Solved Paper

Question 1

Options:

When there is an electric current through a conducting wire along its length, then an electric field must exist

A. outside the wire but normal to it
B. outside the wire but parallel to it
C. inside the wire but normal to it
D. inside the wire but parallel to it
Answer: D
Solution:
Solution:

Question 2

A moving charge produces electric field along x-direction and magnetic field along y-direction. Then what is the direction of its velocity?

A. x direction

B. y direction

C. z direction

D. Can be in any direction

Answer: C

Solution:

Solution:

Question 3

Phase difference between voltage and current of a purely inductive circuit is

Options:

Α.	П
Α.	_
1 1.	4

B. $\frac{\Pi}{4G}$

C. $\frac{\Pi}{\Omega}$

D. $\frac{\pi}{2}$

Answer: D

Solution:

Solution:

Question 4

When two coherent sources of same intensity interfere, the resultant intensity will be

A. 4 times of the initial intensity	
B. 8 times of the initial intensity	
C. 2 times of the initial intensity	
D. Equal to initial intensity	
Answer: C	
Solution:	
Solution:	
Question 5	
Wavelength of source is 6000Å and the	e diameter of object is 100 inch, so the limit of resolution i
Options:	
A. 2.9×10^{-7} radians	
B. 2.8×10^{-7} radians	
C. 2.5×10^{-7} radians	
D. 2.8×10^{-5} radians	
Answer: A	
Solution:	
Solution:	
Question 6	-
The SI units of radioactivity is	
Options:	
A. Curie	
B. Fermi	
C. Becquerel	
D. Joule	
Answer: C	
Solution:	
Solution:	_
Question 7	
The mean life for particle decay is	
Options:	
A. 1.145 times greater than half life	
B. 1.445 times greater than half life	
C. 1.465 times greater than half life	
D. 1.345 times greater than half life	
Answer: B	
Solution:	
Solution:	_
Question 8	

Which of the following electromagnetic waves have lowest wavelength?
Options:
A. Green light
B. X-rays
C. Gamma rays
D. Ultraviolet rays
Answer: C
Solution:
Solution:
Question 9
Fermi energy level of the intrinsic semiconductor is located
Options:
A. just below the valence band
B. just above the conduction band
C. either below or above the conduction band
D. half way between the valence and conduction band
Answer: D
Solution:
Solution:
Question 10
Zener diode is always used in the
Options:
A. Forward bias condition
B. Reverse bias condition
C. Zero bias condition
D. All the above
Answer: B
Solution:
Solution:
Question 11
At room temperature, the n-type semiconductor will have
Options:
A. more of electrons
B. more of ions
C. more of holes
D. equal number of electrons and holes

Answer: A

Solution:

Solution:

Question 12 The SI base unit for forces is **Options:** A. mkgs⁻² B. N C. mkgs² D. $m^2 kg s^{-2}$ **Answer: A Solution:** Solution: **Question 13** When light rays enter into a medium having different optical density, there will be change in **Options:** A. its speed and frequency B. its speed and wavelength C. its frequency and wavelength D. its speed, frequency and wavelength **Answer: B Solution:** Solution: **Question 14** An electric dipole placed in a non uniform electric field experiences **Options:** A. no force and no torque B. a force and a torque C. no force but a torque D. a force but no torque **Answer: B Solution:** Solution: **Question 15** Which of this experiment proves that particle has wave nature? **Options:** A. Davisson-Germer experiment B. Millikan experiment C. Faraday's experiment

Answer: A Solution:

D. Newton rings experiment

Solution:
Question 16
A proton and an alpha particle are accelerated by a constant electric field. Their acceleration will be in the ratio of
Options:
A. 2:1
B. 3 : 1
C. 1 : 1
D. 1 : 2
Answer: A
Solution:
Solution:
Question 17
Superconductor exhibits
Options:
A. paramagnetism
B. ferromagnetism
C. diamagnetism
D. ferrimagnetism
Answer: C
Solution:
Solution:
Question 18
At what distance from the point of equilibrium, the kinetic energy equals the potential energy for simple harmonic oscillator of amplitude A ?
Options:
A. $\frac{A}{4}$
B. $\frac{A^2}{4}$
C. $\frac{A}{\sqrt{2}}$
D. $\frac{A}{2}$
Answer: C
Solution:
Solution:
Question 19
For a given material, the Young's modulus is 6 times its rigidity modulus. Its Poisson's ratio is

Options:A. 0.2
B. 2

D. 0.4
Answer: B
Solution:
Solution:
Question 20
The gravitational potential of a solid sphere is minimum
Options:
A. at the surface of the sphere
B. at a point outside the sphere
C. at midpoint between the centre and surface of the sphere
D. at the centre of the sphere
Answer: D
Solution:
Solution:
Question 21
Adding detergent to the water, increases its
Options:
A. surface tension
B. viscosity
C. wetting action
D. angle of contact
Answer: C
Solution:
Solution:
Question 22
A $2 kg$ box sits on a $3 kg$ box which sits on a $5 kg$ box. The $5 kg$ box rests on a table top. What is the normal force exerted on the $5 kg$ box by the table top?
Options:
A. 29.4N
B. 49N
C. 98N
D. 19.6N
Answer: C
Solution:
Solution:
Question 23

A Decoration of mass M is suspended by a string from the ceiling inside an elevator. The elevator is travelling upward with a constant speed. The tension in the string is

C. 4

Options:	
A. equal to Mg	
B. less than Mg	
C. greater than Mg	
D. impossible to tell without knowing the speed	
Answer: A	
Solution:	
Solution:	
Question 24	
If the pressure of an ideal gas in a closed chambe	r is doubled, then the volume of the gas
Options:	
A. become two times	
B. becomes half	
C. remain constant	
D. become four times	
Answer: B	
Solution:	
Solution:	
Question 25	
The work done by pseudo forces is	
Options:	
A. Positive	
B. Negative	
C. Zero	
D. Infinite	
Answer: C	
Solution:	
Solution:	
Question 26	
In an isothermal process, the specific heat of the	gas is
Options:	
A. finite	
B. one	
C. zero	
D. infinite	
Answer: D	
Solution:	
Solution:	

Which theory explains that every point on a wave front may be considered as a source of second spherical wavelets?	lary
Options:	
A. Huygen's wave theory	
B. Corpuscular theory	
C. Electromagnetic theory	
D. Quantum theory	
Answer: A	
Solution:	
Solution:	
Question 28	
Which light source is used in long distance optical fiber communication?	
Options:	
A. Metal Halide light	
B. Incandescent light	
C. LED source	
D. Laser	
Answer: D	
Solution:	
Solution:	
Question 29	
The NAND gate output will be low if the two inputs are	
Options:	
A. 01	
B. 00	
C. 10	
D. 11	
Answer: D	
Solution:	
Solution:	
Question 30	
Cp and Cv are specific heats at constant pressure and constant volume respectively. It is observe that $Cp - Cv = a$ for oxygen gas and $Cp - Cv = b$ for nitrogen gas. The correct relation between a and b is	
Options:	
A. $8a = 7b$	
B. 7a = 8b	
C. $a = b$	
D. a = -b	
Answer: A	
Solution:	

Solution:
Question 31
The temperature of a body falls from 40°C to 36°C in 5 minutes when placed in a surrounding of constant temperature 16°C. The time taken by the body temperature to fall from 36°C to 32°C is
Options:
A. 8 min
B. 6.1 min
C. 4.2 min
D. 5 min
Answer: B
Solution:
Solution:
Question 32
$2 kg$ ice at $-20^\circ C$ is mixed with $5 kg$ water at $20^\circ C$, then final amount of water in the mixture will be (specific heat of ice is $= 0.5 cal / gm^\circ C$; specific heat of water is $= 1 cal / gm^\circ C$; latent heat of fusion is $80 cal / gm$)
Options:
A. 6 kg
B. 7 kg
C. 3.5 kg
D. 5 kg
Answer: A
Solution:
Solution:
Question 33
The minimum orbital angular momentum of an electron in hydrogen atom is
Options:
A. h
B. $\frac{h}{2}$
C. $\frac{h}{2\pi}$
D. $\frac{h}{\lambda}$
Answer: C
Solution:
Solution:
Question 34
Cooking gas containers are kept in a lorry moving with uniform speed. The temperature of the gas molecules inside will be

Options:A. increase

B. decrease
C. remain same
D. increases for some while decreases for others
Answer: C
Solution:
Solution:
Question 35
An electric dipole is placed at an angle of 30° in a non-uniform electric field. The dipole will experience
Options:
A. a translational force only in the direction of the field
B. a translational force only in a direction normal to the direction of the field
C. a torque as well as a translational force
D. a torque only
Answer: C
Solution:
Solution:
Question 36
Which of the following phenomena is NOT common to sound and light waves?
Options:
A. Interference
B. Diffraction
C. Coherence
D. Polarization
Answer: D
Solution:
Solution:
Question 37
If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove
the electron from the first excited state of Li ²⁺ is
Options:
A. 30.6 eV
B. 13.6 eV
C. 3.4 eV
D. 122.4 eV
Answer: A
Solution:
Solution:
Ouestion 38
Question 38

Heat transfer in air occurs mainly due to
Options:
A. Conduction
B. Convection
C. Radiation
D. Radiation and Conduction
Answer: B
Solution:
Solution:
Question 39
A body weighs 40g in air. If its volume is 10 cc, then in water it will weigh
Options:
A. 30g
B. 40g
C. 50g
D. 33g
Answer: A
Solution:
Solution:
Question 40
The strength of the magnetic field around a straight wire is
Options:
A. Same everywhere around the wire
B. Obeys inverse square law
C. Directly proportional to square of the distance from the wire
D. Directly proportional to the distance from the wire
Answer: A
Solution:
Solution:
Question 41
The electrostatic pressure on a charged surface having a surface charge density σ is
Options:
A. $\sigma / 2\epsilon_0$
B. $\sigma^2 / 2\epsilon_0$
C. σ / ε ₀
D. σ^2 / ϵ_0
Answer: B
Solution:
JUIULIUII.

Solution:

Question 42
According to Joule's law, if the potential difference across a conductor having a material of specific resistance ' ρ ' remains constant, then heat produced in the conductor is directly proportional to
Options:
Α. ρ
B. ρ^2
C. 1 / p
D. $1/\sqrt{\sigma}$
Answer: C
Solution:
Solution:
Question 43
A circular coil of radius R carries a current I , for which the magnetic field at its centre is B. At what distance x from the centre on the axis of the coil, the magnetic field will be B / 8
Options:
$A.\sqrt{2}R$
B. $\sqrt{3}R$
C. 2R
D. 3R
Answer: B
Solution:
Solution:
Question 44
If a magnet is enclosed in a box made up of iron, then the magnetic field outside the box will be
Options:
A. very high but finite
B. infinity
C. low value but finite
D. zero
Answer: D
Solution:
Solution:
Question 45
A bar magnet is dropped vertically down through a wire loop held horizontally. The magnet will fall
Options:
A. with acceleration 'g'
B. with acceleration greater than 'g'
C with uniform accoloration loss than ' a '

D. with non-uniform acceleration less than ' \boldsymbol{g} '

Answer: D
Solution:
Solution:
Question 46
The mutual inductance between a pair of coils does not depend on
Options:
A. number of turns in the coil
B. separation between the coils
C. relative orientation of the coil
D. rate of change of current with coils
Answer: D
Solution:
Solution:
Question 47
Which of the following statement is NOT correct?
Options:
A. The magnification produced by a convex mirror is always less than one
B. A virtual, erect, same-sized image can be obtained using a plane mirror
C. A virtual, erect, magnified image can be formed using a concave mirror
D. A real, inverted, same-sized image can be formed using a convex mirror
Answer: D
Solution:
Solution:
Solution:
Question 48
A beam of light consisting of red, green and blue colours is incident on AB of a right angled prism. The refractive index of the material of the prism for red, green and blue are 1.39, 1.44 and 1.47 respectively. The prism will
Options:
A. separate red colour from the green and blue colour
B. separate blue colour from the red and green colour
C. separate all the colours from one another
D. all colours propagate along same path
Answer: A
Solution:
Solution:
Question 49

Light from the constellation Virgo is observed to increase in wavelength by 0.4%. With respect to the earth the constellation is
Options:
A. moving away with velocity $1.2 \times 10^6 \text{m}$ / s
B. coming close with velocity $1.2 \times 10^6 \text{m}$ / s
C. moving away with velocity $4 \times 10^6 \text{m}$ / s
D. coming close with velocity $4 \times 10^6 \text{m}$ / s
Answer: A
Solution:
Solution:
Question 50
When light passes from one medium into another medium, which of the physical property does no change?
Options:
A. Velocity
B. Wavelength
C. Frequency
D. Refractive index
Answer: C
Solution:
Solution:
Question 51
In hydrogen atom, if the difference in the energy of the electron in $n=2$ and $n=3$ orbits is E, the ionization energy of hydrogen atom is
Options:
A. 13.2E
B. 7.2E
C. 5.6E
D. 3.2E
Answer: B
Solution:
Solution:
Question 52
Nucleus with same neutron number but different atomic number is called as
Options:
A. isobars
B. isotones
C. isotopes
D. isotherm
Answer: B

Solution:

Solution:	
Question 53	
The mass of one Curie of U 234 is	
Options:	
A. $3.7 \times 10^{10} \text{gm}$	
B. $2.348 \times 10^{23} \text{gm}$	
C. 1.48×10^{-11} gm	
D. 6.25×10^{-24} gm	
Answer: C	
Solution:	
Solution:	
Question 54	
A voltmeter with resistance 150 is connected of 0.8 $\!\Omega$, then the voltmeter will read	ted across a 150V source having an internal resistance
Options:	
A. 100.4	
B. 149.2	
C. 120	
D. 178.6	
Answer: B	
Solution:	
Solution:	
Question 55	
Electrical conductivity of a semiconductor	
Options:	
A. decreases with the rise in its temperature	
B. increases with the rise in its temperature	
C. does not change with the rise in its temperature	
$\ensuremath{\mathrm{D}}.$ first increases and then decreases with the rise in its to	emperature
Answer: B	
Solution:	
Solution:	
Question 56	
In an insulator, the energy gap between the	valance band and conduction band is of the order of
Options:	
A. > 5 eV	
B. 2 eV	
C. 3.6 eV	
D. 4.1 eV	

Answer: A
Solution:
Solution:
Question 57
Three small spheres, each carrying a positive charge Q, are placed on the circumference of a circle of radius ' r ' to form an equilateral triangle. The electric field intensity at the center of the circle will be
Options:
A. 3Q / r
B. $3Q / r^2$
C. $Q/2r^2$
D. zero
Answer: D
Solution:
Solution:
Question 58
In an LCR series a.c circuit, the voltage across each of the components, L, C, and R is 50V. The voltage across the LC combination will be
Options:
A. 100V
B. $50\sqrt{2}V$
C. 50V
D. 0V((zero)
Answer: D
Solution:
Solution:
Question 59
A telescope has a magnifying power of 10 . If one looks at a tree of height 15 meters through the telescope, then the tree appears
Options:
A. 10 times taller
B. 10 times farther
C. 10 times nearer
D. 15 times nearer
Answer: C
Solution:
Solution:
Question 60

If the radius of the Earth's orbit is made one-fourth, the duration of one year will become

A. 8 times	
B. 4 times	
C. $\frac{1}{4}$ times	
D. $\frac{1}{0}$ times	
Answer: D	
Solution:	
Solution:	
Question 61	
In which of the following thermodynamiand the surroundings?	ic processes, there is no flow of heat between the system
Options:	
A. Isobaric	
B. Isochoric	
C. Adiabatic	
D. Isothermal	
Answer: C	
Solution:	
Solution:	
Question 62	
Entropy remains constant in	
Options:	
A. isothermal process	
B. adiabatic process	
C. cyclic process	
D. isobaric process	
Answer: B	
Solution:	
Solution:	
Question 63	
While charging the lead storage battery	
Options:	
A. $PbSO_4$ at cathode is reduced to Pb	
$B. \ PbSO_4$ at anode is reduced to Pb	
C. PbSO ₄ at cathode is oxidised to Pb	
D. PbSO ₄ at anode is oxidised to Pb	
Answer: A	
Solution:	
Solution:	

Question 64 Axial ratios of hexagonal will be **Options:** A. a = b = cB. $a = b \neq c$ C. $a \neq b \neq c$ D. a = 2b = 3c**Answer: B Solution:** Solution: **Question 65** Structure of cesium chloride crystal is **Options:** A. face centred cubic B. body centred cubic C. simple cubic D. hexagonal close packing **Answer: B Solution:** Solution: **Question 66** What type of stoichiometric defect is shown by ZnS? A. Schottky defect B. Frenkel defect C. Both Frenkel and Schottky defects D. Plane defect **Answer: B Solution:** Solution: **Question 67**

Which one of the following is NOT applicable to catalytic action?

Options:

- A. Catalyst reduces energy of activation
- B. Catalyst will be most effective in the finely divided state
- C. Catalyst can alter the position of equilibrium of reversible react
- D. Catalyst cannot initiate a reaction

Answer: C

Solution:

lution:	
uestion 68	
dispersed phase and dispersion medium are gas and liquid, respectively, then the name of the olloidal system is	
otions:	
aerosol	
solid foam	
foam	
emulsion	
aswer: C	
olution:	
lution:	
uestion 69	
he electric charge on a colloidal particle is observed by	
otions:	
Brownian movement	
Electrolysis	
Electrodialysis	
Electrophoresis	
aswer: D	
olution:	
lution:	
Juestion 70 Il four quantum numbers cannot be the same for any two electrons in an atom'. This principle nown as	is
otions:	
Aufbau principle	
Hund's rule	
Pauli's Exclusion principle	
Plank's rule	
aswer: C	
olution:	
lution:	
Suestion 71 Oml of 0.1M acetic acid is mixed with $50\mathrm{ml}0.1\mathrm{M}$ sodium acetate. The pH of the solution is (pK acetic acid is 4.26)	'a"

Options:

A. 13.0

B. 7.0

C. 4.26

D. 1.0	
Answer: C	
Solution:	
Solution:	
Question 72	
One mole of an ideal gas undergoes expansion from $24.6l$ to $246.0l$ against a constant pressure 1 atmosphere at $300K$. The work done is	re of
Options:	
A. 221.4l atm	
B. 24.6 latm	
C. 9.01 atm	
D. 0.0821 atm	
Answer: A	
Solution:	
Solution:	
Question 73	
Aqueous solution of ${\rm CuSO}_4$ is electrolyzed between the Pt electrodes. At anode	
Options:	
A. Cu is oxidized to Cu ²⁺	
B. Cu ²⁺ is reduced to Cu	
C. H_2 gas is evolved	
D. O ₂ gas is evolved	
Answer: D	
Solution:	
Solution:	
Question 74	
Aqueous solution of ${\rm CuSO}_4$ is electrolyzed between the Pt electrodes. At anode	
H	
Options:	
A. Cu is oxidized to Cu ²⁺	
B. Cu ²⁺ is reduced to Cu	
C. H_2 gas is evolved	
D. O_2 gas is evolved	
Answer: B	
Solution:	
Solution:	

Question 75

Carbon monoxide (CO) acts as a

Options:

A. strong π -donor and weak π -acceptor

B. weak π -donor and strong π -acceptor

C. weak σ -donor and strong π -acceptor

D. strong σ -donor and good π -acceptor

Answer: D

Solution:

Solution:

Question 76

Methoxypropane and Ethoxyethane constitute a pair of

Options:

A. functional group isomers

B. metamers

C. position isomers

D. regioisomers

Answer: B

Solution:

Solution:

Question 77

The stability order of methyl, ethyl, isopropyl and tert-butyl carbocations is

Options

A. methyl > ethyl > isopropyl > tert-butyl

B. methyl < ethyl < isopropyl < tert-butyl

C. methyl \approx ethyl > isopropyl > tert-butyl

D. methyl < ethyl ≈ isopropyl < tert-butyl

Answer: B

Solution:

Solution:

.....

Question 78

Compare the steam volatility of 2-hydroxybenzaldehyde with that of 4-hydroxybenzaldehyde.

Options:

A. both are equally steam volatile

- B. both are not steam volatile
- C. 2-hydroxybenzaldehyde is much more steam volatile than 4-hydroxybenzaldehyde
- D. 4-hydroxybenzaldehyde is much more steam volatile than 2-hydroxybenzaldehyde

Answer: C
Solution:
Solution:
Question 79
The active stationary phase in Partition chromatography over chromatographic paper is
Options:
A. cellulose
B. starch
C. hemicellulose
D. water trapped in chromatographic paper
Answer: D
Solution:
Solution:
Question 80
Kolbe's electrolytic method is suitable for the generation of which among the following gases in the pure form?
Options:
A. Methane
B. Ethane
C. Propane
D. Isobutane (2-methylpropane)
Answer: B
Solution:
Solution:
Question 81
But-2-yne is converted to
$H_3C-C=C-CH_3 \longrightarrow C=C$ $H_3C \longrightarrow H_3C \longrightarrow H$
Options:
Abut-2-ene by
B. catalytic hydrogenation using Lindlar's catalyst
C. using Raney nickel
D. copper catalyzed partition reaction with n-butane
E. reduction using controlled amount of sodium in liquid ammonia
Answer: E
Solution:
Solution:
Question 82

Cyclic compounds with alternating single and double bonds can be

Options:
A. aromatic or antiaromatic
B. aromatic or nonaromatic
C. antiaromatic or nonaromatic
D. aromatic, antiaromatic or nonaromatic
Answer: D
Solution:
Solution:
Question 83
Which among the following methods is NOT a suitable one for the preparation of benzene?
Options:
A. Passing ethyne under pressure through an iron tube heated up to 873 K
B. Soda lime distillation of benzoic acid
C. Treatment of chlorobenzene with sodium metal in dry ether
D. Passing phenol in the gaseous state over a heated bed of zinc dust
Answer: C
Solution:
Solution:
Question 84 Which among the following holides will undergo feetest SN1 colvebrais in water?
Which among the following halides will undergo fastest SN1 solvolysis in water?
Options:
A. 2-fluoro-2-methylpropane B. 2-chloro-2-methylpropane
C. 2-bromo-2-methylpropane
D. 2-iodo-2-methylpropane
Answer: D
Solution:
Solution:
Question 85
Which among the following methods is NOT suitable for selective generation of butan-1-ol?
Options:
A. Reaction of butylmagnesium bromide with water
B. Reaction of propylmagnesium bromide with formaldehyde
C. Reaction of ethylmagesium bromide with ethylene oxide
D. Hydroboration of but-1-ene followed by oxidation with hydrogen peroxide in the presence of aqueous sodium hydroxide
Answer: A
Solution:
Solution:

Question 86

Predict the major products formed in the acidic hydrolysis of cumene hydroperoxide.

фн	
CH	
CH3	H ₃ O°
L//	<u> </u>

n.	nti	_	ns:
v	ԽԱ	נטו	шъ.

- A. Phenol and acetone
- B. Benzoic acid and methanol
- C. Acetophenone and ethanol
- D. Phenol and propan-2-ol

Answer: A

Solution:

Solution:

Question 87

Which of the following nuclides is most radioactive?

Options:

- A. 47 Ag
- B. 30 Zn
- C. ₁₇ 37 Cl
- D. ₁₅³¹P

Answer: A

Solution:

Solution:

Question 88

Which radical can be tested with Nessler's reagent?

Options:

- A. K
- B. NH₄⁺
- C. Na⁺
- D. Fe³⁺

Answer: B

Solution:

Solution:

Question 89

The observed mass of $_{26}$ Fe 56 is 55.9375 amu. Using the mass of proton and neutron = 1.00732 amu and 1.00866 amu respectively, calculate the mass defect?

- A. 0.6234
- B. 0.6753

C. 0.5678
D. 0.5126
Answer: D
Solution:
Solution:
Question 90
The thermal stability of hydrides is in the order of
Options:
A. HF > HCl > HBr > HI
B. HF > HI > HCl > HBr
C. HF > HBr > HI > HCl
D. HF < HI < HBr > HCl
Answer: A
Solution:
Solution:
Question 91
Which complex is called as outer orbital complex?
Options:
A. [Fe(CO) 5]
B. $[Fe(H_2O)_6]^{2+}$
C. [Ni(CO) ₄]
D. $[Fe(CN)_6]^{2-}$
Answer: B
Solution:
Solution:
Question 92
How many atoms are present in a FCC unit cell?
Options:
A. 3
B. 4
C. 2
D. 6
Answer: B
Solution:
Solution:
Question 93

How many elements are present in the sixth period of the modern periodic table?

A. 18	
B. 22	
C. 36	
D. 32	
Answer: D	
Solution:	
Solution:	
Question 94	
In which of the fo	lowing pairs, Dipole-induced dipole interaction is present?
Options:	
A. HCl and He atoms	
B. Cl_2 and CCl_4	
C. SiF ₄ and He atoms	
D. H ₂ O and alcohol	
Answer: A	
Solution:	
Solution:	
Question 95 In which of the fol	llowing compounds, the maximum covalent character is shown?
Question 95	
Question 95 In which of the folloptions: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution:	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the folloptions: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution:	
Question 95 In which of the folloptions: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Solution:	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Solution: Question 96 Which of the follo	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Question 96 Which of the followoptions:	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Question 96 Which of the followins: A. CO	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Question 96 Which of the followoptions: A. CO B. CN ⁻	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Question 96 Which of the followins: A. CO B. CN ⁻ C. NO ⁺	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the followins: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Cuestion 96 Which of the followins: A. CO B. CN ⁻ C. NO ⁺ D. O ₂	llowing compounds, the maximum covalent character is shown?
Question 95 In which of the folloptions: A. MgCl ₂ B. FeCl ₂ C. SnCl ₂ D. AlCl ₃ Answer: D Solution: Solution:	llowing compounds, the maximum covalent character is shown?

Question 97 Choose the correct formula for borax. **Options:** A. $Na_2B_4O_7.5H_2O$ B. $Na_2B_4O_7 \cdot 10H_2O$ C. $Na_2B_4O_7 \cdot 3H_2O$ D. $Na_2B_4O_7 \cdot H_2O$ **Answer: B Solution:** Solution: **Question 98** Diagonal relationship between beryllium and aluminium is due to the fact that **Options:** A. the ionic radius and charge/radius ratio of Be²⁺ is nearly the same as that of Al³⁺ ion. B. like aluminium, beryllium is readily attacked by acids C. the chlorides of beryllium and aluminium are not soluble in organic solvents and are strong Lewis bases D. beryllium and aluminium ions have no tendency to form complexes **Answer: A Solution:** Solution: **Question 99 Identify the CORRECT statement Options:** A. Sodium carbonate is also called as baking soda B. Sodium carbonate is a white crystalline solid which exists as a decahydrate, Na₂CO₃ · 10H₂O C. Sodium carbonate is generally prepared by Castner-Kellner process D. Anhydrous sodium carbonate is called as soda lime **Answer: B Solution:** Solution: Question 100 Considering the elements F, Cl, O and N, the correct order of their chemical reactivity in terms of oxidizing property is **Options:** A. F > Cl > O > NB. F > O > Cl > N

C. Cl > F > O > ND. O > F > N > Cl

Answer: B

Solution:
Solution:
Question 101
If the value of $\lim\limits_{x\rightarrow0}\frac{(1-x)^n-1}{x}$ is 100 , then n is equal to
Options:
A. 100
B100
C. 99
D99
Answer: B
Solution:
Solution:
Question 102
Let f (x) be a polynomial of degree 2 satisfying f (0) = 1, $f'(0) = -2$ and $f''(0) = 6$. Then $\int_{-1}^{2} f(x) dx$ is equal to
Options:
A. 6
B. 0
C. 9
D. 3
Answer: C
Solution:
Solution:
Question 103
The domain of the derivative of the function $f(x) = \tan^{-1}x$, if $ x \le 1$ and $f(x) = \frac{1}{2}(x - 1)$, if $ x > 1$,
is
Options:
A. □-{0}
B. □-{1}
C. □-{-1}
D. $[-\{-1,1\}]$
Answer: D
Solution:
Solution:
Question 104
The function $f : [-0] \rightarrow [$ given by $f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$ can be made continuous at $x = 0$ by defining $f(0)$
as

A. 0
B. 1
C. 2
D1
Answer: B
Solution:
Solution:
Question 105
Rolle's theorem is applicable to the function
Options:
A. $f(x) = x , -1 \le x \le 1$
B. $f(x) = \tan x$, $0 \le x \le \pi$
C. $f(x) = \sin^2 x$, $0 \le x \le \pi$
D. $f(x) = x^3 - 3x + 3$, $0 \le x \le 1$
Answer: C
Solution:
Solution:
Question 106
If $\sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$, then the value of $\cos^{-1}x + \cos^{-1}y$ is
Options:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
2 С. п
D. $\frac{2\pi}{3}$
Answer: B
Solution:
Solution:
Question 107
The number of different salads that can be made from cucumber, tomatoes, onions, beetroot and carrots is
Options:
A. 16
B. 28
C. 31
D. 32
Answer: C
Solution:
Solution:

Question 108 The total number of subsets of a finite set A has 56 more elements than the total number of subsets of another finite set B. The number of elements in the set A is **Options:** A. 5 B. 6 C. 7 D. 8 **Answer: B Solution:** Solution: Question 109 If $\sqrt{5}$ and $-\sqrt{5}$ are two roots of the polynomial $x^3 + 3x^2 - 5x - 15$, then its third root is **Options:** A. 3 B. -3 C. 5 D. -5 Answer: B **Solution:** Solution: **Question 110** The value(s) of p such that the lines, represented by the pair of linear equations 3x - y - 5 = 0 and 6x - 2y - p = 0, be parallel is **Options:** A. all real values except 10 B. 10 C. $\frac{5}{2}$ D. $\frac{1}{2}$ **Answer: A Solution:** Solution: **Question 111** If $A = [a_{ii}]$ is a symmetric matrix of order 2×2 such that |A| = -15 and c_{ii} represents the cofactor of a_{ii} then the value of $a_{21}c_{12} + a_{22}c_{22}$ is **Options:** A. 17 B. 18

C. 19

D15
Answer: D
Solution:
Solution:
Question 112
One ticket is selected at random from 50 tickets numbered 00, 01, 02, \dots 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero equals
Options:
A. $\frac{5}{14}$
B. $\frac{1}{50}$
C. $\frac{1}{7}$
D. $\frac{1}{14}$
Answer: D
Solution:
Solution:
Question 113
Let $x + 8y - 22 = 0$, $5x + 2y - 34 = 0$, $2x - 3y + 13 = 0$ be the three sides of a triangle. Then the are of the triangle is
Options:
A. 19 square unit
B. 36 square unit
C. 42 square unit
D. 72 square unit
Answer: A
Solution:
Solution:
Question 114
For any two real numbers θ and ϕ , we define $\theta R \phi$ if and only if $\sec^2 \theta - \tan^2 \theta = 1$. The relation R is
Options:
A. reflexive but not transitive
B. symmetric but not reflexive
C. both reflexive and symmetric but not transitive
D. an equivalence relation
Answer: D
Solution:
Solution:
Ouestion 115

Let $f : R \to R$ be a positive increasing function with $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1$. Then $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$
Options:
A. $\frac{3}{2}$
B. 3
C. 1
D. $\frac{2}{3}$
Answer: C
Solution:
Solution:
Question 116
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then the number of such arrangement is
Options:
A. at least 750 but less than 1000
B. at least 1000
C. at least 500 but less than 750
D. less than 500
Answer: B
Solution:
Solution:
Question 117
If the imaginary part of $\frac{2z+1}{iz+1}$ is -1 , then the locus of the point representing z in the complex plane
is
Options:
A. a straight line
B. a parabola
C. a circle
D. an ellipse
Answer: C
Solution:
Solution:
Question 118
The minimum value of $27\tan^2\theta + 3\cot^2\theta$
Options:
A. lies between 1 and 17
B. greater than or equal to 18

C. less than 18

Answer: B

D. lies between 2 and 12

Solution:
Solution:
Question 119
If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$, then the value of $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is
Options:
A1
B. 0
C. 1
D. 3
Answer: B
Solution:
Solution:
Question 120
Let x be an integer such that $x^2 - 3x < 4$. Then the number of possible values of x is
Options:
A. 1
B. 2
C. 3
D. 4
Answer: D
Solution:
Solution:
Question 121
The product of all solutions of the equation $(x-2)^2 - 3x - 2 \mid +2 = 0$ is
Options:
A. 0
B2
C. 2
D. 3
Answer: A
Solution:
Solution:
Question 122
If $\log_{0.5}\sin x = 1 - \log_{0.5}\cot x$, then the number of solutions of $x \in [-2\pi, 2\pi]$ is
Options:
A. 1
B. 2
C. 3

D. 4
Answer: B
Solution:
Solution:
Question 123
The value of $\sqrt{3}$ · cosec 20° - sec 20° is equal to
Options:
A. 1
B. 3sin 20°
C. 4
D. $4\cos 40^{\circ}$
Answer: C
Solution:
Solution:
Question 124
If $5\sin \alpha = 7\sin \beta$, then $\frac{\tan\left(\frac{\alpha+\beta}{2}\right)}{\tan\left(\frac{\alpha-\beta}{2}\right)}$ is equal to
Options:
A. 6
B. 8
C. 10
D. 12
Answer: A
Solution:
Solution:
Question 125
The minimum value of $P = bcx + cay + abz$, when $xyz = abc$ is
Options:
A. abc
B. 2abc
C. 3abc
D. 6abc
Answer: C
Solution:
Question 126
If $\sqrt{3} + i = (a + ib)(c + id)$, then $\tan^{-1} \frac{b}{a} + \tan^{-1} \frac{d}{c}$ is equal to

_
A. $\frac{\pi}{2} + 2n\pi$ for some integer n
B. $-\frac{\pi}{3} + n\pi$ for some integer n
$C \frac{\pi}{6} + 2n\pi$ for some integer n
D. $\frac{\pi}{6} + n\pi$ for some integer n
Answer: D
Solution:
Solution:
Question 127
If three positive unequal numbers x, y, z are in Harmonic Progression, then
Options:
A. $x^2 + y^2 > z^2$
B. $x - y > z$
C. $x^2 + z^2 > 2y^2$
D. $x^2 + y^2 + z^2 > 1$
Answer: C
Solution:
Solution:
Question 128
Let a be positive and let M and N be the arithmetic and geometric means of the roots of x^2 – $2ax$ + a^2 respectively. Then
Options:
A. M = 2N
B. M = -N
C. M = N
D. M = -2N
Answer: C
Solution:
Solution:
Ouestion 129

Let $y = f(x^3)$, $z = g(x^5)$, $f'(x) = \tan x$ and $g'(x) = \sec x$. Then $\frac{dy}{dz}$ is equal to

Options:

A.
$$\frac{3}{5x^2} \cdot \frac{\tan x^3}{\sec x^5}$$

B.
$$\frac{5x^2}{3} \cdot \frac{\sec x^5}{\tan x^3}$$

C.
$$\frac{3x^2}{5} \cdot \frac{\tan x^3}{\sec x^5}$$

D.
$$\frac{5}{3x^2} \cdot \frac{\sec x^5}{\tan x^3}$$

Answer: A

Solution:
Solution:
Question 130
Let $y = \sin^{-1}(\sqrt{x - ax} - \sqrt{a - ax})$. Then $\frac{dy}{dx}$ is equal to
Options:
A. $\frac{1}{\sin\sqrt{a-ax}}$
B. $\sin \sqrt{x} \cdot \sin \sqrt{a}$
C. $\frac{1}{2\sqrt{x}\sqrt{1-x}}$
D. 0
Answer: C
Solution:
Solution:
Question 131
If $3^x + 3^y = 3^{x+y}$, then $\frac{dy}{dx}$ equals
Options:
$A. \frac{3^x + 3^y}{3^x - 3^y}$
B. $\frac{3^x + 3^y}{1 + 3^{x+y}}$
C. $\frac{3^{x+y}-3^y}{3^y}$
D. $3^{x-y} \left(\frac{3^y-1}{1-3^x} \right)$
Answer: D
Solution:
Solution:
Question 132
If P(1, 2), Q(4, 6), R(5, 7) and S(a, b) are the vertices of a parallelogram PQRS, then
Options:
A. $a = 2$, $b = 4$
B. $a = 3$, $b = 4$
C. $a = 2$, $b = 3$
D. $a = 3$, $b = 5$
Answer: C

Question 133

Solution:

Solution:

The area of the triangle formed by joining the origin to the points of intersection of the line $\sqrt{5}x + 2y = 3\sqrt{5}$ and the circle $x^2 + y^2 = 10$, is

Options:
A. 6 sq units
B. 5 sq units
C. 4 sq units
D. 3 sq units
Answer: B
Solution:
Solution:
Question 134
The lines $x - y - 2 = 0$, $x + y - 4 = 0$ and $x + 3y = 6$ meet at the common point
Options:
A. (1, 2)
B. (2, 2)
C. (3, 1)
D. (1, 1)
Answer: C
Solution:
Solution:
Question 135
The equation of the chord of the circle $x^2 + y^2 - 4x = 0$, whose mid point is (1, 0), is
Options:
A. $y = 2$
B. $y = 1$
C. x = 2
D. $x = 1$
Answer: D
Answer: D Solution:
Solution:
Solution: Solution:
Solution: Solution: Question 136
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options:
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options: A. $x + y = 0$
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options: A. $x + y = 0$ B. $x + 3y = 0$
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options: A. $x + y = 0$ B. $x + 3y = 0$ C. $x = y$
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options: A. $x + y = 0$ B. $x + 3y = 0$ C. $x = y$ D. $3x + 2y = 0$
Solution: Solution: Question 136 One of the diametrical chord of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is Options: A. $x + y = 0$ B. $x + 3y = 0$ C. $x = y$ D. $3x + 2y = 0$ Answer: B

Question 137 The equation of the line which is tangent to both the circle $x^2 + y^2 = 5$ and the parabola $y^2 = 40x$ is **Options:** A. $2x - y \pm 5 = 0$ B. $2x \pm y + 5 = 0$ C. $2x \pm y - 5 = 0$ D. $2x + y \pm 5 = 0$ **Answer: B Solution:** Solution: **Question 138** Let the points (1, 2) and (k, -1) be conjugate points with respect to the ellipse $2x^2 + 3y^2 = 6$. Then the value of k is **Options:** A. 2 B. 4 C. 6 D. 8 **Answer: C Solution:** Solution: **Question 139** If f(x + y, x - y) = xy, then the arithmetic mean of f(x, y) and f(y, x) is **Options:** A. y B. x C. 0 D. xy **Answer: C Solution:** Solution: **Question 140** If f(x) is an odd periodic function with period 2, then f(4) equals **Options:** A. -4 B. 4 C. 2 D. 0 **Answer: D**

Solution:	
Question 141	
$\lim_{x \to 2} \frac{2^{x} - x^{2}}{x^{x} - 2^{2}} $ is equal to	
Options:	
A. $\frac{\log 2 - 1}{\log 2 + 1}$	
B. $\frac{\log 2 + 1}{\log 2 - 1}$	
C. 1	
D1	
Answer: A	
Solution:	
Solution:	
Question 142	
If $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log a)^n$, then at $x = 0$, $f(x)$	
Options:	
A. has no limit	
B. is discontinuous	
C. is continuous but not differentiable	
D. is differentiable	
Answer: D	
Solution:	
Solution:	
Question 143	
Let $f(x + y) = f(x)f(y)$ and $f(x) = 1 + \sin x$	$2x \cdot g(x)$, where $g(x)$ is continuous. Then $f'(x)$ equals
Options:	
A. $f(x)g(0)$	
B. 2f (x)g(0)	
C. 2g(0)	
D. g(0)	
Answer: B	
Solution:	
Solution:	
Question 144	

The area of the triangle formed by a tangent to the curve $2xy = a^2$ and the coordinate axes is Options:

A. 2a²

B. a²

C. 3a²

Solution:

Question 145

$\int \sin^3 x \cdot \cos^2 x \, dx$ is equal to

Options:

A.
$$\frac{\sin^5 x}{5} - \frac{\sin^3 x}{3} + c$$

B.
$$\frac{\sin^5 x}{5} + \frac{\sin^3 x}{3} + c$$

C.
$$\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + c$$

D.
$$\frac{\cos^5 x}{5} + \frac{\cos^3 x}{3} + c$$

Answer: C

Solution:

Solution:

Question 146

$\int \frac{\sin{(2x)}}{1+\cos^2 x} dx \text{ is equal to}$

Options:

A.
$$-\frac{1}{2}\log(1+\cos^2 x) + c$$

B.
$$2 \log(1 + \cos^2 x) + c$$

C.
$$\frac{1}{2}\log(1 + \cos 2x) + c$$

$$D. c - \log(1 + \cos^2 x)$$

Answer: D

Solution:

Solution:

Question 147

$$\int \frac{x^3 + 3x^2 + 3x + 1}{(x+1)^5} dx$$
 is equal to

Options:

$$A. - \frac{1}{x+1} + c$$

B.
$$\frac{1}{5}\log(x+1) + c$$

$$C. \log(x+1) + c$$

D.
$$tan^{-1}x + c$$

Answer: A

Solution:

The solution of the differential equation $\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$ is
Options:
A. $y\sin y = x^2 \log x + \frac{x^2}{2} + c$
$B. y \cos y = x^2(\log x + 1) + c$
C. $y \cos y = x^2 \log x + \frac{x^2}{2} + c$
$D. ysin y = x^2 log x + c$
Answer: D
Solution:
Solution:
Question 149
The solution of the differential equation $y dx + (x - y^3) dy = 0$ is
Options:
A. $xy = \frac{1}{3}y^3 + c$
$B. xy = y^4 + c$
$C. y^4 = 4xy + c$
D. $4y = y^3 + c$
Answer: C
Solution:
Solution:
Question 150
The ratio in which $\hat{i} + 2\hat{j} + 3\hat{k}$ divides the join of $-2\hat{i} + 3\hat{j} + 5\hat{k}$ and $7\hat{i} - \hat{k}$ is
Options:
A. 1:2
B. 2:3
C. 3:4
D. 1 : 4 Answer: A
Solution:
Solution:
Question 151
A vector perpendicular to the plane containing the points $A(1, -1, 2)$, $B(2, 0, -1)$ and $C(0, 2, 1)$ is
Options:
$A. 4\hat{i} + 8\hat{j} - 4\hat{k}$
B. $8\hat{i} + 4\hat{j} + 4\hat{k}$
C. $3\hat{i} + \hat{j} + 2\hat{k}$
D. $\hat{i} + \hat{j} - \hat{k}$
Answer: B

Solution:	
Question 152	
Let the angle θ between the line $\frac{x+1}{1} = \frac{1}{2}$ sin $\theta = \frac{1}{3}$. Then the value of λ is	$\frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ be such that
Options:	
A. $-\frac{4}{3}$	
B. $\frac{3}{4}$	
C. $-\frac{3}{5}$	
D. $\frac{5}{3}$	
Answer: D	
Solution:	
Solution:	
Question 153	
The order of the element $\overline{4}$ in the group	(11, 11) is
Options:	
A. 1	
B. 3	
C. 10	
D. 11	
Answer: C	
Solution:	
Solution:	
Question 154	
Let a, b, c be the l th m th and n th power	rs of a GP and all are positive.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Options:	
A. 0	
B. 1	
C. 2	
D. 3	
Answer: A	
Solution:	
Solution:	
Question 155	

The torque about the point $3\vec{i} - \vec{j} + 3\vec{k}$ of a force $4\vec{i} + 2\vec{j} + \vec{k}$ through the point $5\vec{i} + 2\vec{j} + 4\vec{k}$, is
Options:
$A. \vec{i} + 2\vec{j} - 8\vec{k}$
$\vec{B}. \vec{i} + 2\vec{j} + 8\vec{k}$
$C. \vec{i} - 2\vec{j} - 8\vec{k}$
D. $\frac{\vec{i} + 2\vec{j} - \vec{k}}{3}$
Answer: A
Solution:
Solution:
Question 156
If $i = \sqrt{-1}$, then the value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is
Options:
A. i
B1
C. 1
D. –i
Answer: A
Solution:
Solution:
Question 157
If $f'(x) = x$ and $f(1) = 2$, then $f(x)$ is
Options:
A. $-\frac{2}{3}(x\sqrt{x}+2)$
B. $\frac{2}{3}(x\sqrt{x} + 2)$
C. $-\frac{1}{2}(x^2+3)$
D. $\frac{1}{2}(x^2 + 3)$
Answer: D
Solution:
Solution:
Question 158
If $f(x) = x^2$ and $g(x) = \sqrt{x}$, then

Options:

Answer: A

A. $(g \circ f)(-2) = 2$ B. $(f \circ g)(2) = 4$ C. $(g \circ f)(2) = 4$ D. $(f \circ g)(3) = 6$

Solution.
Solution:
Question 159
The value of k, such that the function $f(x) = \begin{cases} kx^2 & x \le 2 \\ 3 & x > 2 \end{cases}$. is continuous at $x = 2$, is
Options:
A. 2
B. 1.75
C. 0.75
D. 2.75
Answer: C
Solution:
Solution:
Question 160
The missing vertex of a triangle whose other two vertices (-3, -9), (-1, 6) and centroid $\left(-\frac{1}{3}, 2\right)$ is
Options:
A. (3, 9)
B. (2, 3)
C. (3, 4)
D. (4, 3)
Answer: A
Solution:
Solution:
Question 161
The function $f(x) = x - 1 $ is not differentiable at
Options:
A. 1
B. $\frac{3}{4}$
C. 2
D. $\frac{1}{3}$
Answer: A
Solution:
Solution:
Question 162
If $\omega(\neq 1)$ be a cube root of unity, then the value of $\tan \left\{ (\omega^{10} + \omega^{20})\pi + \frac{\pi}{4} \right\}$ is

Options:

A. 1	
B1	
C. $\frac{1}{\sqrt{3}}$	
D. $-\frac{1}{\sqrt{3}}$	
Answer: A	
Solution:	
Solution:	
Question 163	
The two circles $ z - 1 - i = \sqrt{2}$ and $ z =$	$\sqrt{2}$ intersect at
Options:	
A. no point	
B. one point	
C. two points	
D. four points	
Answer: C	
Solution:	
Solution:	
Question 164	
In the binomial expansion of $(a - b)^n$, n equals	\geq 5, the sum of the 5 th and 6 th terms is zero. Then $\frac{a}{b}$
Options:	
A. $\frac{n-5}{6}$	
B. $\frac{n-4}{5}$	
C. $\frac{5}{n-4}$	
D. $\frac{6}{n-5}$	
Answer: B	
Solution:	
Solution:	
Question 165	
The radius of the circle passing through (0, 3) is	the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having its centre at
Options:	
A. 4	
В. 3	
C. √12	
D. $\frac{7}{2}$	
۷	
Answer: A	

Question 169

If $f(x) = A(2^x) + B$, where f'(1) = 2 and $\int_0^3 f(x) dx = 7$, then which of the following statements are not correct?

(i)
$$A = \frac{1}{\log 2}$$

(ii)
$$\mathbf{B} = \frac{7}{3(\log 2)^2} [(\log 2)^2 - 1]$$

(iii)
$$\mathbf{B} = \frac{7}{\log 2}$$

Solution:
Solution:
Question 173
The locus of the poles of the focal chords of a parabola is the
Options:
A. axis
B. directrix
C. tangent at the vertex
D. circle
Answer: B
Solution:
Solution:
Question 174
The eccentricity of the hyperbola $\frac{\sqrt{1999}}{3}(x^2 - y^2) = 1$ is
Options:
A. $\sqrt{2}$
B. 2
C. $2\sqrt{2}$
$D. \sqrt{3}$
Answer: A
Solution:
Solution:
Question 175
The sum of distances of any point on the ellipse $3x^2 + 4y^2 = 24$ from its foci is
Options:
A. $8\sqrt{2}$
B. $4\sqrt{2}$
C. $24\sqrt{2}$
D. $16\sqrt{2}$
Answer: B
Solution:
Solution:
Question 176
Two dice are thrown. The probability that the numbers appeared have a sum 8 if it is known that the second dice always exhibits 4 , is
Options:

A. $\frac{5}{6}$

B. ⁶ / ₅	
C. $\frac{1}{6}$	
D. $\frac{2}{3}$	
Answer: C	
Solution:	
Solution:	
Question 177	
Which of the following is not a group?	
Options:	
A. $(Z_n, +_n)$	
B. (Z , +)	
C. (Z,.	
D. (R, +)	
Answer: C	
Solution:	
Solution:	
Question 178	
If the value of mode and mean is 60 and	66 respectively, then the value of median is
Options:	
A. 60	
B. 64	
C. 68	
D. 63	
Answer: B Solution:	
Solution:	
Question 179	
The function $f(x) = \frac{\log_e(\pi + x)}{\log_e(e + x)}$ is	
Options:	
A. increasing on (0, ∞)	
B. decreasing on $\left(0, \frac{\pi}{e}\right)$, increasing on $\left(\frac{\pi}{e}, \infty\right)$	
C. decreasing on $(0, \infty)$	
D. increasing on $\left(0, \frac{\pi}{e}\right)$, decreasing on $\left(\frac{\pi}{e}, \infty\right)$	
Answer: C	
Solution:	
Solution:	

Question 180 The integrating factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is **Options:** A. sin x B. cos x C. tan x D. secx **Answer: D Solution:** Solution: **Question 181** The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 - y^2 = r^2$ intersect each other in two distinct points if **Options:** A. r < 2B. r > 8C. 2 < r < 8D. $2 \le r \le 8$ **Answer: C Solution:** Solution: **Question 182** Suppose $A_1, A_2, ..., A_{30}$ are thirty sets, each with five elements and $B_1, B_2, ..., B_{30}$ are n sets each with three elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j = S$. If each element of S belongs to exactly ten of the A_i 's and exactly nine of the B_i 's then n =**Options:** A. 45 B. 35 C. 40 D. 25 **Answer: A Solution:** Solution: **Question 183** The function $f(x) = sec[log(x + \sqrt{1 + x^2})]$ is **Options:**

A. even
B. odd

C. constant

D. neither even nor odd

Answer: A
Solution:
Solution:
Question 184
A solution of the equation $ z - z = 1 + 2i$ is
Options:
A. $\frac{3}{2} - 2i$
B. $\frac{3}{2} + 2i$
C. $2 - \frac{3}{2}i$
D. $2 + \frac{3}{2}i$
Answer: A
Solution:
Solution:
Question 185 The equation $ z-1 ^2 + z+1 ^2 = 4$ represents on the Argand plane
Options:
A. a straight line
B. an ellipse
C. a circle with centre origin and radius 2
D. a circle with centre origin and radius unity
Answer: D
Solution:
Solution:
Solution:
Solution: Solution:
Solution: Solution: Question 186 If A is a singular matrix, then adj A is Options:
Solution: Solution: Question 186 If A is a singular matrix, then adj A is Options: A. non-singular
Solution: Solution: Question 186 If A is a singular matrix, then adj A is Options: A. non-singular B. singular
Solution: Solution: Question 186 If A is a singular matrix, then adj A is Options: A. non-singular B. singular C. symmetric
Solution: Solution: Question 186 If A is a singular matrix, then adj A is Options: A. non-singular B. singular

Solution:

Question 187

The determinant
$$\begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0 \text{ if }$$

Options:	
A. x, y, z are in A.P	
B. x, y, z are in G.P	
C. x, y, z are in H.P	
D. xy, yz, zx are in A.P	
Answer: B	
Solution:	
Solution:	
Question 188	
A telegraph has 5 arms and each arm is capable of 4 distinct positions, including the positi rest. The total number of signals that can be made is	on of
Options:	
A. 473	
B. 1023	
C. 1173	
D. 423	
Answer: B	
Solution:	
Solution:	
Question 189	
A club consists of members whose ages are in A.P, the common difference being 3 months. youngest member of the club is just 7 years old and the sum of the ages of all the members years, then the number of members in the club is	
Options:	
A. 15	
B. 25	
C. 20	
D. 30	
Answer: B	
Solution:	
Solution:	
Question 190	
$\lim_{x \to 5} \frac{x^2 - 9x + 20}{x - [x]}$	
Options:	
A. is 1	
B. is 0	
C. does not exist	

Answer: C Solution:

D. cannot be determined

Solution:
Question 191
If f (9) = 0 and f (9) = 1, then $\lim_{x \to 9} \frac{3 - \sqrt{f(x)}}{3 - \sqrt{x}}$ is equal to
Options:
A. 0
B. 1
C1
D. 3
Answer: B
Solution:
Solution:
Question 192
Let $f(x + y) = f(x) \cdot f(y)$ for all x, y where $f(0) \neq 0$. If $f(5) = 2$ and $f'(0) = 3$, then $f'(5)$ is equal to
Options:
A. 6
B. 0
C. 1
D1
Answer: A
Solution:
Solution:
Question 193
The shortest distance of the point (0, 0) from the curve $y = \frac{1}{2} (e^x + e^{-x})$ is
Options:
A. 2
B. 1
C. 3
D. 0
Answer: 0

Solution:

Question 194

A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability that the value of the determinant chosen is positive is

Options:

A.
$$\frac{16}{81}$$

B. $\frac{7}{16}$	
C. $\frac{3}{16}$	
D. $\frac{16}{3}$	
Answer: C	
Solution:	
Solution:	
Question 195	
If \vec{a} is a unit vector and $(\vec{x} + \vec{a}) \cdot (\vec{x} - \vec{a})$:	= 24, the $ \vec{x} $ must be
Options:	
A. 3	
B. 4	
C. 5	
D. 6	
Answer: C	
Solution:	
Solution:	
Question 196 The angle between two vectors and $\vec{a}.\vec{b} = 2\sqrt{5}$ is Options:	\vec{a} and \vec{b} with magnitudes $\sqrt{5}$ and 4 respectively
А. п/3	
В. п/6	
С. п/2	
D. 5π/12	
Answer: B	
Solution:	
Solution:	
Question 197	
The length of perpendicular from the p	oint $(1, \frac{3}{2}, 2)$ to the plane $2x - 2y + 4z + 5 = 0$ is
Options:	
A. $\sqrt{3}$	
B. $\sqrt{6}$	
C. √5	
$D.\sqrt{7}$	
Anguar. C	

Solution:
Question 198
P is a point on the line segment joining the points $A(3, 2, 1)$ and $B(6, 2, -2)$. If the x -coordinate of P is 5, then the z -coordinate of P is
Options:
A2
B. 1
C1
D. 2
E.
Answer: A
Solution:
Solution:
Question 199
The probability of A and B solving a problem correctly is $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability of their making a common error is 1 / 20 and they obtain the same answer, then the probability of their answer to be correct is
Options:
A. $\frac{1}{12}$
B. $\frac{1}{40}$
C. $\frac{13}{120}$
D. $\frac{10}{13}$
Answer: D
Solution:
Solution:
Question 200
A pair of dice is thrown 4 times. If getting a doublet is considered to be a success, the probability of 2 successes is
Options:
A. $\frac{25}{216}$
B. $\frac{29}{216}$
C. $\frac{31}{216}$
D. $\frac{33}{216}$
Answer: A
Solution:
Solution: