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The Forced Oscillator

The Operation of i upon a Vector

We have already seen that a harmonic oscillation can be conveniently represented by the

form ei!t. In addition to its mathematical convenience i can also be used as a vector

operator of physical significance. We say that when i precedes or operates on a vector the

direction of that vector is turned through a positive angle (anticlockwise) of �=2, i.e. i
acting as an operator advances the phase of a vector by 90�. The operator � i rotates the

vector clockwise by �=2 and retards its phase by 90�. The mathematics of i as an operator

differs in no way from its use as
ffiffiffiffiffiffiffi�1

p
and from now on it will play both roles.

The vector r ¼ aþ ib is shown in Figure 3.1, where the direction of b is perpendicular to

that of a because it is preceded by i. The magnitude or modulus or r is written

r ¼ jrj ¼ ða2 þ b2Þ1=2

and

r 2 ¼ ða2 þ b2Þ ¼ ðaþ ibÞða� ibÞ ¼ rr�;

where ða� ibÞ ¼ r� is defined as the complex conjugate of ðaþ ibÞ; that is, the sign of i is
changed.

The vector r� ¼ a� ib is also shown in Figure 3.1.

The vector r can be written as a product of its magnitude r (scalar quantity) and its phase

or direction in the form (Figure 3.1)

r ¼ r ei� ¼ rðcos�þ i sin�Þ
¼ aþ ib

showing that a ¼ r cos� and b ¼ r sin�.
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It follows that

cos� ¼ a

r
¼ a

ða2 þ b2Þ1=2

and

sin� ¼ b

r
¼ b

ða2 þ b2Þ1=2

giving tan� ¼ b=a.
Similarly

r� ¼ r e�i� ¼ rðcos�� i sin�Þ
cos� ¼ a

r
; sin� ¼ �b

r
and tan� ¼ �b

a
ðFigure 3:1Þ

The reader should confirm that the operator i rotates a vector by �=2 in the positive

direction (as stated in the first paragraph of p. 53) by taking � ¼ �=2 in the expression

r ¼ r ei� ¼ rðcos �=2þ i sin�=2Þ

Note that � ¼ ��=2 in r ¼ r e�i�=2 rotates the vector in the negative direction.

Vector form of Ohm’s Law

Ohm’s Law is first met as the scalar relation V ¼ IR, where V is the voltage across the

resistance R and I is the current through it. Its scalar form states that the voltage and current

are always in phase. Both will follow a sin ð!t þ �Þ or a cos ð!t þ �Þ curve, and the value

of � will be the same for both voltage and current.

However, the presence of either or both of the other two electrical components,

inductance L and capacitance C, will introduce a phase difference between voltage and

r

r*

a
a

ib

−ib

φ

φ

φ

φ
r = r e

i

φ
r* = r e

−i

r  cos

φir  cos

φ−ir  cos

Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates
complex conjugate where � i replaces i
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current, and Ohm’s Law takes the vector form

V ¼ IZe;

where Ze, called the impedance, replaces the resistance, and is the vector sum of the

effective resistances of R, L, and C in the circuit.

When an alternating voltage Va of frequency ! is applied across a resistance, inductance

and condenser in series as in Figure 3.2a, the balance of voltages is given by

Va ¼ IRþ L
dI

dt
þ q=C

and the current through the circuit is given by I ¼ I0 e
i!t. The voltage across the inductance

VL ¼ L
dI

dt
¼ L

d

dt
I0 e

i!t ¼ i!LI0 e
i!t ¼ i!LI

But !L, as we saw at the end of the last chapter, has the dimensions of ohms, being the

value of the effective resistance presented by an inductance L to a current of frequency !.
The product !LI with dimensions of ohms times current, i.e. volts, is preceded by i; this

tells us that the phase of the voltage across the inductance is 90� ahead of that of the current
through the circuit.

Similarly, the voltage across the condenser is

q

C
¼ 1

C

ð
I dt ¼ 1

C
I0

ð
ei!t dt ¼ 1

i!C
I0 e

i!t ¼ � iI

!C

(since 1=i ¼ �i).

Again 1=!C, measured in ohms, is the value of the effective resistance presented by the

condenser to the current of frequency !. Now, however, the voltage I=!C across the

condenser is preceded by �i and therefore lags the current by 90�. The voltage and current

across the resistance are in phase and Figure 3.2b shows that the vector form of Ohm’s

Law may be written V ¼ IZ e ¼ I½Rþ ið!L� 1=!CÞ�, where the impedance Ze ¼
Rþ ið!L� 1=!CÞ. The quantities !L and 1=!C are called reactances because they

+++ −−− IR

I = I0eiωt

q
C

dI
dtL

Va

Figure 3.2a An electrical forced oscillator. The voltage Va is applied to the series LCR circuit giving
Va ¼ Ld I=dt þ IRþ q=C
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introduce a phase relationship as well as an effective resistance, and the bracket

ð!L� 1=!CÞ is often written Xe, the reactive component of Z e.

The magnitude, in ohms, i.e. the value of the impedance, is

Ze ¼ R2 þ !L� 1

!C

� �2
" #1=2

and the vector Ze may be represented by its magnitude and phase as

Ze ¼ Ze e
i� ¼ Zeðcos�þ i sin�Þ

so that

cos� ¼ R

Ze

; sin� ¼ Xe

Ze

and

tan� ¼ Xe=R;

where � is the phase difference between the total voltage across the circuit and the current

through it.

The value of � can be positive or negative depending on the relative value of !L and

1=!C: when !L > 1=!C; � is positive, but the frequency dependence of the components

show that � can change both sign and size.

The magnitude of Z e is also frequency dependent and has its minimum value Ze ¼ R

when !L ¼ 1=!C.
In the vector form of Ohm’s Law, V ¼ IZe. If V ¼ V0 e

i!t and Ze ¼ Ze e
i�, then we have

I ¼ V0 e
i!t

Ze ei�
¼ V0

Ze

eið!t��Þ

giving a current of amplitude V0=Ze which lags the voltage by a phase angle �.

The Impedance of a Mechanical Circuit

Exactly similar arguments hold when we consider not an electrical oscillator but a

mechanical circuit having mass, stiffness and resistance.

R

iωL iXe =i   ωL −        

ωC−i
1

ωC
1 i  ωL −        ωC

1
φ
R

Ze

Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Ze ¼
Rþ ið!L� 1=!CÞ
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The mechanical impedance is defined as the force required to produce unit velocity in

the oscillator, i.e. Zm ¼ F=v or F ¼ vZm.

Immediately, we can write the mechanical impedance as

Zm ¼ r þ i !m� s

!

� �
¼ r þ iXm

where

Zm ¼ Zm ei�

and

tan� ¼ Xm=r

� being the phase difference between the force and the velocity. The magnitude of Zm ¼
½r 2 þ ð!m� s=!Þ2�1=2.
Mass, like inductance, produces a positive reactance, and the stiffness behaves in exactly

the same way as the capacitance.

Behaviour of a Forced Oscillator

We are now in a position to discuss the physical behaviour of a mechanical oscillator of

mass m, stiffness s and resistance r being driven by an alternating force F0 cos!t, where F0

is the amplitude of the force (Figure 3.3). The equivalent electrical oscillator would be an

alternating voltage V0 cos!t applied to the circuit of inductance L, capacitance C and

resistance R in Figure 3.2a.

The mechanical equation of motion, i.e. the dynamic balance of forces, is given by

m€xxþ r _xxþ sx ¼ F0 cos!t

and the voltage equation in the electrical case is

L€qqþ R _qqþ q=C ¼ V0 cos!t

We shall analyse the behaviour of the mechanical system but the analysis fits the electrical

oscillator equally well.

mr

s

F0 cos ωt

Figure 3.3 Mechanical forced oscillator with force F0 cos!t applied to damped mechanical circuit
of Figure 2.1
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The complete solution for x in the equation of motion consists of two terms:

(1) a ‘transient’ term which dies away with time and is, in fact, the solution to the equation

m€xxþ r _xxþ sx ¼ 0 discussed in Chapter 2. This contributes the term

x ¼ C e�rt=2m eiðs=m�r 2=4m 2Þ 1=2 t

which decays with e�rt=2m. The second term

(2) is called the ‘steady state’ term, and describes the behaviour of the oscillator after the

transient term has died away.

Both terms contribute to the solution initially, but for the moment we shall concentrate

on the ‘steady state’ term which describes the ultimate behaviour of the oscillator.

To do this we shall rewrite the force equation in vector form and represent cos!t by e i!t

as follows:

m€xxþ r _xxþ sx ¼ F0 e
i!t ð3:1Þ

Solving for the vector x will give both its magnitude and phase with respect to the driving

force F0 e
i!t. Initially, let us try the solution x ¼ A ei!t, where A may be complex, so that it

may have components in and out of phase with the driving force.

The velocity

_xx ¼ i!A ei!t ¼ i!x

so that

€xx ¼ i 2!2x ¼ �!2x

and equation (3.1) becomes

ð�A!2mþ i!Ar þ AsÞ ei!t ¼ F0 e
i!t

which is true for all t when

A ¼ F0

i!r þ ðs� !2mÞ

or, after multiplying numerator and denominator by �i

A ¼ �iF0

!½r þ ið!m� s=!Þ� ¼
�iF0

!Zm

Hence

x ¼ A e i!t ¼ �iF0 e
i!t

!Zm

¼ �iF0 e
i!t

!Zm ei�

¼ �iF0 e
ið!t��Þ

!Zm
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where

Zm ¼ ½r 2 þ ð!m� s=!Þ2�1=2

This vector form of the steady state behaviour of x gives three pieces of information and

completely defines the magnitude of the displacement x and its phase with respect to the

driving force after the transient term dies away. It tells us

1. That the phase difference � exists between x and the force because of the reactive part

ð!m� s=!Þ of the mechanical impedance.

2. That an extra difference is introduced by the factor �i and even if � were zero the

displacement x would lag the force F0 cos!t by 90�.

3. That the maximum amplitude of the displacement x is F0=!Zm. We see that this is

dimensionally correct because the velocity x=t has dimensions F0=Zm.

Having used F0 e
i!t to represent its real part F0 cos!t, we now take the real part of the

solution

x ¼ �iF0 e
ið!t��Þ

!Zm

to obtain the actual value of x. (If the force had been F0 sin!t, we would now take that part

of x preceded by i.)

Now

x ¼ � iF0

!Zm

eið!t��Þ

¼ � iF0

!Zm

½cos ð!t � �Þ þ i sin ð!t � �Þ�

¼ � iF0

!Zm

cos ð!t � �Þ þ F0

!Zm

sin ð!t � �Þ

The value of x resulting from F0 cos!t is therefore

x ¼ F0

!Zm

sin ð!t � �Þ

[the value of x resulting from F0 sin!t would be �F0 cos ð!t � �Þ=!Zm�.
Note that both of these solutions satisfy the requirement that the total phase difference

between displacement and force is � plus the ��=2 term introduced by the �i factor. When

� ¼ 0 the displacement x ¼ F0 sin!t=!Zm lags the force F0 cos!t by exactly 90�.
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To find the velocity of the forced oscillation in the steady state we write

v ¼ _xx ¼ ði!Þ ð�iF0Þ
!Zm

eið!t��Þ

¼ F0

Zm

eið!t��Þ

We see immediately that

1. There is no preceding i factor so that the velocity v and the force differ in phase only

by �, and when � ¼ 0 the velocity and force are in phase.

2. The amplitude of the velocity is F0=Zm, which we expect from the definition of

mechanical impedance Zm ¼ F=v.

Again we take the real part of the vector expression for the velocity, which will

correspond to the real part of the force F0 e
i!t. This is

v ¼ F0

Zm

cos ð!t � �Þ

Thus, the velocity is always exactly 90� ahead of the displacement in phase and differs

from the force only by a phase angle �, where

tan� ¼ !m� s=!

r
¼ Xm

r

so that a force F0 cos!t gives a displacement

x ¼ F0

!Zm

sin ð!t � �Þ

and a velocity

v ¼ F0

Zm

cos ð!t � �Þ

(Problems 3.1, 3.2, 3.3, 3.4)

Behaviour of Velocity vv in Magnitude and Phase versus Driving
Force Frequency x

The velocity amplitude is

F0

Zm

¼ F0

½r 2 þ ð!m� s=!Þ2�1=2

so that the magnitude of the velocity will vary with the frequency ! because Zm is

frequency dependent.
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At low frequencies, the term �s=! is the largest term in Zm and the impedance is said to

be stiffness controlled. At high frequencies !m is the dominant term and the impedance is

mass controlled. At a frequency !0 where !0m ¼ s=!0, the impedance has its minimum

value Zm ¼ r and is a real quantity with zero reactance.

The velocity F0=Zm then has its maximum value v ¼ F0=r, and !0 is said to be the

frequency of velocity resonance. Note that tan� ¼ 0 at !0, the velocity and force being in

phase.

The variation of the magnitude of the velocity with driving frequency, !, is shown in

Figure 3.4, the height and sharpness of the peak at resonance depending on r, which is the

only effective term of Zm at !0.

The expression

v ¼ F0

Zm

cos ð!t � �Þ

where

tan� ¼ !m� s=!

r

shows that for positive �; that is, !m > s=!, the velocity v will lag the force because ��
appears in the argument of the cosine. When the driving force frequency ! is very high and

! ! 1, then � ! 90� and the velocity lags the force by that amount.

When !m < s=!; � is negative, the velocity is ahead of the force in phase, and at low

driving frequencies as ! ! 0 the term s=! ! 1 and � ! �90�.
Thus, at low frequencies the velocity leads the force (� negative) and at high frequencies

the velocity lags the force (� positive).

At the frequency !0, however, !0m ¼ s=!0 and � ¼ 0, so that velocity and force are in

phase. Figure 3.5 shows the variation of � with ! for the velocity, the actual shape of the

curves depending upon the value of r.

V
el

oc
ity

F0
r

ω0 = (s/m)

ω
1
2

Figure 3.4 Velocity of forced oscillator versus driving frequency !. Maximum velocity vmax ¼ F0=r
at !2

0 ¼ s=m
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(Problem 3.5)

Behaviour of Displacement versus Driving Force Frequency x

The phase of the displacement

x ¼ F0

!Zm

sin ð!t � �Þ

is at all times exactly 90� behind that of the velocity. Whilst the graph of � versus !
remains the same, the total phase difference between the displacement and the force

involves the extra 90� retardation introduced by the �i operator. Thus, at very low

frequencies, where � ¼ ��=2 rad and the velocity leads the force, the displacement and

the force are in phase as we should expect. At high frequencies the displacement lags the

force by � rad and is exactly out of phase, so that the curve showing the phase angle

between the displacement and the force is equivalent to the � versus ! curve, displaced by

an amount equal to �=2 rad. This is shown in Figure 3.6.

The amplitude of the displacement x ¼ F0=!Zm, and at low frequencies Zm ¼
½r 2 þ ð!m� s=!Þ2�1=2 ! s=!, so that x � F0=ð!s=!Þ ¼ F0=s:

Total phase
angle (radians)
between
x and F

x and F in phase

x lags F by      rad

x lags F 

π
2

π
2

π
2

−

π
2

−0

ω0

r increasing
Phase angle
   (red)φ0ω

− π

Figure 3.6 Variation of total phase angle between displacement and driving force versus driving
frequency !. The total phase angle is ��� �=2 rad

Phase angle
   (radians)
between
V and F

0

π
2

π
2

v leads F

v lags F

r increasing

v and F
in phase

+

ω
φ

−

Figure 3.5 Variation of phase angle � versus driving frequency, where � is the phase angle between
the velocity of the forced oscillator and the driving force. � ¼ 0 at velocity resonance. Each curve
represents a fixed resistance value
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At high frequencies Zm ! !m, so that x � F0=ð!2mÞ, which tends to zero as ! becomes

very large. At very high frequencies, therefore, the displacement amplitude is almost zero

because of the mass-controlled or inertial effect.

The velocity resonance occurs at !2
0 ¼ s=m, where the denominator Zm of the velocity

amplitude is a minimum, but the displacement resonance will occur, since x ¼ ðF0=!ZmÞ
sin ð!t � �Þ, when the denominator !Zm is a minimum. This takes place when

d

d!
ð!ZmÞ ¼ d

d!
!½r 2 þ ð!m� s=!Þ2�1=2 ¼ 0

i.e. when

2!r 2 þ 4!mð!2m� sÞ ¼ 0

or

2!½r 2 þ 2mð!2m� sÞ� ¼ 0

so that either

! ¼ 0

or

!2 ¼ s

m
� r 2

2m2
¼ !2

0 �
r 2

2m2

Thus the displacement resonance occurs at a frequency slightly less than !0, the

frequency of velocity resonance. For a small damping constant r or a large mass m these

two resonances, for all practical purposes, occur at the frequency !0.

Denoting the displacement resonance frequency by

! r ¼ s

m
� r 2

2m2

� �1=2

we can write the maximum displacement as

xmax ¼ F0

! rZm

The value of ! rZm at ! r is easily shown to be equal to ! 0r where

! 02 ¼ s

m
� r 2

4m2
¼ !2

0 �
r 2

4m2

The value of x at displacement resonance is therefore given by

xmax ¼ F0

! 0r
where

! 0 ¼ !2
0 �

r 2

4m2

� �1=2
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Since xmax ¼ F0=!
0r at resonance, the amplitude at resonance is kept low by increasing

r and the variation of x with ! for different values of r is shown in Figure 3.7. A negligible

value of r produces a large amplification at resonance: this is the basis of high selectivity in

a tuned radio circuit (see the section in this chapter on Q as an amplification factor).

Keeping the resonance amplitude low is the principle of vibration insulation.

(Problems 3.6, 3.7)

Problem on Vibration Insulation

A typical vibration insulator is shown in Figure 3.8. A heavy base is supported on a

vibrating floor by a spring system of stiffness s and viscous damper r. The insulator will

generally operate at the mass controlled end of the frequency spectrum and the resonant

frequency is designed to be lower than the range of frequencies likely to be met. Suppose

the vertical vibration of the floor is given by x ¼ A cos!t about its equilibrium position and

y is the corresponding vertical displacement of the base about its rest position. The function

of the insulator is to keep the ratio y=A to a minimum.

The equation of motion is given by

m€yy ¼ �rð _yy� _xxÞ � sðy� xÞ

ωω0

F0

S

D
is

pl
ac

em
en

t x

r increasing

Figure 3.7 Variation of the displacement of a forced oscillator versus driving force frequency ! for
various values of r

64 The Forced Oscillator



which, if y� x ¼ X, becomes

m€XX þ r _XX þ sX ¼ �m€xx ¼ mA!2 cos!t

¼ F0 cos!t;

where

F0 ¼ mA!2

Use the steady state solution of X to show that

y ¼ F0

!Zm

sin ð!t � �Þ þ A cos!t

and (noting that y is the superposition of two harmonic components with a constant phase

difference) show that

ymax

A
¼ ðr 2 þ s2=!2Þ1=2

Zm

where

Z 2
m ¼ r 2 þ ð!m� s=!Þ2

Note that

ymax

A
> 1 if !2 <

2s

m

r

y

Vibrating floor

x = A cos ωt

Fixed reference level

Heavy base

Equilibrium
rest position
of base

Figure 3.8 Vibration insulator. A heavy base supported by a spring and viscous damper system on a
vibrating floor
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so that s=m should be as low as possible to give protection against a given frequency !.

(a) Show that

ymax

A
¼ 1 for !2 ¼ 2s

m

(b) Show that

ymax

A
< 1 for !2 >

2s

m

(c) Show that if !2 ¼ s=m, then ymax=A > 1 but that the damping term r is helpful in

keeping the motion of the base to a reasonably low level.

(d) Show that if !2 > 2s=m, then ymax=A < 1 but damping is detrimental.

Significance of the Two Components of the Displacement Curve

Any single curve of Figure 3.7 is the superposition of the two component curves (a) and (b)

in Figure 3.9, for the displacement x may be rewritten

x ¼ F0

!Zm

sin ð!t � �Þ ¼ F0

!Zm

ðsin!t cos�� cos!t sin�Þ

(b)
F0
ω

ω

r

r

r 
2 + Xm 

2

2m

(a)
F0
ω

ω0 ω0 ω0

r 
2 +

+

Xm 
2

Xm 

F0 
l ω′r

F0 
l ω0r

F0 
l 2ω0r

F0 

S

r
2m

−

−

Figure 3.9 A typical curve of Figure 3.7 resolved into its ‘anti-phase’ component (curve (a)) and its
‘90� out of phase’ component (curve (b)). Curve (b) represents the resistive fraction of the
impedance and curve (a) the reactive fraction. Curve (b) corresponds to absorption and curve (a) to
anomalous dispersion of an electromagnetic wave in a medium having an atomic or molecular resonant
frequency equal to the frequency of the wave
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or, since

cos� ¼ r

Zm

and sin� ¼ Xm

Zm

as

x ¼ F0

!Zm

r

Zm

sin!t � F0

!Zm

Xm

Zm

cos!t

The cos!t component (with a negative sign) is exactly anti-phase with respect to the

driving force F0 cos!t. Its amplitude, plotted as curve (a) may be expressed as

�F0

!

Xm

Z 2
m

¼ F0mð!2
0 � !2Þ

m2ð!2
0 � !2Þ2 þ !2r 2

ð3:2Þ

where !2
0 ¼ s=m and !0 is the frequency of velocity resonance.

The sin!t component lags the driving force F0 cos!t by 90�. Its amplitude plotted as

curve (b) becomes

F0

!

r

r 2 þ X 2
m

¼ F0!r

m2ð!2
0 � !2Þ2 þ !2r 2

We see immediately that at !0 curve (a) is zero and curve (b) is near its maximum but they

combine to give a maximum at ! where

!2 ¼ !2
0 �

r 2

2m2

the resonant frequency for amplitude displacement.

These curves are particularly familiar in the study of optical dispersion where the forced

oscillator is an electron in an atom and the driving force is the oscillating field vector of an

electromagnetic wave of frequency !. When ! is the resonant frequency of the electron in

the atom, the atom absorbs a large amount of energy from the electromagnetic wave and

curve (b) is the shape of the characteristic absorption curve. Note that curve (b) represents

the dissipating or absorbing fraction of the impedance

r

ðr 2 þ X 2
mÞ1=2

and that part of the displacement which lags the driving force by 90�. The velocity

associated with this component will therefore be in phase with the driving force and it is

this part of the velocity which appears in the energy loss term r _xx2 due to the resistance of

the oscillator and which gives rise to absorption.
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On the other hand, curve (a) represents the reactive or energy storing fraction of the

impedance

Xm

ðr 2 þ X 2
mÞ1=2

and the reactive components in a medium determine the velocity of the waves in

the medium which in turn governs the refractive index n. In fact, curve (a) is a graph of the

value of n2 in a region of anomalous dispersion where the ! axis represents the value

n ¼ 1. These regions occur at every resonant frequency of the constituent atoms of

the medium. We shall return to this topic later in the book.

(Problems 3.8, 3.9, 3.10)

Power Supplied to Oscillator by the Driving Force

In order to maintain the steady state oscillations of the system the driving force must

replace the energy lost in each cycle because of the presence of the resistance. We shall

now derive the most important result that:

‘in the steady state the amplitude and phase of a driven oscillator adjust themselves so

that the average power supplied by the driving force just equals that being dissipated by the

frictional force’.

The instantaneous power P supplied is equal to the product of the instantaneous driving

force and the instantaneous velocity; that is,

P ¼ F0 cos!t
F0

Zm

cos ð!t � �Þ

¼ F 2
0

Zm

cos!t cos ð!t � �Þ

The average power

Pav ¼ total work per oscillation

oscillation period

;Pav ¼
ð T

0

P dt

T
where T ¼ oscillation period

¼ F 2
0

ZmT

ð T

0

cos!t cos ð!t � �Þ dt

¼ F 2
0

ZmT

ð T

0

½cos2!t cos�þ cos!t sin!t sin�Þ dt

¼ F 2
0

2Zm

cos�
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because ð T

0

cos!t � sin!t dt ¼ 0

and

1

T

ð T

0

cos2 !t dt ¼ 1

2

The power supplied by the driving force is not stored in the system, but dissipated as

work expended in moving the system against the frictional force r _xx.
The rate of working (instantaneous power) by the frictional force is

ðr _xxÞ _xx ¼ r _xx2 ¼ r
F 2

0

Z 2
m

cos2ð!t � �Þ

and the average value of this over one period of oscillation

1

2

rF 2
0

Z 2
m

¼ 1

2

F 2
0

Zm

cos� for
r

Zm

¼ cos�

This proves the initial statement that the power supplied equals the power dissipated.

In an electrical circuit the power is given by VI cos�, where V and I are the instantaneous

r.m.s. values of voltage and current and cos� is known as the power factor.

VI cos� ¼ V 2

Ze

cos� ¼ V 2
0

2Ze

cos�

since

V ¼ V0ffiffiffi
2

p

(Problem 3.11)

Variation of Pav with x. Absorption Resonance Curve

Returning to the mechanical case, we see that the average power supplied

P av ¼ ðF 2
0=2ZmÞ cos�

is a maximum when cos� ¼ 1; that is, when � ¼ 0 and !m� s=! ¼ 0 or !2
0 ¼ s=m. The

force and the velocity are then in phase and Zm has its minimum value of r. Thus

P av(maximum) ¼ F 2
0=2r
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A graph of P av versus !, the frequency of the driving force, is shown in Figure 3.10. Like
the curve of displacement versus !, this graph measures the response of the oscillator; the

sharpness of its peak at resonance is also determined by the value of the damping constant

r, which is the only term remaining in Zm at the resonance frequency !0. The peak occurs

at the frequency of velocity resonance when the power absorbed by the system from the

driving force is a maximum; this curve is known as the absorption curve of the oscillator

(it is similar to curve (b) of Figure 3.9).

The Q-Value in Terms of the Resonance Absorption Bandwidth

In the last chapter we discussed the quality factor of an oscillator system in terms of energy

decay. We may derive the same parameter in terms of the curve of Figure 3.10, where the

sharpness of the resonance is precisely defined by the ratio

Q ¼ !0

!2 � !1

;

where !2 and !1 are those frequencies at which the power supplied

P av ¼ 1
2
P av(maximum)

The frequency difference !2 � !1 is often called the bandwidth.

ω0 ω2 ωω1

  F 0
2

 Pav(max)

2r

4r

=

F 0
2

Figure 3.10 Graph of average power versus ! supplied to an oscillator by the driving force.
Bandwidth !2 � !1 of resonance curve defines response in terms of the quality factor, Q ¼
!0=ð!2 � !1Þ, where !2

0 ¼ s=m
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Now

P av ¼ rF 2
0=2Z

2
m ¼ 1

2
P av (maximum) ¼ 1

2
F 2

0=2r

when

Z 2
m ¼ 2r 2

that is, when

r 2 þ X 2
m ¼ 2r 2 or Xm ¼ !m� s=! ¼ �r:

If !2 > !1, then

!2m� s=!2 ¼ þr

and

!1m� s=!1 ¼ �r

Eliminating s between these equations gives

!2 � !1 ¼ r=m

so that

Q ¼ !0m=r

Note that !1 ¼ !0 � r=2m and !2 ¼ !0 þ r=2m are the two significant frequencies in

Figure 3.9. The quality factor of an electrical circuit is given by

Q ¼ !0L

R
;

where

!2
0 ¼ ðLCÞ�1

Note that for high values of Q, where the damping constant r is small, the frequency ! 0

used in the last chapter to define Q ¼ ! 0m=r moves very close to the frequency !0, and the

two definitions of Q become equivalent to each other and to the third definition we meet in

the next section.

The Q-Value as an Amplification Factor

We have seen that the value of the displacement at resonance is given by

Amax ¼ F0

! 0r
where ! 02 ¼ s

m
� r 2

4m2
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At low frequencies ð! ! 0Þ the displacement has a value A0 ¼ F0=s, so that

Amax

A0

� �2

¼ F 2
0

! 02r 2
s2

F 2
0

¼ m2!4
0

r 2½!2
0 � r 2=4m2�

¼ ! 2
0m

2

r 2½1� 1=4Q2�1=2�
¼ Q2

½1� 1=4Q2�

Hence:

Amax

A0

¼ Q

½1� 1=4Q2�1=2
� Q 1þ 1

8Q2

� �
� Q

for large Q.
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Figure 3.11 Curves of Figure 3.7 now given in terms of the quality factor Q of the system, where Q
is amplification at resonance of low frequency response x ¼ F0=s
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Thus, the displacement at low frequencies is amplified by a factor of Q at displacement

resonance.

Figure 3.7 is now shown as Figure 3.11 where the Q-values have been attached to each

curve. In tuning radio circuits, the Q-value is used as a measure of selectivity, where

the sharpness of response allows a signal to be obtained free from interference from signals

at nearby frequencies. In conventional radio circuits at frequencies of one megacycle,

Tr
an

si
en

t v
ec

to
r

A2

A3A4A0

A1

A2

A3

A4

A1

BOB

Steady state vector

0

(b)

(a)

At t = 0 , transient vector = BO = BA0

t = 0
t

Figure 3.12 (a) The steady state oscillation (heavy curve) is modulated by the transient which
decays exponentially with time. (b) In the vector diagram of (b) OB is the constant length steady
state vector and BA1 is the transient vector. Each vector rotates anti-clockwise with its own angular
velocity. At t ¼ 0 the vectors OB and BA0 are equal and opposite on the horizontal axis and their
vector sum is zero. At subsequent times the total amplitude is the length of OA1 which changes as A
traces a contracting spiral around B. The points A1, A2, A3 and A4 indicate how the amplitude is
modified in (a)
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Q-values are of the order of a few hundred; at higher radio frequencies resonant copper

cavities have Q-values of about 30 000 and piezo-electric crystals can produce Q-values of

500 000. Optical absorption in crystals and nuclear magnetic resonances are often

described in terms of Q-values. The Mössbauer effect in nuclear physics involves Q-values

of 1010.

The Effect of the Transient Term

Throughout this chapter we have considered only the steady state behaviour without

accounting for the transient term mentioned on p. 58. This term makes an initial

contribution to the total displacement but decays with time as e�rt=2m. Its effect is best

displayed by considering the vector sum of the transient and steady state components.

The steady state term may be represented by a vector of constant length rotating

anticlockwise at the angular velocity ! of the driving force. The vector tip traces a circle.

Upon this is superposed the transient term vector of diminishing length which rotates anti

clockwise with angular velocity ! 0 ¼ ðs=m� r 2=4m2Þ1=2. Its tip traces a contracting spiral.
The locus of the magnitude of the vector sum of these terms is the envelope of the

varying amplitudes of the oscillator. This envelope modulates the steady state oscillations

of frequency ! at a frequency which depends upon ! 0 and the relative phase between !t
and ! 0t.
Thus, in Figure 3.12(a) where the total oscillator displacement is zero at time t ¼ 0 we

have the steady state and transient vectors equal and opposite in Figure 3.12(b) but because

! 6¼ ! 0 the relative phase between the vectors will change as the transient term decays.

The vector tip of the transient term is shown as the dotted spiral and the total amplitude

assumes the varying lengths OA1, OA2, OA3, OA4, etc.

(Problems 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18)

Problem 3.1
Show, if F0 e

i!t represents F0 sin!t in the vector form of the equation of motion for the forced

oscillator that

x ¼ � F0

!Zm

cos ð!t � �Þ

and the velocity

v ¼ F0

Zm

sin ð!t � �Þ

Problem 3.2
The displacement of a forced oscillator is zero at time t ¼ 0 and its rate of growth is governed by the

rate of decay of the transient term. If this term decays to e�k of its original value in a time t show

that, for small damping, the average rate of growth of the oscillations is given by x 0=t ¼ F0=2km!0

where x 0 is the maximum steady state displacement, F0 is the force amplitude and !2
0 ¼ s=m.
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Problem 3.3
The equation m€xxþ sx ¼ F0 sin!t describes the motion of an undamped simple harmonic oscillator

driven by a force of frequency !. Show, by solving the equation in vector form, that the steady state

solution is given by

x ¼ F 0 sin!t

mð!2
0 � !2Þ where !2

0 ¼
s

m

Sketch the behaviour of the amplitude of x versus ! and note that the change of sign as ! passes

through !0 defines a phase change of � rad in the displacement. Now show that the general solution

for the displacement is given by

x ¼ F0 sin!t

mð!2
0 � !2Þ þ A cos!0t þ B sin!0t

where A and B are constant.

Problem 3.4
In problem 3.3, if x ¼ _xx ¼ 0 at t ¼ 0 show that

x ¼ F0

m

1

ð!2
0 � !2Þ sin!t � !

!0

sin!0t

� �

and, by writing ! ¼ !0 þ�! where �!=! 0 � 1 and �!t � 1, show that near resonance,

x ¼ F0

2m!2
0

ðsin! 0t � !0t cos!0tÞ

Sketch this behaviour, noting that the second term increases with time, allowing the oscillations to

grow (resonance between free and forced oscillations). Note that the condition �!t � 1 focuses

attention on the transient.

Problem 3.5
What is the general expression for the acceleration _vv of a simple damped mechanical oscillator

driven by a force F0 cos!t? Derive an expression to give the frequency of maximum acceleration

and show that if r ¼ ffiffiffiffiffiffi
sm

p
, then the acceleration amplitude at the frequency of velocity resonance

equals the limit of the acceleration amplitude at high frequencies.

Problem 3.6
Prove that the exact amplitude at the displacement resonance of a driven mechanical oscillator may

be written x ¼ F0=!
0r where F0 is the driving force amplitude and

! 02 ¼ s

m
� r 2

4m2

Problem 3.7
In a forced mechanical oscillator show that the following are frequency independent (a) the

displacement amplitude at low frequencies (b) the velocity amplitude at velocity resonance and (c)

the acceleration amplitude at high frequencies, ð! ! 1Þ.
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Problem 3.8
In Figure 3.9 show that for small r, the maximum value of curve (a) is � F0=2!0r at

!1 ¼ !0 � r=2m and its minimum value is � �F0=2!0r at !2 ¼ !0 þ r=2m.

Problem 3.9
The equation €xxþ !2

0x ¼ ð�eE 0=mÞ cos!t describes the motion of a bound undamped electric

charge �e of mass m under the influence of an alternating electric field E ¼ E0 cos!t. For an

electron number density n show that the induced polarizability per unit volume (the dynamic

susceptibility) of a medium

� e ¼ � n ex

"0E
¼ n e2

" 0mð! 2
0 � !2Þ

(The permittivity of a medium is defined as " ¼ " 0ð1þ �Þ where " 0 is the permittivity of free space.

The relative permittivity " r ¼ "=" 0 is called the dielectric constant and is the square of the refractive

index when E is the electric field of an electromagnetic wave.)

Problem 3.10
Repeat Problem 3.9 for the case of a damped oscillatory electron, by taking the displacement x as the

component represented by curve (a) in Figure 3.9 to show that

" r ¼ 1þ � ¼ 1þ n e2mð!2
0 � !2Þ

" 0½m 2ð!2
0 � !2Þ2 þ ! 2r 2�

In fact, Figure 3.9(a) plots " r ¼ "=" 0. Note that for

! � !0; " r � 1þ n e2

" 0m!
2
0

and for

! 	 !0; " r � 1� n e2

" 0m!2

Problem 3.11
Show that the energy dissipated per cycle by the frictional force r _xx at an angular frequency ! is given

by �r!x 2max.

Problem 3.12
Show that the bandwidth of the resonance absorption curve defines the phase angle range

tan� ¼ �1.

Problem 3.13
An alternating voltage, amplitude V 0 is applied across an LCR series circuit. Show that the voltage at

current resonance across either the inductance or the condenser is QV 0.
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Problem 3.14
Show that in a resonant LCR series circuit the maximum potential across the condenser occurs at a

frequency ! ¼ !0ð1� 1=2Q 2
0Þ 1=2 where !2

0 ¼ ðLCÞ�1
and Q0 ¼ !0L=R.

Problem 3.15
In Problem 3.14 show that the maximum potential across the inductance occurs at a frequency

! ¼ !0ð1� 1=2Q 2
0Þ�1=2

.

Problem 3.16
Light of wavelength 0.6 mm (6000 Å) is emitted by an electron in an atom behaving as a lightly

damped simple harmonic oscillator with a Q-value of 5� 107. Show from the resonance bandwidth

that the width of the spectral line from such an atom is 1:2� 10�14 m.

Problem 3.17
If the Q-value of Problem 3.6 is high show that the width of the displacement resonance curve is

approximately
ffiffiffi
3

p
r=m where the width is measured between those frequencies where x ¼ xmax=2.

Problem 3.18
Show that, in Problem 3.10, the mean rate of energy absorption per unit volume; that is, the power

supplied is

P ¼ n e2E 2
0

2

!2r

m2ð!2
0 � !2Þ 2 þ !2r 2

Summary of Important Results

Mechanical Impedance Zm ¼ F=v (force per unit velocity)

Zm ¼ Zm ei� ¼ r þ ið!m� s=!Þ
where Z 2

m ¼ r 2 þ ð!m� s=!Þ2

sin� ¼ !m� s=!

Zm

; cos� ¼ r

Zm

; tan� ¼ !m� s=!

r

� is the phase angle between the force and velocity.

Forced Oscillator

Equation of motion m€xxþ r _xxþ sx ¼ F0 cos!t
(Vector form) m€xxþ r _xxþ sx ¼ F0 e

i!t

Use x ¼ A ei!t to give steady state displacement

x ¼ �i
F0

!Zm

eið!t��Þ

The Effect of the Transient Term 77



and velocity

_xx ¼ v ¼ F0

Zm

e ið!t��Þ

When F0 e
i!t represents F0 cos!t

x ¼ F0

!Zm

sin ð!t � �Þ

v ¼ F0

Zm

cos ð!t � �Þ

Maximum velocity ¼ F0

r
at velocity resonant frequency !0 ¼ ðs=mÞ1=2

Maximum displacement ¼ F0

! 0r
where ! 0 ¼ ðs=m� r 2=4m2Þ1=2 at displacement

resonant frequency ! ¼ ðs=m� r 2=2m2Þ1=2

Power Absorbed by Oscillator from Driving Force

Oscillator adjusts amplitude and phase so that power supplied equals power dissipated.

Power absorbed ¼ 1
2
ðF 2

0=ZmÞ cos� (cos f is power factor)

Maximum power absorbed ¼ F 2
0

2r
at !0

Maxmium power

2
absorbed ¼ F 2

0

4r
at !1 ¼ !0 � r

2m
and !2 ¼ !0 þ r

2m

Quality factor Q ¼ !0m

r
¼ !0

!2 � !1

Q ¼ maximum displacement at displacement resonance

displacement as ! ! 0

¼ AðmaxÞ
F0=s

For equivalent expressions for electrical oscillators replace m by L, r by R, s by 1=C and F0

by V0 (voltage).
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