Class XII Chemistry (Code – 043) Sample Question Paper 2018-19

Time allowed: 3 Hours

Max. Marks: 70

General Instructions:

(a) All questions are compulsory.

(b) Section A: Q.no. 1 to 5 are very short answer questions and carry 1 mark each.

(c) Section B: Q.no. 6 to 12 are short answer questions and carry 2 marks each.

(d) Section C: Q.no. 13 to 24 are also short answer questions and carry 3 marks each.

(e) Section D: Q.no. 25 to 27 are long answer questions and carry 5 marks each.

(f) There is no overall choice. However an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.

(g) Use of log tables if necessary, use of calculators is not allowed.

	Section-A	
1.	ZnO crystal on heating acquires the formula Zn $_{1+x}$ O. Give reason.	1
	OR	
	There is an increase in conductivity when Silicon is doped with Phosphorous. Give reason	
2.	Based on the type of dispersed phase, what type of colloids are micelles?	1
3.	On the basis of crystal field theory, write the electronic configuration of d ⁶ in terms of t_{2g} and e_g in an octahedral field when $\Delta_o < P$.	1
	OR	
	Low spin configuration are rarely observed in tetrahedral coordination entity formation. Explain	
4.	Identify the compound that on hydrogenation produces an optically active compound from the following compounds: $H_{2}C \xrightarrow[(A)]{H_{3}}CH_{3}$ $H_{3}C \xrightarrow[(B)]{H_{3}}CH_{3}$	1
5.	Write the name of the biodegradable polymer used in orthopaedic devices.	1

11.	Draw the molecular structures of the following:	2
	(a) Noble gas species which is isostructural with BrO_3^-	
	(b) Dibasic oxoacid of phosphorus	
12.	(i) On the basis of the standard electrode potential values stated for acid solutions, predict T^{4+}	2
	whether Π^{+} species may be used to oxidise Fe(II) to Fe(III)	
	$Ti^{i++} + e^- \rightarrow Ti^{i+-} \qquad E^o = +0.01V$	
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$ $E^o = +0.77V$	
	(ii) Based on the data arrange Fe ²⁺ , Mn ²⁺ and Cr ²⁺ in the increasing order of stability of +2 oxidation state. (Give a brief reason) $E^o_{Cr^{3+}/Cr^{2+}} = -0.4V$	
	$E^{o}_{Mn^{3+}/Mn^{2+}} = +1.5V$	
	$E^{o}_{Fe^{3+}/Fe^{2+}} = +0.8V$	
	Section-C	
13.	Niobium crystallises in body-centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of Niobium. (Atomic mass = 93u).	3
14.	Give reasons for the following:	3
	 a. When 2g of benzoic acid is dissolved in 25 g of benzene, the experimentally determined molar mass is always greater than the true value. b. Mixture of ethanol and acetone shows positive deviation from Raoult's Law. c. The preservation of fruits by adding concentrated sugar solution protects against bacterial action. 	
15.	An alcohol A ($C_4H_{10}O$) on oxidation with acidified potassium dichromate gives acid B	3
	$(C_4H_8O_2)$. Compound A when dehydrated with conc. H_2SO_4 at 443 K gives compound C. Treatment of C with aqueous H_2SO_4 gives compound D ($C_4H_{10}O$) which is an isomer of A. Compound D is resistant to oxidation but compound A can be easily oxidised. Identify A, B, C and D. Name the type of isomerism exhibited by A and D	
16.	Which one of the following compounds will undergo faster hydrolysis reaction by S_N1 mechanism? Justify your answer.	3
	CH_CI	
	\sim or CH ₃ CH ₂ CH ₂ Cl	
	OR	
	A compound is formed by the substitution of two chlorine atoms for two hydrogen atoms in propane. Write the structures of the isomers possible. Give the IUPAC name of the isomer which can exhibit enantiomerism.	

17.	Complete the following reactions :	3
	(a) $H_2N-OH \longrightarrow$ (b)	
	$\overset{\text{KMnO}_4, \text{H}_2\text{SO}_4}{\Delta}$	
	(c) $COOH$ + NH_3 \longrightarrow	
18.	Give reasons for the following:	3
	 (i) Use of aspartame as an artificial sweetener is limited to cold foods. (ii) Metal hydroxides are better alternatives than sodium hydrogen carbonate for treatment of acidity. (iii) Aspirin is used in prevention of heart attacks. 	
19.	(a) Name the branched chain component of starch.(b) Ribose in RNA and deoxyribose in DNA differ in the structure around which carbon atom?(c) How many peptide linkages are present in a tripeptide?	3
	OR	
	Give three reactions of glucose which cannot be explained by its chain structure	
20.	The following data were obtained during the first order thermal decomposition of $N_2O_5(g)$ at a constant volume:	3
	$2N_2O_5(g) \to 2N_2O_4(g) + O_2(g)$	
	S.No. Time (sec.) Total pressure(atm)	
	1. 0 0.5	
	2. 100 0.512	
	Calculate the rate constant	
	OR	
	Two reactions of the same order have equal pre exponential factors but their activation energies differ by 24.9 kJ mol ⁻¹ . Calculate the ratio between the rate constants of these reactions at 27°C. (Gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)	

21.	(a) A colloidal sol is prepared by the given method in figure. What is the charge of AgI colloidal particles in the test tube? How is the sol formed, represented?	3
	AgNO,	
	(b) Explain how the phenomenon of adsorption finds application in Heterogeneous	
	catalysis.	
	(c) Which of the following electrolytes is the most effective for the coagulation of Fe(OH) sol which is a positively charged sol ?	
	NaCl, Na ₂ SO ₄ , Na ₃ PO ₄	
22	Describe how the following steps can be carried out?	3
		U
	 (a) Recovery of Gold from leached gold metal complex (b) Conversion of Zirconium iodide to pure Zirconium 	
	(c) Formation of slag in the extraction of copper.	
	(Write the chemical equations also for the reactions involved)	
	OR	
	Explain the use of the following:	
	a) NaCN in Froth Floatation Method.	
	a) NaCN in Froth Floatation Method.b) Carbon monoxide in Mond process.	
	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide 	
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining membrane provides and the formation of th	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH ₃) ₄ Cl ₂ Br has been isolated in two forms A and B. The form A reacts with AgNO ₂ to give a white precipitate readily soluble in dilute.	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^oCu²⁺/Cu for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia. (i) Write the formulae of isomers A and B. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia. (i) Write the formulae of isomers A and B. (ii) State the hybridisation of chromium in each of them. 	3
23.	 a) NaCN in Froth Floatation Method. b) Carbon monoxide in Mond process. c) Coke in the extraction of Zinc from Zinc Oxide Explain the following: (a) Out of Sc³⁺, Co²⁺ and Cr³⁺ions, only Sc³⁺ is colourless in aqueous solutions. (Atomic no.: Co = 27; Sc = 21 and Cr = 24) (b) The E^o_{Cu²⁺/Cu} for copper metal is positive (+0.34), unlike the remaining members of the first transition series (c) La(OH)₃ is more basic than Lu(OH)₃. A metal complex having composition Cr (NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia. (i) Write the formulae of isomers A and B. (ii) State the hybridisation of chromium in each of them. (iii) Calculate the magnetic moment (spin only value) of the isomer A 	3

	(a) Apply Kohlrausch law of to determine the limiting	of independent migrati g molar conductivity of	on of ions, write the expression calcium chloride.		
	(b) Given are the conductive at different concentration	ity and molar conduct ns:	ivity of NaCl solutions at 298K		
	Concentration M	Conductivity Scm ⁻¹	Molar conductivity S cm ² mol ⁻¹		
	0.100	106.74 x 10 ⁻⁴	106.7		
	0.05	55.53 x 10 ⁻⁴	111.1		
	0.02	23.15 x 10 ⁻⁴	115.8		
	(c) 0.1 M KCl solution offe 298 K. If the cell cor conductivity of KCl solu	ered a resistance of 10 stant of the cell is antion.	0 ohms in a conductivity cell at 1.29 cm^{-1} , calculate the molar		
27.	(a) Account for the following of	oservations:		5	
	 (i) SF₄ is easily (ii) Chlorine wa (iii) Bi(V) is a s 	v hydrolysed whereas S ater is a powerful bleac stronger oxidising agen	F ₆ is not easily hydrolysed hing agent. t than Sb(V)		
	(b) What happens when				
	 (i) White phosphorus is heated with concentrated NaOH solution in an inert atmosphere of CO₂. (ii) XeF₆ undergoes partial hydrolysis. 				
	(Give the chem	nical equations involved	d).		
		OP			
		UK		_	
	(a) What inspired N.Bartlett for carrying out reaction between Xe and PtF_6 ? (b) Arrange the following in the order of property indicated against each set:				
	(i) F_2 , I_2 , Br_2 , Cl (ii) NH_3 , AsH_3 , S	$_{2}$ (increasing bH ₃ , BiH ₃ , PH ₃ (decreasing b)	g bond dissociation enthalpy) easing base strength)		
	(c) Complete the following equation (i) $Cl_2 + Na$ (ii) $Fe^{3+} + Se^{3+}$	ations: $OH(cold and dilute) - O_2 + H_2O \rightarrow$	>		

Class: XII Chemistry Marking Scheme 2018-19

Time allowed: 3 Hours

Maximum Marks: 70

Q No	SECTION A	Marks
1.	On heating ZnO, it loses oxygen and there is excess of Zn^{2+} ions in the crystal.	1
	OR	
	When silicon is doped with phosphorous (group 15 element), the increase in conductivity is due to the delocalised negatively charged electrons.	1
2.	Associated colloids	1
3.	$t_{2g}^3 e_g^3$	1
	OR	
	The orbital splitting energies, Δ_t are not sufficiently large for forcing pairing of electrons in the tetrahedral coordination entity formation.	1
4.	В	1
5.	Poly β – hydroxybutyrate – co – β – hydroxy valerate	1
	SECTION B	
6.	$HBr \rightarrow H^+ + Br^-$	
	$i=1-\alpha+n\alpha$	
	n=2	
	$i=1+\alpha$	1/2
	$\Delta I_f = iK_f m$	1/2
	$\Delta T_f = (1+\alpha)1.86 \mathbf{x} \frac{8.1}{81} \mathbf{x} \frac{1000}{100}$	
	$\Delta T_{c} = 3.53$	1/2
	$T_{c}^{0} = 0^{0}C$	1/2
	$\Delta T - T^0 - T'$	1/2
	$\begin{array}{c} \Delta I_{f} = I_{f} \\ T' = 2.52 \Lambda^{0} C \end{array}$	1/2
	$I_f = -5.554$ C	
	OR	_
	Mole fraction of water, $\chi_{H_2O} = 0.88$	
	Mole fraction of ethanol, $\chi_{C_2H_5OH} = 1-0.88$	1/2
	= 0.12	
	$\chi_{C_2H_5OH} = \frac{n_2}{n_2 + n_2}$	
	$n_1 + n_2$ (1)	

	n_2 = number of moles of ethanol.	
	n_1 = number of moles of water. Molality of ethanol means the number of	
	moles of ethanol present in	
	1000 g of water.	
	1000 55.5	
	$n_1 = \frac{18}{18} = 55.5 moles$	1/2
	Substituting the value of n_1 in equation (1)	
	n.	1/2
	$\frac{n_2}{55.5+n} = 0.12$	
	$55.5 + n_2$	1/2
	$n_2 = 7.57 moles$	
	Molality of ethanol (C_2H_5OH) = 7.57 m	
	Alternatively,	
		1/2
	Mole fraction of water $= 0.88$	
	Mole fraction of ethanol = $1-0.88 = 0.12$	
	Therefore 0.12 moles of ethanol are present in 0.88 moles of water.	
	Mass of water = $0.88 \times 18 = 15.84$ g of water.	
	Molality = number of moles of solute (ethanol) present in 1000 g of	
	solvent (water)	1/2
	$= 12 \times 1000 / 15.84$	
	= 7.57 m	
	Molality of ethanol (C_2H_5OH) = 7.57 m	
7.(a)	Reaction : Hell-Volhard-Zelinsky reaction.	1/2
	IUPAC : 2-Bromopropanoic acid.	1/2
(b)	Reaction : Rosenmund reduction reaction.	1/2
	IUPAC : Benzaldehyde.	1/2
	OR	
		1/2
	i) 2-Methylbut-2-enal	
	CH ₃	1/2
		1/2
	ii) Pent-2-enal	
		1/2
	CH_3 - CH_2 - $CH=CH$ - CHO	
		<u> </u>
8.(a)	Tert-butyl peroxide acts as a free radical generating initiator(catalyst)	1
(b)	$CH_2 = CH - CH = CH_2$	1/2
	$C_6H_5 - CH = CH_2$	1/2

9.	Step 1 : Formation of protonated alcohol.	1/2
	$H = \begin{bmatrix} H & H \\ I & I \\ -C & C \\ I & I \\ H & H \end{bmatrix} \xrightarrow{H + H^{+}} Fast H = \begin{bmatrix} H & H & H \\ I & I \\ -C & C \\ I & I \\ H & H \end{bmatrix} \xrightarrow{H + H^{+}} H^{+} \xrightarrow{Fast} H = \begin{bmatrix} H & H & H \\ I & I \\ -C & C \\ I & I \\ H & H \end{bmatrix}$ Ethanol Protonated ethanol (Ethyl oxonium ion)	
	Step 2 : Formation of carbocation.	1
	$H \xrightarrow{H}_{C} \xrightarrow{H}_{O} \xrightarrow{H}_{O} \xrightarrow{H}_{H} \xrightarrow{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} H$	
	$H \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{C} = C \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H}$	1⁄2
10.	(i) Zero order reaction (ii) Slope represents $-k$; Intercept represents $[R]_o$ (iii) $mol L^{-1} s^{-1}$	$\frac{1}{2}$ $\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2}$
11.(a)	XeO3	1
(b)	H H H H H H H H H H H H H H H H H H H	1
12.(i)	Since Ti^{4+}/Ti^{3+} has lower reduction potential than Fe^{3+}/Fe^{2+} , it cannot be reduced in comparison with Fe^{3+}/Fe^{2+} ions. Hence Ti^{4+} cannot oxidise Fe^{2+} to Fe^{3+} .	1 1⁄2
(ii)	As the value of reduction potential increases the stability of +2 oxidation increases. Therefore correct order of stability is $Cr^{3+}/Cr^{2+} < Fe^{3+}/Fe^{2+} < Mn^{3+}/Mn^{2+}$	1 1⁄2

	SECTION C	
13.	$\sqrt{3}$	1/2
	$r = \frac{\sqrt{3}}{4}a$	-
	$143.1 - \sqrt{3}$	
	$\frac{145.1 - 4}{4}a$	1/
	a = 330.4 pm zM	$\frac{1/2}{1/2}$
	$ \rho = \frac{1}{a^3 N_A} $	
	$\rho = \frac{2\mathbf{x}93}{10^3}$	1/2
	$(330.4 \times 10^{-10})^3 \times 6.023 \times 10^{23}$	1/ . 1/
	$\rho = 8.58 \ g / cm^2$	$\frac{1}{2} + \frac{1}{2}$
14.(a)	Molecules of benzoic acid dimerise in benzene, the number of particles are reduced.	1
(b)	The intermolecular interactions between ethanol and acetone are weaker/ the	1
	escaping tendency of ethanol and acetone molecules increases on mixing / the	
(c)	vapour pressure increases.	1
	Due to osmosis, a bacterium on fruit loses water, shrivels and dies.	
15.		
	CH	
		1
	ĊН ₃	
	B : CH ₂ -CH-COOH	
	5	1/2
	$C : CH_3 - CH = CH_2$	1/2
	CH ₃	
		1⁄2
	$D: CH_3 - CH - CH_3$	
	OH	
		1/2
	A and D are position isomers	

16.	$C_6H_5CH_2Cl$ will undergo S_N1 reaction faster.	1/2
	The carbocation formed by $C_6 H_5 CH_2 Cl$ gets stabilized through resonance.	1⁄2
	Greater the stability of carbocation, greater will be its ease of formation from the	1
	respective nance.	1
	\oplus	
	$\oplus CH_2$ CH_2 CH_2 CH_2	
		1
	O	
	(i) (ii) (iii) (iv)	
	° ^H 2 r ^{°H2} ⊐⊕	
	(\mathbf{v}) $(\mathbf{v}i)$	
	OR	
	ÇI	1/2
	3 2	1/2
		1/2
	$CH_2CI-CH_2-CH_2CI$	/2
	CH ₃ -CH ₂ -CHCl ₂	
		1/2
	ÇI	, -
		1⁄2
		1/
	ĊI	72
	The following isomer will exhibit enantiomerism:	
	CH ₃ -CH-CH ₂ CI	
	IUPAC name: 1,2-Dichloropropane.	
17.(a)	N-OH	1
		I
	HOOC - CH_2 - CH_2 - CH_2 - CH_2 - $COOH$	
(b)		1

(c)		1
18.(i) (ii)	It is unstable at cooking temperature. Excessive hydrogencarbonate can make the stomach alkaline and trigger the	1
	production of even more acid. Metal hydroxides being insoluble do not increase the pH above neutrality	1
(iii)	Aspirin has anti blood clotting action.	1
19.(a)	Amylopectin.	1
(b) (c)	C- 2 Two peptide linkages.	1 1
	OR	
	(1) Glucose does not give 2,4- DNP test.	1
	(2) Glucose does not give Schiff's test.	1
	(3) The pentaacetate of glucose does not react with hydroxylamine.	1
	(4) Glucose does not form the hydrogensulphite addition product with NaHSO₃.(Any three points)	
20.	$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$	
	At $t = 0$ 0.5 atm 0 atm 0 atm	
	At time t $0.5-2x$ atm $2x$ atm x atm	
	$p_t = p_{N_2O_5} + p_{N_2O_4} + p_{O_2}$	1/2
	= = (0.5 - 2x) + 2x + x = = 0.5 + x	
	$x = p_t - 0.5$	
	$p_{N_2 O_5} = 0.5 - 2x$	1/2
	$=0.5-2(p_t-0.5)$	/2
	$= 1.5 - 2p_t$	
	At t = 100 s; $p_t = 0.512$ atm $r_{t} = 1.5 - 2x(0.512 - 0.476)$ atm	
	$p_{N_2O_5} = 1.5 - 2 \times 0.512 = 0.476 \text{dim}$	1/2
	$k = \frac{2.303}{4} \log \frac{p_i}{r_i}$	/2
	P_A	1⁄2
	$k = \frac{2.505}{100s} \log \frac{0.5 dm}{0.476 atm}$	
	$k = \frac{2.303}{100s} \times 0.0216 = 4.98 \times 10^{-4} s^{-1}$	1
	OR	1
	The Arrhenius equation: $k = Ae^{-Ea/RT}$	
	Taking log on both sides: $\log k = \log A - \frac{E_a}{2.303RT}$	

	For reaction (i) $\log k_1 = \log A - \frac{E_a(1)}{2.303RT}$	1
	For reaction (ii) $\log k_2 = \log A - \frac{E_a(2)}{2.303RT}$	
	Subtracting (i) from (ii)	1
	$\log \frac{k_1}{k_2} = \frac{E_a(1) - E_a(2)}{2.303RT}$	
	$= \log \frac{k_1}{k_2} = \frac{24.9 \times 1000}{2.303 \times 8.3 \times 300} = 4.342$	
	$\frac{k_1}{k_2} = anti \log(4.342) = 2.198 \times 10^4$	
21. (a)	Negative charge is developed on the sol. Sol is represented as AgI/I^-	1/2 1/2
(b)		
(0)	Adsorption of reactants on the solid surface of the catalysts increases the rate of reaction.	1
(c)	Na ₃ PO ₄	1/2
	Hardy-Schulze rule	1/2
22. (a)	Leached gold complex is treated with Zinc and gold is recovered by displacement	
	method $2Au[(CN)]^{-}(aa) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)]^{2-}(aa)$	1/2
(b)	$2\pi u[(env)_2](uq) + 2\pi u(s) + [2\pi (env)_4](uq)$	1⁄2
(0)	Zirconium iodide is decomposed on a tungsten filament; electrically heated to 1800 K. Pure Zr metal is deposited on the filament. $ZrI_4 \rightarrow Zr + I_2$	1/2 1/2
(c)	Silica is added to the ore and heated. It helps to slag off iron oxide as iron silicate	1⁄2
(C)	$FeO + SiO_2 \rightarrow FeSiO_3(slag)$	1⁄2
	OR	
(a)	NaCN is used as depressants to separate two sulphide ores (ZnS and PbS) in Froth Floatation Method.	(1)
(b)	Carbon monoxide forms a volatile complex of nickel, nickel tetracarbonyl.	(1)
(c)	Coke is used as a reducing agent to reduce zinc oxide to zinc.	(1)
23. (a)	Co^{2+} : [Ar]3d ⁷ Sc ³⁺ : [Ar]3d ⁰ Cr ³⁺ : [Ar]3d ³ Co ²⁺ and Cr ³⁺ have unpaired electrons. Thus, they are coloured in aqueous solution.Sc ³⁺ has no unpaired electron. Thus it is colourless.	1
(b)	Metal copper has high enthalpy of atomisation and enthalpy of ionisation. Therefore the high energy required to convert $Cu(s)$ to $Cu^{2+}(aq)$ is not balanced by its hydration enthalpy.	1

(c)	Due to lanthanoid contraction the size of lanthanoid ion decreases regularly with increase in atomic size. Thus covalent character between lanthanoid ion and OH^- increases from La^{3+} to Lu^{3+} . Thus the basic character of hydroxides decreases from $La(OH)_3$ to $Lu(OH)_3$				
24. (a) (b) (c)	Isomer A: [Cr(NH ₃) ₄ BrCl]Cl Isomer B: [Cr (NH ₃) ₄ Cl ₂]Br Hybridisation of Cr in isomer A and B is d ² sp ³ . Number of unpaired electrons in Cr ³⁺ (3d ³) is 3 Magnetic moment = $\sqrt{n(n+2)}$ = $\sqrt{3(3+2)}$ = 3.87 BM (deduct half mark for wrong unit/unit not written)				
25.(a)	$A = AgNO_2$				
	$CH_2 - NH_2$				
	B =				
	$C = \bigcup_{i=1}^{O} C + C - NH_2$ $C = \bigcup_{i=1}^{O} D = CHCl_3 + KOH , Heat.$				
(b)	Experiment	Aniline	Benzylamine		
(i)	Azo dye test: Dissolve the amine in HCl, cool it and then add cold aqueous solution of NaNO ₂ and then solution of	A brilliant orange red dye is observed.	No dye is formed.	1	
	$\beta_{-\text{naphthol}}$				
(ii)		l	·		
(**/	Experiment	Methylamine	Dimethylamine		
	Carbylamine test: To the organic compound add chloroform and ethanolic potassium hydroxide and heat	A foul smelling substance (isocyanide)	No reaction.	1	
	(or any other suitable test)				

(c)	$A = CH_3CH_2CH_2NH_2$		
	$B = CH_3CH_2CH_2OH$		
	OR		
(a)(i)	In strongly acidic medium, aniline is protonated to form the anilium ion which is meta directing.		
(ii)	Aryl halides do not undergo nucleophilc substitution with the anion formed by phthalimide.		
	$CH_{3}\text{-}COOH \xrightarrow{\text{NH}_{3}, \Delta} CH_{3}\text{-}CO\text{-}NH_{2} \xrightarrow{\text{NaOH} + Br_{2}} CH_{3}NH_{2}$	1	
(b)(1)			
(ii)	$ \begin{array}{c} NH_2 \\ \hline \\ Pyridine \end{array} \begin{array}{c} NHCOCH_3 \\ \hline \\ Br_2 \\ \hline \\ CH_3COOH \end{array} \begin{array}{c} NHCOCH_3 \\ \hline \\ OH^{-} \text{ or } H^{+} \\ \hline \\ Br \end{array} \begin{array}{c} NH_2 \\ \hline \\ OH^{-} \text{ or } H^{+} \\ \hline \\ Br \end{array} $	1	
(c)	p- Nitroaniline < Aniline < p- Toludine.	1	
26.(a) (b) (c)	E _{cell} decreases. Anode: Cl ₂ ↑ Cathode : H ₂ ↑ $Cu^{2+}(aq.) + Ni(s) \rightarrow Ni^{2+}(aq.) + Cu(s)$	1 1/2 1/2 1/2	
	$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$ $E^{0}_{cell} = 0.34 - (-0.25)$		
	$E^0_{cell} = 0.59V$	1⁄2	
	$E_{cell} = E_{cell}^{0} - \frac{2.303RT}{nF} \log \frac{[Ni^{2+}]}{[Cu^{2+}]}$		
	$E = 0.50 0.059_{12} [0.01]$		
	$E_{cell} = 0.59 - \frac{1000}{2} \frac{1000}{1000} \frac{1000}{1000}$		
	$E_{cell} = 0.6195V$		
	OR		
(a)	$\Lambda_{m(CaCl_{2})} = \lambda_{Ca^{2+}} + 2\lambda_{Cl^{-}}$		
(b)	Conductivity of NaCl decreases on dilution as the number of ions per unit volume decreases.	1	

	Whereas molar conductivity of NaCl increases on dilution as on dilution the	1		
	interionic interactions are overcome and ions are free to move.			
	$G^* = \kappa R$	1/2		
(c)	1 29			
	$\kappa = \frac{100}{100} = 0.0129 \ S \ cm^{-1}$	1⁄2		
	100 1000 m			
	$\Lambda_m = \frac{1000 \ K}{2}$			
	^m C			
	$\Lambda = \frac{1000 \ x \ 0.0129}{1000 \ x^{-1}}$			
	0.1			
	$\Lambda_m = 129 S cm^2 mol^{-1}$			
27.				
(a)	(i)S atom in SF ₄ is not sterically protected as it is surrounded by only four F atoms,	1		
	so attack of water molecules can take place easily. In contrast, S atom in SF ₆ is			
	protected by six F aoms. Thus attack by water molecules cannot take place easily.			
	(ii) Chlorine water produces nascent oxygen (causes oxidation) which is responsible	1		
	for bleaching action.			
	$Cl_{2} + H_{2}O \rightarrow 2HCl + [O]$			
	(iii) Due to inert pair effect $Bi(V)$ can accept a pair of electrons to form more stable	1		
	Bi (III). $(+3 oxidation state of Bi is more stable than its +5 oxidation state).$			
(b)	(i)Phosphorus undergoes disproportionation reaction to form phosphine gas.			
	$P_4 + 3NaOH + 3H_2O \rightarrow PH_2 + 3NaH_2PO_2$	1		
	4 2 2 3 2 2 2			
	(ii)On partial hydrolysis XeE_c gives oxyfluoride $XeOE_c$ and HE			
	$Y_{2}E + H O \rightarrow Y_{2}OE + 2HE$	1		
	$\operatorname{Aer}_6 + \operatorname{II}_2 O \rightarrow \operatorname{AeOr}_4 + 2\operatorname{III}_6$			
	OR			
(a)	N.Bartlett first prepared a red compound O_2 PtF ₆ . He then realised that the first	1		
	ionisation enthalpy of molecular oxygen was almost identical with Xenon. So he			
	carried out reaction between Xe and PtF_6 .	1		
		1		
(b)	$(1) I_2 < F_2 < Br_2 < CI_2$	1		
	$(11) \operatorname{NH}_3 > \operatorname{PH}_3 > \operatorname{AsH}_3 > \operatorname{SbH}_3 > \operatorname{B1H}_3$			
		1		
	(i)	1		
(C)	$2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$			
		1		
	(ii)	1		
	$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$			
1		1		
