy, mw = Ty — myg, Je = (T, — Ty)R,
(1.37.1)

where T, is the force exerted by the left end of the string
on the left load, T, the force exerted by the right end
of the string on the right load, J the moment of inertia
of the pulley, w the acceleration of the loads, and e is
angular acceleration of the pulley. Dividing (1.37.1)
by R, adding all the equations, and replacing & with
w/R, we arrive, after appropriate transformations, at
m,—my
W= R & (1.37.2)
Equation (1.37.2) shows that in exact calculations we
must allow for the moment of inertia and the radius of
the pulley.
If the pulley is a homogencous disk, then instead of J
we can write mpR%2, and Eq. (1.37.2) assumes the form

. my—my
Y T mamp2 6

We see that in this case the radius of the pulley plays no
role; what is important is only the mass of the pulley.
1.38. The equations of motion for the load-shaft or Lhe
load-sheave can be wrilten as follows:

mg — T =mw, TR = Jg,

where m is the mass of each load, T the force exerted by
the strings attached to the loads, R the radius of the
shaft or sheave, J the moment of inertia of the shaft or
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sheave, and & the angular acceleration of the shaft of
sheave. Eliminating T from the equations and replacing &
with w/R and the moment of inertia of the shaft or sheave
with A R?/2, we arrive, after simple transformations, al

. m
“mrae &

from which it follows that the accelerations with which
the two loads are lowered coincide. The angular accelera-
tion is the greater the larger the radius, which means that
the shaft has a greater angular acceleration than the sheave.
1.39. DPrior Lo switch-on, the sum of the angular momen-
ta of all the parts of the vacuum cleaner is zero. When
the motor is switched on, a torque appears in the rotor
of the motor, with the same torque (in absolute value)
appearing in the stator and the casing of the vacuum clean-
er fixed to the stator. Due to the latter torque, the vacuum
cleaner begins to turn, but this motion dies out very soon
because of friction.

1.40. When the engine of the helicopter ol this typeis
operaling, lwo torques appear: one is applied to the
main rotor and the other (equal in magnitude to the
first) is applied to the fuselage of the copter. This second
torque tends to turn the fuselage in the direction opposite
to that of the main rotor. The vertical tail rotor creates
a torque that cancels out the torque applied to the fuse-
lage. In toy helicopters this second rotor is fixed and the
helicopter rotates in flight in a direction opposite to that
of the main rotor.

1.41. The rod is in rotational motion, and so its poten-
tial energy is transformed into the kinetic energy of
rotation. If the mass of the rod is m and the length is [,
we have

w

mgl _ Jo?
2 T 2
Replacing  with v/l and J with mi¥/3, we get

v=) 3gl.

1.42. To determine the trajectories that the various
points of the rod describe, we introduce a coordinate
system whose origin lies at B, the lower point of the rod
prior to falling, whose z axis points horizontally in the
direction in which point B moves during motion, and

143



whose y axis points upward, along the rod prior to motion.
Since there are no forces that act on the rod in the hori-
zontal direction, the rod’s center of mass moves downward
(from C Lo B). As Figure (a) shows, the coordinates of the

’ Yia

IEN
| o«

8 D x ' B D X
(a) (h)

Fig. 1.42

poinls lying above the center of mass by a distance a
are determined by the equations

z = —acosa, y= (R <+ a)sina,
while the coordinates of the points lying below the cenler
of mass by a distance a are determined by the equations
z=uacosa, Yy = (R — a)sina.
These equations imply that in the process of falling the
rod (and thal means all of its points except the cenler of

mass) describes quarters of ellipses (Figure (b)) specified
by the equations

£+ vy (upper points)
a® ' (R+a)? '
2 ¥ 1 (lower poi

—F = (lower points).

When the rod is falling, its motion can be considered as
rotation about an instantaneous center, D. Therefore,
the velocity of the upper point (4) can be determined
just like in Problem 1.41, using the law of conservation
of energy. The appropriate equations yield

v=1)6gR.
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1.43. The velocity imparted to point 4 will be directed
in opposition to vq if the rod’s linear velocity acquired as
a result of rotation after the bullet has hit the rodis
greater than the velocity of the center of mass of the rod.
Moreover, for such a situation to occur, the distance z
must not exceed one-half of the length of the rod. Accord-
ing to the law of conservation of momentum,

mvy = m (v + oz) + M. (1.43.1)

Here we have allowed for the fact that the velocity of
the bullet after the bullet has hit the rod is the sum of
the velocity of the center of mass, v, and the velocity wz
which the point that is distant z from the center of mass
acquires as a result of rotational motion with angular
velocity .

According Lo the law of conservation of angular mo-
mentum,

mvyz,= m (v 4- wz) z + Jo, (1.43.2)

where J is the moment of inertia of the rod about the
center of mass, J = MR?%3. Multiplying (1.43.1) by z
and subtracting the product from (1.43.2), we get

© = Mvz/J = 3vz/R2.

The lincar velocity of rotation acquired by point A (we
denote this velocity by V) is

V = oR = 3va/R.

The ratio V/v is greater than unity if z > R/3.

1.44. According to the right-hand screw rule, the vector
of the angular velocity of the gyroscope is directed to the
right in the figures accompanying the problem and the an-
swer. The revolving platform applies a torque to the frame,
and the vector of this torque is directed perpendicularly
to the vector of the angular velocity of the gyroscope.
This torque creates an angular acceleration &, and under
this acceleration the vector of angular velocity rotates
in the direction shown by the arrow in the figure accom-
panying the answer. As aresult the giroscope’s axis places
itself vertically and the direction of rotation of thegyro-
scope coincides with the direction of rotation of the plat-
form. If the direction of rotation of the gyroscope or the
direction of rotation of the platform were to change, the
gyroscope’s axis would point in the opposite direction.
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In all cases the axis rotates in such a manner that the
vector of angular velocily places itself in the direction
coinciding with that of the vector of an external torque.
This property of gyroscopes is used in navigation in
gyrocompasses. The “platform” that applies a torque to
the gyroscope is the earth in this case.

1.45. The vector of the angular velocity of the top is
directed upward along the top’s axis (see the figure
accompanying the answer). The force of gravity applied
to the top at the top’s center of mass creates a torque

@
//""\\
{\ b
£ S~d
7 :
S
Fig. 1.44 Fig. 1.45

whose vector, being perpendicular to the vector of angular
velocity, is directed away from the reader. This torque
does not change the magnitude of the angular velocity
but creates an angular acceleration and hence changes
the direction of the vector of angular velocity, just like
centripetal acceleration does not change the value of
the velocity but does change the direction of the velocity
vector, as a result of which the body to which the centri-
petal acceleration is applied moves along a circle. In the
case at hand the direction of the angular acceleration is
such that precession occurs counterclockwise (if one views
the top from above).

1.46. Since no external forces act on the shaft-sleeve
system, the total angular momentum of the system re-
mains constant:

Jon 0o = (Jgn + J) 0. (1.46.1)
The moment of inertia of the shaft is
nd4
Jon=p351
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where p is the density of the material of the shaft and
sleeve. The moment of inertia of the sleeve is

amp 2
From (1.46.1) it follows that
0ol = o [(D* — d*) h - d*l],
whence
a4l dsl
T @ U—n Dk = T mi—ann @
1

e (E)E

1.47. The potential energy of an object on the top of a
hill, mgh, transforms into the kinetic energy of transla-
tional and rotational motion:

(0}

-

2
Replacing @ with v/R, we get
my? Ju?

R (1.47.1)

The moments of inertia of the disk, J4, and the sphere,
Jep, are

mgh =

Ja= m;{’ and J,pzi;-mli’z,
respectively, with R the radius of disk or sphere. Sub-
stituting these values into (1.47.1) and dividing by m,
we get

gh=" -2 =0.7502 (1.47.2)
for the disk and
gh="2-+2 =0.72 (1.47.3)

for the sphere. Since the left-hand sides of these equations
are the same, the final velocity of the sphere is greater,
and since the motion is uniformly accelerated, the sphere
will get to the horizontal section earlier than the disk.
Neither the masses nor the radii of the objects rolling
down the inclined planes are present in (1.47.2) and
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(1.47.3), with the result that the time it takes the objects
to roll down is independent of these quantities.
1.48. When the spacecraft goes into a circular orbit at
the perigee, it will circle the earth along a low orbit
during the second half of the orbit. For this reason the space-
craft’s potential energy at the new apogee will be lower
than at the old one and, hence, such a maneuver requires
lower kinetic energy. This means that the spacecraft
must lower its velocity. Similar reasoning shows that
to go into a circular orbit at the apogee, the spacecraft
must increase its velocity.
1.49. The kinetic energy of a satellite is determined by
the value of the orbital (or satellite) velocity. According
to Newton’s second law and the law of universal gravita-
tion,
Mm mv?

¢ =&
where M is the mass of the earth, m the mass of the satel-
lite, v the velocity of the satellite, and G the gravitational
constant. From this it follows that the kinetic energy

my? GMm
Win="3"="31

is the smaller the higher the orbit of the satellite.
The potential energy (we take it equal to zero at in-
finity)
Mm
Wpot =—G R
is the greater Lhe higher the orbit of the satellite. The
same is true of the total energy:

M
W =W+ Wpet= —G—ijn-.

The angular momentum also increases as we move farther
away from the carth and is equal to

mvR=m V) GMR.

1.50. Let us consider an extremely elongated orbit. In
this case the distance between the foci differs little from
the length of the major axis. Therefore, the force acting
on a space stalion near the apogee can be assumed to be
roughly the same for all extremely elongated orbits.
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Under this force the space stations move with the same
accelerations w, = V¥R, where R is the curvature radius
of the trajectory, and v is the velocity at apogee. The
smaller the radius of curvature, the smaller is the veloc-
ity of a space station, and the greater the elongation
of the orbit, the smaller is the radius. Hence, the velocity
and therefore the kinetic ecnergy at apogee tend to zero
and the space stations possess almost exclusively poten-
tial energy.

Since the total energy of a space station remains con-
stant in flight, at all other points on the orbit it is equal
to the sum of the kinetic and potential energies. The
potential energy of the interaction between the carth and
the station (this energy is assumed to be zero at infinity) is

Wpot: —G Me ’

a

where M is the mass of the earth, m the mass of the station,
G the gravitational constant, and a the distance from the
center of the earth to the station (this quantity is prac-
tically equal to the length of the major axis of the orbit).
When circling the earth along a circular orbit whose
radius R is approximately a/2, the station possesses
potential energy

W ot == — 26 2

As shown in the solution to Problem 1.4Y, the kinetic
energy of the station in this case is

M
Wkln =G am ’
while the total energy is
W= —C Mm ,
a

which means that it is the same as for an elliptical orbit.
It is convenient to determmine the angular momentum of
a station when the station passes through the apogee:

L = mva.

For extremely elongated orbits, a is roughly the same
for all orbits, but the greater the clongation of the orbit
the smaller the velocity at apogee. Hence, the angular
momentum at apogee is the smaller the greater the clon-
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gation of the orbit. But since the torque of the force of
attraction to the earth is zero, the angular momentum
must be the same at all points of the orbit. Hence, the
energy of the station in a circular orbit and that of the
station in an elliptical orbit coincide, while the angular
momentum is the smaller the greater the elongation of
the orbit.
1.51. The fact that the spacecraft retains its orientation
with respect to the earth means that all points of the
spacecraft move with the same angular velocity. Suppose
that the point closest to the surface of the earth moves
with the orbital (satellite) velocity according to the
equation
0R=G-3r ,

where R is the distance between this point and the center
of the earth. The point of the spacecraft farthest from the
earth moves with an acceleration w? (R 4 D), where D
is the distance between the two points.

If we consider the spacecraft to be a noninertial system,
we can assume that on an object of mass m placed at the
point farthest from the earth there acts a force of inertia

Fi= —mo® (R + D).

At the same time, there is the force of gravity acting on
this object:

(1.51.1)

Mm
(R+D)**

The sum of these two forces plays the role of “weight”
for the object, or numerically the reaction of the support
exerted on the object:

Fy=mo*(R+D)—G

F=G

Mm
(R4+D)**

Bearing in mind that D <« R, we can replace (R 4 D)2
with (1 — 2D/R)/R?. Thus

Fumm[oR (1+5)—61 (1-22)],

R R R
and if we allow for (1.51.1), we get
M 3D
Fym G — 5
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Since GMm/R? is equal, to a high accuracy, to the
weight of the object on the surface of the earth, or mg,

we get Fo= —:%l mg.

This expression gives the “weight” of an object in the
spacecraft at the point farthest from the earth. Assuming
that D is 2.1 m and bearing in mind that R = 6300 km,
we find that the “weight” of an astronaut whose mass is
70 kg is 6.9 X 10~* N at the point within the spacecraft
farthest from the earth.
1.52. The potential energy of the comet (equal to zero
at infinity) is —GMm/r, where m is the comet’s mass,
M the mass of the sun, and r the distance between the sun
and the comet. As the comet approaches the sun, this
energy decreases, which means that the kinetic energy
increases, with

my? Mm

2 —G r
remaining zero.* The angular momentum of the comet
is also conserved, since the torque produced by central
forces is always zero. If we take two points, one at the
aphelion of the presumable closed trajectory and the other
placed at the same distance from the sun on the second
branch of the parabola, then the potential energies at
these points must coincide (since the distances coincide),
which means that the kinetic energies at these points
coincide and so do the velocities. But, as follows from
the figure accompanying the problem, the angular mo-
mentum at the aphelion must be higher than on the
branches of the parabola, which is impossible. At the
same time, at symmetrical points both the kinetic ener-
gies and the polential energies are the same, and the same
is true of the angular momenta.

The above reasoning is true for both closed orbits
(ellipses and circles) and open orbits (parabolas and hyper-
bolas) of heavenly bodies moving in the field of a single
attraction center. The fact that both the energy conser-
vation law and the angular momentum conservation law
must be satisfied mnakes it impossible for a central force
to change the nature of a trajectory.

* It is assumed that the initial kinetic energy of the comet in
far-away regions of space is negligible.
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1.53. If D, is the diameter of the disk at rest, then in
the system of coordinates with respect to which the disk

] y
N (D
Fig. 1.53

is in motion the diameter in the direction of the velocity
will be

D-:D,VT—?¢=D, Y T—p

The same is true of the ratio of the halves of the chord
passing at an altitude y froin the center:

z=ux,) 1—p>.
Since 2} = R? — y%, we have
P= (R -y (1 — P

whence

‘3 y:
wma-p e

The moving disk appears to be an ellipse with semi-axes R
and RY1 — B
1.54. The vclomty of the triangle is directed perpendic-
ularly to the altitude, with the result that the length of
the altitude is independent of the velocity. The hypote-
nuse is equal to twice the altitude (I, -= 2h), while the
length of a side of the equilateral triangle is [ --
Zhdtan 30°. Thus, for the moving triangle we have I = [,
an

‘/3h 2h Y TP

Hence f == 0.816.
1.55. As Figure (a) accompanying this problem shows,
the world line passing through the origin at an angle 0

152



to the a/c axis represents the motion of an object moving
away fromn the observer (placed at the origin) with a
velocity v = ¢ cot 0. The other figures correspond to the
following cases: (b) an object moving toward the observer
with a velocity v = ¢ cot 0, (c) motion with the specd
of light, and (d) an object is at rest at a certain distance
from the origin. Case (e) contradicts the main principles
of relativity theory since it represents the motion of an
object with a speed greater than that of light.

1.56. According to the thecory of relativity, the kinelic
energy of a moving object is given by the following for-
mula

Wrel = moc2 (

1
—r—_— 1-
Vi—p )
with f = vl/e. In classical mechanics,

myv?
WC] = .

2
Thus,
Wrel =£_( 1 — )
Wer B ]/1—[32 )
Since B = cot 0, we have
Wre] — 2 ( 1 _ 1 )
Wel cot?0 \ /' T—¢ot20 )

At 6 = 60°,
Wrcl/WCl == 1-37.

1.57. Lel us assume that at ¢ == O by the clocks in both
systems, the systems were close to each other (in the
figure accompanying the problem this moment corre-
sponds to the origin). If one of the systems sends a signal
after a time interval 7'y has elapsed, the second system
will receive the signal after a time interval
. 1-+p
T=T, 1—p

The angle 0 corresponds to a relative velocity f = cot 6.
Thus,

1+cot T+cot®
T= TOV T—cot® °
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1.58. The time interval separating Lhe signals received
by B from A is

q 1+p

r=1) =5
Since system C is moving toward A, its (relative) velocity
is negative and, hence, the signals it sends are reccived
by A separated by time intlervals

r,=1,)/ =L

1+f5
System A will register N signals from B in the course of

t=NT,=NT,)/ 15,

while the signals from C will be registered in the course of

t,== NT,=NT, ]/ = l—B

When systemm A4 meets system C, the clock in the first
system will show

2NT,
ty=t,+t,= NT, ( 1+5+1/ _

148 ) Vi1—p2 -

The clock in C will show the time that is the sum of the
time during which system A4 sends N signals prior Lo
meeting C and the time during which system C sends N
signals prior to meeting system 5. Thus,

te = 2NT,.

The difierence in the readings of the clocks will be

At ty—to=2 (1/—11—?— 1) NT,.
The fractional variation in the duration of the signals is
B _ 1
Vi—p:’
For example, at f = 0.6 we have
tgltc = 1.20.
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