
  1. WORK

In Physics, work stands for ‘mechanical work’.

Work is said to be done by a force when the body is

displaced actually through some distance in the direction

of the applied force.

However, when there is no displacement in the direction

of the applied force, no work is said to be done, i.e., work

done is zero, when displacement of the body in the direction

of the force is zero.

Suppose a constant force F
�
 acting on a body produces a

displacement s
�
 in the body along the positive x-direction,

figure

If � is the angle which F
�
 makes with the positive x–

direction of the displacement, then the component of F
�
 in

the direction of displacement is (F cos �). As work done
by the force is the product of component of force in the

direction of the displcement and the magnitude of the

displacement,

� W Fcos s� � ...(1)

If displacement is in the direction of force applied, � = 0°.
From (1), W = (F cos 0°) s = F s

Equation (1) can be rewritten as W F.s�
� �

...(2)

Thus, work done by a force is the dot product of force and

displacement.

In terms of rectangular cmponent, F
�
 and s,
�
 may written as

x y z
ˆ ˆ ˆF i F jF kF� � �

�
 and ˆ ˆ ˆs ix jy kz� � �

�

From (2), W F.s�
� �

x y z
ˆ ˆ ˆ ˆ ˆ ˆW i F jF k F . i x jy k z� � � � �

x y z
W xF yF zF� � �

Obviously, work is a scalar quantity, i.e., it has magnitude

only and no direction. However, work done by a force can

be positive or negative or zero.

  2. DIMENSIONS AND UNITS OF WORK

As work = force × distance �  W = (M
1
 L

1
 T

–2
) × L

1 2 2W M L T�� � �� 	

This is the dimensional formula of work.

The units of work are of two types :

1. Absolute units 2. Gravitational units

(a) Absolute unit

1. Joule. It is the absolute unit of work on SI.

Work done is said to be one joule, when a force of one

newton actually moves a body through a distance of one

metre in the direction of applied force.

From W = F cos �

1 joule = 1 newton × 1 metre × cos 0° = 1 N–m

2. Erg. It is the absolute unit of work on cgs system.

Work done is said to be one erg, when a force of one dyne

actually moves a body through a distance of one cm.in

the direction of applied force.

From W = Fs cos �

1 eg = 1 dyne × 1 cm × cos 0°

(b) Gravitational units

These are also called the practical units of work.

1. Kilogram-metre (kg–m). It is the gravitational unit of

work on SI.

Work done is said to be one kg–m, when a force of 1 kg f

move a body through a distance of 1 m in the direction of

the applied force.

From W = F s cos �

1 kg–m = 1 kg f × 1 m × cos 0° = 9.8 N × 1 m = 9.8 joule, i.e.,

1kg m 9.8J� �
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2. Gram-centimetre (g-cm). It is the gravitational unit of

work on cgs system.

Work done is said to be one g-cm, when a force of 1 g f

moves a body through a distance of 1 cm. in the direction

of the applied force.

From W = F s cos �

1 g-cm = 1 g f × 1 cm × cos 0°

1 g-cm = 980 dyne × 1 cm × 1

1g m 980ergs� �

  3. NATURE OF WORK DONE

Although work done is a scalar quantity, its value may be

positive, negative, negative or even zero, as detailed below:

(a) Positive work

As W = F.s
� �

 = F s cos �

� when � is acute (< 90°), cos � is positive. Hence, work
done is positive.

For example :

(i) When a body falls freely under the action of gravity,

� = 0°, cos � = cos 0° = + 1. Therefore, work done by
gravity on a body falling freely is positive.

(b) Negative work

As W = F. s
� �

 = F s cos �

� When � is obtuse (> 90°), cos � is negative. Hence, work
done is negative.

For example :

(i) When a body is thrown up, its motion is opposed by

gravity. The angle � between gravitational force F
�
 and

the displacement s
�
 is 180°. As cos � = cos 180° = –1,

therefore, work done by gravity on a body moving

upwards is negative.

(c) Zero work

When force applied F
�
 or the displacement s

�
 or both are

zero, work done W = F s cos � is zero. Again, when angle

� between F
�
 and s

�
 is 90°, cos � = cos 90° = 0. Therefore

work done is zero.

For example :

When we push hard against a wall, the force we exert on

the wall does no work, because s 0.�
�

 However, in this

process, our muscles are contracting and relaxing

alternately and internal energy is being used up. That is

why we do get tired.

  4. WORK DONE BY A VARIABLE FORCE

(a) Graphical Method

A constant force is rare. It is the variable force which is

encountered more commonly. We can, therefore, learn to

calculate work done by a variable force, let us consider a

force acting along the fixed direction, say x–axis, but

having a variable magnitude.

We have to calculate work done in moving the body from

A to B under the action of this variable force. To do this,

we assume that the entire displacement from A to B is

made up of a large number of infinitesimal displacements.

One such displacement shown in figure from P to Q.

As the displacement PQ = dx is infinitesimally small, we

consider that all along this displacement, force is constant

in magnitude (= PS) as well in same direction.

� Small amount of work done in moving the body from P to

Q is

dW = F × dx = (PS) (PQ) = area of strip PQRS

Total work done in moving the body from A to B is given by

W = 
 dW

W = 
 F × dx

If the displacement are allowed to approach zero, then the

number of terms in the sum increases without limit. And

the sum approaches a definite value equal to the area under

the curve CD.

A B
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Hence, we may rewrite, W = 
dx x
limit F dx

�
�

In the language of integral calculus, we may write it as

B

A

x

x

W F dx� � , where x
A
 = O

A
 and x

B
 = OB

B

A

x

x

W area� � of the strip PQRS

= total area under the curve between F and x-axis from

x = x
A
 to x = x

B

W Area ABCDA�

Hence, work done by a variable force is numerically equal

to the area under the force curve and the displacement axis.

Mathematical Treatment (of work done by a variable

force).

Suppose we have to calculate work done in moving a body

from a point A (S
A
) to point B (S

B
) under the action of a

varying force, figure. Here, S
A
 and S

B
 are the distance of

the points A and B with respect to some reference point.

At any stage, suppose the body is at P, where force on the

body is F
�

. Under the action of this force, let the body

undergo an infinitesimally small displacement PQ ds�
���� ���

.

During such a small displacement, if we assume that the

force remains constant, then small amount of work done

in moving the body from P to Q is

dW F.ds�
����

When ds 0,�
���

 total work done in moving the body from AA

to B can be obtained by integrating the above expression

between S
A
 and S

B
.

�

B

A

S

S

W F.ds� �
����

 5. CONSERVATIVE & NON­CONSERVATIVE FORCES

Conservative force

A force is said to be conservative if work done by or against

the force in moving a body depends only on the initial and

final positions of the body, and not on the nature of path

followed between the initial and the final positions.

This means, work done by or against a conservative force

in moving a body over any path between fixed initial and

final positions will be the same.

For example, gravitational force is a conservative force.

Properties of Conservative forces :

1. Work done by or against a conservative force, in moving

a body from one position to the other depends only on

the initial position and final position of the body.

2. Work done by or against a conservative force does not

depend upon the nature of the path followed by the body

in going from initial position to the final position.

3. Work done by or against a conservative force in moving a

body through any round trip (i.e., closed path, where final

position coincides with the initial position of the body) is

always zero.

Non-conservative Forces

A force is said to be non-conservative, if work done by or

against the force in moving a body from one position to

another, depends on the path followed between these two

positions.

For example, frictional forces are non-conservative forces.

  6. POWER

Power of a person or machine is defined as the time rate at

which work is done by it.

i.e., Power = Rate of doing work = 
work done

time taken

Thus, power of a body measures how fast it can do the

work.
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dW
P

dt
�

Now, dW = F.ds,
����

 where F
�
 is the force applied and ds

���
 is

the small displacement.

�
F.ds

P
dt

�

����

But 
ds

v,
dt

�

���
�
 the instantaneous velocity..

� P F.v�
� �

Dimensions of power can be deduced as :

1 2

1 2 3

1

W M LT
P M L T

t T

�
�� � � � �� 	

Units of power

The absolute unit of power in SI is watt, which is denoted

by W.

From P = W/t

1 watt = 
1 joule

,
1sec

 i.e., 
11W 1Js��

Power of a body is said to be one watt, if it can do one

joule of work in one second.

1 h.p. 746 W�

  7. ENERGY

Energy of a body is defined as the capacity or ability of

the body to do the work.

  8. KINETIC ENERGY

The kinetic energy of a boyd is the energy possessed by

the body by virtue of its motion.

For example :

(i) A bullet fired from a gun can pierce through a target on

account of kinetic energy of the bullet.

(ii) Wind mills work on the kinetic energy of air. For example,

sailing ships use the kinetic energy of wind.

(iii) Water mills work on the kinetic energy of water. For

example, fast flowing stream has been used to grind corn.

(iv) A nail is driven into a wooden block on account of kinetic

energy of the hammer striking the nail.

Formula for Kinetic Energy

Kinetic Energy of a body can be obtained either from

(i) the amount of work done in stopping the moving body, or

from

(ii) the amount of work done in giving the present velocity

today he body from the state of rest.

Let us use the second method :

suppose m = mass of a body at rest (i.e., u = 0).

F = Force applied on the body

a = acceleration produced in the body in the direction of

force applied.

v = velocity acquired by the body in moving through a

distance s, figure

From v  – u  = 2 a s

v
2
 – 0 = 2 as

v
a

2s
�

As F = m a �  using, F = m 
2v

2s


 �
� �
� �

Work done on the body, W = Force × distance

v
W m s

2s
� �

1
W mv�

This work done on the body is a measure of kinetic energy

(K.E.) acquired by the body,

�
1

K.E. of body W mv� �

Alternative method

The formula for kinetic energy of a body is also obtained

by the method of calculus :

Let m = mass of a body, which is initially at rest

(i.e., u = 0)

F
�
 = Force applied on the body,,
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ds
���

 = small displacement produced in the body in the

direction of the force applied.

� Small amount of work done by the force,

dW = F.ds
����

 = F ds cos = 0° = F ds

If a is acceleration produced by the force, then from

F = m a = m 
dv

dt

From, dW = 
dv ds

m ds m dv
dt dt


 � 
 ��� � � �
� � � �

dW = m v d v
ds

v
dt


 �
�� �

� �
�

� Total work done by the force in increasing the velocity of

the body from zero to v is

v v

0 0 0

2
W mvd v m vd v m

2

� �� � � � �� 	� �

1
W mv�

Thus, kinetic energy of a body is half the product of mass

of the body and square of velocity of the body.

  9. RELATION BETWEEN KINETIC ENERGY

AND LINEAR MOMENTUM

Let m = mass of a body, v = velocity of the body.

� Linear momentum of the body, p = mv

and K.E. of the body 
21 1

mv m v
2m

� �

�
p

K.E.
2m

�

This is an important relation. It shows that a body cannot

have K.E. without having linear momentum. The reverse

is also true.

Further, if p = constant, K.E. 
1

m
�

This is showin in figure (a)

If K.E. = constant, p
2 � m or p m�

This is shown in figure (b).

If m = constant, p
2 � K.E. or p K.E.�

This is shown in figure (c)

  10. WORK ENERGY THEOREM OR

WORK ENERGY PRINCIPLE

According to this principle, work done by net force in

displacing a body is equal to change in kinetic energy of

the body.

Thus, when a force does some work on a body, the kinetic

energy of the body increases by the same amount.

Conversely, when an opposing (retarding) force is applied

on a body, its kinetic energy decreases. The decrease in

kinetic energy of the body is equal to the work done by

the body against the retarding force. Thus, according to

work energy principle, work and kinetic energy are

equivalent quantities.

Proof : To prove the work-energy theorem, we confine

ourselves to motion in one dimension.

Suppose m = mass of a body, u = initial velocity of the

body, F = force applied on the body along it direction of

motion, a = acceleration produced in the body, v = final

velocity of the body after t second.

Small amount of work done by the applied force on the

body, dW = F (ds) when ds is the small distance moved by

the body in the direction of the force applied.
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Now, F = ma = m 
dv

dt


 �
� �
� �

� dW = F (ds) = m 
dv

dt


 �
� �
� �

 ds = m 
ds

dt


 �
� �
� �

 dv = mv dv

ds
v

dt


 ��� �
� �
�

Total work done by the applied force on the body in

increasing its velocity from u to v is

vv v 2

u u u

v
W mvd v m vd v m

2

� �
� � � � �

� 	
� �

1 1 1
W m v u mv mu� � � �

But 
21

mv
2

 = K
f
 = final K.E. of the body and 

21
mu  = K

i
 =

initial K.E. of the body

� W = K
f
 – K

i
 = Increases in K.E. of body

i.e., work done on the body = increase in K.E. of body.

  11. POTENTIAL ENERGY

The  potential energy of a body is defined as the energy

possessed by the body by virtue of its position or

configuration in some field.

Thus, potential energy is the energy that can be associated

with the configuration (or arrangement) of a system of

objects that exert forces on one another. Obviously, if

configuration of the system changes, then its potential

energy changes.

Two important types of potential energy are :

1. Gravitational potential energy

2. Elastic potential energy.

11.1  Gravitational Potential Energy

Gravitational potential energy of a body is the energy

possessed by the body by virtue of its position above the

surface of the earth.

To calculate gravitational potential energy, suppose

m = mass of a body

g = acceleration due to gravity on the surface of earth.

h = height through which the body is raised, figure.

If we assume that height h is not too large and the value of

g is practically constant over this height, then the force

applied just to overcome gravitational attraction is

F = mg

As the distance moved is in the direction of the force

applied, therefore,

Work done = force × distance

W = F × h = mgh

Note that we have taken the upward direction to be positive.

Therefore, work done by applied force = + mgh. However,

work done by gravitational force = – mgh.

This work gets stored as potential energy. The gravitational

potential energy of a body, as a function of height (h) is

denoted by V (h), and it is negative of work done by the

gravitational force in raising the body to that height.

Gravitational P.E. = V (h) = mgh

11.2  Potential Energy of a spring

Potential energy of a spring is the energy associated with

the state of compression or expansion of an elastic spring.

To calculate it, consider an elastic spring OA of negligible

mass. The end O of the spring is fixed to a rigid support

and a body of mass m is attached to the free end A. Let the

spring be oriented along x–axis and the body of mass m lie

on a perfectly frictionless horizontal table.

The position of the body A, when spring is unstretched is

chosen as the origin.

When the spring is compressed or elongated, it tends to

recover to its original length, on account of elasticity. The

force trying to bring the spring back to its original

configuration is called restoring force or spring force.

For a small stretch or compression, spring obeys Hook’s

law, i.e., for a spring,
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Restoring Force � stretch or compression

– F � x or – F = kx

where k is a constant of the spring and is called spring

constant.

It is established that for a spring, 
1

k �
�

i.e., smaller the length of the spring, greater will be the

force constant and vice-versa.

The negative sign in equation indicates that the restoring

force is directed always towards the equilibrium position.

Let the body be displaced further through an infinitesimally

small distance dx, against the resotring force.

� Small amount of work done in increasing the length of the

spring by dx is

dW = – F dx = kx dx

Total work done in giving displacement x to the body can

be obtained by integrating from x = 0 to x = x, i.e.,

x xx x

x 0 x 0

x x 1
W k x dx k k 0 kx

2

��

� �

� � � �
� � � � �� � � �

� 	 � 	
�

This work done is stored in the spring at the point B.

�
1

P.E. at B W kx� �

The variation of potential energy with distance x is shown

in figure

 12. MECHANICAL ENERGY AND ITS CONSERVATION

The mechanical energy (E) of a body is the sum of kinetic

energy (K) and potential energy (V) of the body

i.e., E K V� �

Obviously, mechanical energy of a body is a scalar quantity

measured in joule.

We can show that the total mechanical energy of a system

is conserved if the force, doing work on the system are

conservative.

This is called the principle of conservation of total

mechanical energy.

For simplicity, we assume the motion to be one dimensional

only. Suppose a body undergoes a small displacement �x
under the action of a conservative force F. According to

work energy theorem,

change in K.E. = work done

�K = F (x) �x

As the force is conservative, the potential energy function

V (x) is defined as

– �V = F (x) �x   or   �V = – F (x) �x

Adding, we get �K + �V = 0 or � (K + V) = 0,

which means

K V E constant� � �

12.1  Illustration of the law of conservation

         of mechanical energy

To illustrate the law further, let us calculate kinetic energy

K.E., potential nergy P.E. and total energy T.E. of a body

falling freely under gravity.

Let m be the mass of the body held at A, at a height h

above the ground, figure.

As the body is at rest at A, therefore,

At A : K. E. of the body = 0

P.E. of the body = mg, where g is acceleration due to gravity

at A.

T.E. of the body = K.E. + P.E. = 0 + mgh

E
1
 = mgh ...(1)

Let the body be allowed to fall freely under under gravity,

when it strikes the ground at C with a velocity v.

From v
2
 – u

2
 = 2 a s

v
2
 – 0 = 2 (g) h

v
2
 = 2 gh ...(2)
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� At C : K.E. of the body 
21 1

mv m 2gh mgh
2 2

� � �

P.E. of the body = mgh = mg (0) = 0

Total energy of the body = I.E. + P.E.

E
2
 = mgh + 0 = mgh ...(3)

In free fall, let the body cross any point B with a velocity

v
1
, where AB = x

From v
2
 – u

2
 = 2 as

2

1
v 0 2 g x� � ...(4)

2

1
v 2gx�

At B : K.E. of the body 
2

1

1 1
mv m 2gx mgx

2 2
� � �

Height of the body at B above the ground = CB = (h – x)

� P.E. of the body at B = mg (h – x)

Total energy of the body at B = K.E. + P.E.

E
3
 = mgx + mg (h – x) = mgx + mgh – mgx

E
3
 = mgh ...(5)

From (1), (3), (5) we find that

1 2 3
E E E mgh� � �

  13. DIFFERENT FORMS OF ENERGY

We have studies some details of potential energy and

kinetic energy. These are not the ony two forms of energy.

Energy may manifest itself in several other forms. Some of

the examples are :

1. Heat Energy

It is the energy possessed by a body by virtue of random

motion of the molecules of the body.

Heat is also associated with the force of friction. When a

block of mass m sliding on a rough horizontal surface with

speed v, stops over a distance x, work done by the force of

kinetic friction f over a distance x is –f (x). By the work

energy theorem, 
21

mv f x .
2

�  We often say that K.E. of

the block is lost due to frictional force, However, when we

examine the block and the horizontal surface carefully, we

detect a slight increase in their temperatures. Thus, work

done by friction is not lost, but it is transferred as heat

energy of the system.

2. Internal Energy

It is the total energy possessed by the body by virtue of

particular configuration of its molecules and also their

random motion. Thus, internal energy of a body is the

sum of potential energy and kinetic energy of the

molecules of the body.

3. Electrical Energy

The flow of electric current causes bulbs to glow, fans to

rotate and bells to ring. A definite amount of work has to

be done in moving the free charge carriers in a particular

direction through all the electrical appliances.

4. Chemical Energy

Chemical energy arises from the fact that the molecules

participating in the chemical reaction have different

binding energies. A chemical reaction is basically a

rearrangement of atoms. For example, coal consists of

carbon and a kilogram of it. When burnt releases 3 × 10
7
 J

of energy.

5. Nuclear Energy

It is the energy obtainable from an atomic nucleus. Two

distinct modes of obtaining nuclear energy are (i) Nuclear

fission (ii) Nuclear fusion.

Nuclear fission involves splitting of a heavy nucleus into

two or more lighter nuclei, whereas nuclear fusion involves

fusing of two or more lighter nuclei to form a heavy

nucleus.

  14. MASS ENERGY EQUIVALENCE

Einstein made an incredible discovery that energy can

be transformed into mass and mass can be transformed

into energy. One can be obtained at the cost of the other.

The mass energy equivalence relation as put forth by

Einstein is

2E mc�

where m = mass that disappears, E = energy that appears,

c = velocity of light in vacuum.

Mass and energy are not conserved separately, but are

conserved as a single entity called ‘mass-energy’.

  15. THE PRINCIPLE OF CONSERVATION OF ENERGY

If we account for all forms of energy, the total energy of an

isolated system does not change.

The principle of conservation of energy cannot be proved

as such. However, no violation of this principle has ever

been observed.
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 16.  WORK DONE BY A VARIABLE FORCE

When the force is an arbitrary function of position, we need the

techniques of calculus to evaluate the work done by it. The

figure shows F (x) as some function of the position x. To calculate

work done by F from A to B, we find area under the graph from

X
A
 to X

B
.

Thus, the work done by a force F (x) form an initial point A to final

point B is

xB

A B x
xA

W F dx� � �

 17.  CONSERVATIVE & NON­CONSERVATIVE FORCES

  17.1  Conservative Forces

There are two ways in which we can characterize a Conservative

Force :

A force is conservative if :

� The net work done against the force in moving a mass

between two points depends only on the location of two

points and not on the path followed

   17.2  Non-Conservative Forces

Those forces which do not satisfy the above mentioned criteria.

Friction and viscous forces are the most common examples of

non-conservative forces.

  17.3 Conservative Forces and Potential Energy

For every conservative force, there is a corresponding potential

energy function. In each cases, the  potential energy expression

depends only on position.

For every conservative force F
x
 that depends only on the position

x, there is an associated potential energy function U(x). When

conservative force does positive work, the potential energy of

the system decreases. Work done by, conservative force is

F(x) ��x = – ��U

� F(x) = – ��U / ��x

which, in the limit, becomes F(x) = – 
dx

dU

Integrating both sides for a displacement from x = a to x = b, we
have :

����
b

a

ab dxxFUU

 18.  DYNAMICS OF CIRCULAR MOTION

  18.1  Force on the Particle

In uniform circular motion, acceleration is of magnitude v2/r and is

directed towards centre. Hence a force of magnitude mv2/r and

directed towards centre is required to keep a particle in circular

motion. This force (acting towards centre) is known as the

centripetal force. Centripetal force is not an extra force on a body.

Whatever force is responsible for circular motion becomes the

centripetal force.

Example : When a statellite revolves around the earth, the

gravitational attraction of earth becomes the centripetal force for

the circular motion of the satellite; when an electron revolves

around the nucleus in an atom, the electrostatic attraction of

nucleus becomes the centripetal force for the electron’s circular

motion; in case of a conical pendulum, T sin � (component of
tension) becomes the centripetal force.

  18.2  Main steps for analysing forces

             in uniform circular motion

Take one axis along the radius of circle (i.e., in direction of

acceleration) and other axis perpendicular to the radius. Resolve

all the forces into components.

Net force along perpendicular axis  = 0

Net force along radial axis (towards centre)

rm
r

mv 2
2

���

  18.3  Main steps for analysing forces in

            Non–uniform Circular Motion

After resolving all the forces along tangential and radial axes :

net tangential force = F
t
 = m a

t

net radial force = F
r
 = m a

r
 = mv2/r

Example of non-uniform circular motion : the motion of particle

in verticle circle. If a particle is revolved in a vertical circle with the

help of a string, the forces are : tension (T) towards centre and

weight (mg). In case of a particle moving along the outside surface
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of a circular track (or sphere), the forces are : normal reaction (N)

away from the centre and weight (mg).

  18.4  Conical Pendulum

A small block of mass m is rotated in a horizontal circle with the

help of a string of length l connected to m. The other end of the

string is fixed to a point O vertically above the cnetre of the circle

so that the string is always inclined with the vertical at an angle �.
This arrangement is known as a conical pendulum.

From the force diagram of the block.

Along the vertical : T cos � = mg ...(i)

Net force towards centre : T sin � = ma

T sin � = m�2 r ...(ii)

From (i) and (ii), we have

�
�

�
�

�
�

��
cos

g

sin

tang

r

tang2

��

� Time period = T = 
g

cos
2

2 �
��

�

� �

� If h is the height of point O above the centre of the circle.

then time period = g/h2�

� For a conical pendulum, gcos2 ��� �

� �/g��  (Because cos � < 1)

  18.5 Motion in a Vertical Circle

Example : A mass m is tied to a string of length l and is rotated in

a vertical circle with centre at the other end of the string.

(a) Find the minimum velocity of the mass at the top of the

circle so that it is able to complete the circle.

(b) Find the minimum velocity at the bottom of the circle.

At all positions, there are two forces acting on the mass :

its own weight & the tension in the string.

Let the radius of the circle = l

(a) At the top : Let v
t
 = velocity at the top

net force towards centre = 
�

2

tmv

mg
mv

T
mv

mgT
2

t

2

t �����
��

For the movement in the circle, the string should remain tight i.e.

the tension must be positive at all positions.

As the tension is minimum at the top T
top �  0

� gv0mg
mv

t

2

t
�

�
����

� minimum or critical velocity at the top = g1

(b) Let V
b
 be the velocity at the bottom. As the particle goes

up, its KE decreases and GPE increases.

� loss in KE = gain in GPE

� 21mgmv
2

1
mv

2

1 2

1

2

b ��

�g4vv 2

t

2

b ��

(v
b
)
min
 = �� g5g4v

min

2

t ��

When a particle moves in a vertical circle, its speed

decreases as it goes up and its speed increases as it

comes down. Hence it is an example of non-uniform

circular motion.




