1. Circular Motion

Uniform Circular Motion:

• Speed = |Velocity| = v

$$\frac{2\pi r}{}$$

• Time period, T = v

• Frequency,
$$f = \frac{v}{2\pi r}$$

• Angular velocity, $\omega = \frac{v}{r}$

• Centripetal force, $F = \frac{mv^2}{r}mv2r$

• Centripetal acceleration =
$$\frac{v^2}{r} = \omega^2 r$$

• Angular velocity, $\omega = \frac{v}{r}$

• Centripetal force is a real force that acts on a particle performing circular motion along the radius of a circle. The force is directed towards the centre of the circle.

• The magnitude of centripetal force is given by $F = \frac{mv^2}{r} mv2r$.

- Centrifugal force is a pseudo force in uniform circular motion. It acts along the radius and is directed away from the centre of the circle.
- Magnitude of centrifugal force = Mass × Acceleration of the reference frame $F_{CF} = mv\omega = \frac{mv^2}{r} = mr\omega^2 \quad FCF = mv\omega = mv2r = mr\omega^2$
- Kinematics equations of motion

$$\begin{split} &\omega = \omega_0 + \alpha t \\ &\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \\ &\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right) \\ &\theta_0 = \text{initial angular displacement} \\ &\omega_0 = \text{initial angular velocity} \end{split}$$

• Friction force, $F = \mu N$

Where, N is the normal reaction of the body

• Coefficient of friction

$$(\mu_{\text{static}} > \mu_{\text{sliding}} > \mu_{\text{rolling}})$$

• Circular motion

For a level curved road

- $F = \mu_s N \ge \frac{mv^2}{R}$ $F = \mu s N \ge mv2R$ (R = Radius of curvature of the road)
- $v^2 \le \le \mu_s Rg$ (As, N = mg)

Tha maximum speed of a car is,

$$v_{\text{max}} = \sqrt{\mu_{\text{s}} Rg}$$

For a banked curved road

• Car can be parked, if $\tan \theta \le \mu_s$

The maximum speed of a car is,

•
$$V_{\text{max}} = \left(\frac{Rg(\mu_s + \tan \theta)}{(1 - \mu_s \tan \theta)}\right)^{-1/2} \text{vmax} = Rg(\mu_s + \tan \theta)(1 - \mu_s \tan \theta)12$$

Vertical Circular Motion

Vertical Circular Motion

- Motion of a particle in a vertical circle is non-uniform circular motion.
- Linear velocity of the particle at the highest point (A):

$$v_1 = \sqrt{gr} v_1 = gr$$

• Linear velocity at the lowest point (B):

$$v_2 = \sqrt{5gr} v_2 = 5gr$$

• Linear velocity at the midway point (C):

$$v_3 = \sqrt{3gr} v_3 = 3gr$$

• Total energy of the particle at points A, B and C is same and is given by

$$E = \frac{5}{2} mgr$$
 E=52mgr

• Difference in tensions at lowest and highest points:

$$T_2 - T_1 = 6mg$$
 T2-T1=6mg