CELL BIOLOGY

1.1 TOOLS AND TECHNIQUE

The preparation of the cells or cells parts for their study requires very specialized methods. The search continues for new instruments. So as to provide better understanding of cell structure upto molecular level, the following tools and techniques helped the biologists to know more about the cells.

(1) **Microscopy :** (*Gk. Micros* = small ; *Skopein* = to see) It is practice of using microscopes for the study of finer details of small objects including cells and tissues. Microscope are instruments consisting of lenses (made of glass / Lithium fluoride / electromagnetic lens) which magnify and resolve small objects not visible to unaided eye for the study of their details.

(i) Magnification : Is the power of enlargement, which is the ratio of

Magnification = $\frac{\text{Size of the image with the instrument}}{\text{Size of the image with unaided eye}}$

Magnification of a microscope is roughly equal to the multiple of magnifying power of objective lens and ocular lens (eye piece) *e.g.*, if the magnification power of an ocular lens is 10 X and of the objective is 40 X, then the total magnifying power of a microscope is $10 \times 40 = 400 X$ (the magnification power of a microscope is represented by the symbol 'X').

(ii) **Resolving power :** It is the ability of a system to distinguish two close objects as two distinct objects. Its values is calculated by *Abbe* equation –

$$L_m = \frac{0.61\,\lambda}{NA}$$

Here, λ – is wavelength of used light, *NA* – Numerical Aperture, (*NA* = $n \sin \theta$)

Numerical aperture is multiple of refractive index of medium (*n*) and $\sin \theta$, which is sine of angle substended by optical axis and outer ray covered by objective. The value for best objective $\sin e 70^\circ = 0.94$.

The resolving power of a microscope depends on the kind of illumination used. It is equal to one half of the wavelength of the illuminating light. The wavelength of visible light is 3,900 Å to 7,800 Å. Taking the average as 5,850 Å, the resolving power of the light microscope is about 3,000 Å or $0.3 \,\mu m$. Therefore, we can not see objects smaller than $0.3 \,\mu m$ even with the light microscope. Many cell organelles are smaller than $0.3 \,\mu m$. These were unknown till electron microscope was invented.

The resolving power of human eye is $100 \mu m$ or microns (0.1 mm). This means that two points less than $100 \mu m$ apart appear as one point to our eyes.

Father of microscopy is *Leeuwenhoek*. He built first 270 X magnification microscope in 1672.

1

(2) Types of microscopes

(i) **Simple microscope :** It is also known as magnifying glass and consists of a convergent lens. The image formed by it is virtual, enlarged and on same side of lens.

Robert Hooke designed a primitive microscope and discovered cells with it. It was the first tool ever used to observe biological objects. Its magnification power was 14 - 42 times only, so it is considered as simple microscope.

(ii) **Compound microscope or Light microscope :** The first compound microscope was assembled by *Zacharias Janseen* and *J. Janseen*, the Dutch spectacles makes in 1590. The first compound microscope was prepared by *Kepler* and *Galileo* in 1611. However, it was not used for laboratory study. It is simplest, widely used microscope having three lens *i.e.* condensor, which collects the light rays and precisely focuses them on the objects; objective lens, which magnifies the image by three objective lenses, *i.e.* low power, high power and oil immersion lenses.

In a compound microscope an object can be magnified upto 1000 times and the magnification is independent of intensity of light, size of microscope and numerical aperture. The light microscope is also called *bright field* microscope because it forms the image when light is transmitted through the object. The specimen formed is darker than the surrounding bright field. The light microscope can be used to examine the live, unstained materials as well as the preserved and stained specimens.

(iii) **Fluorescent microscope :** It was developed by *Coons* (1995). It is observed that when ultraviolet light is irradiated on certain chemical substances, they absorb it and emit visible light. These chemical substances are called fluoro-chromes. The fluorescent substances *e.g.*, quinine sulphate, rhodamine and auramine are used to stain the cellular objects and these objects are easily visible as fluorescent areas when illuminated with ultraviolet light. Property of emission of long wave radiation soon after getting excited by shorter wave called, fluorescence.

(iv) **Polarizing microscope :** It was invented by *Tolbart*. In this microscope the plane polarised light is used as a source of illumination. Unlike the ordinary light, plane polarised light vibrates only in one direction and the cellular objects are easily visible as they appear bright against the dark ground. Polarizing microscope is helpful in studying the spindle fibres in the cells.

(v) **Ultraviolet microscope :** It was invented by *Caspersson*. In this microscope the source of illumination is ultraviolet radiations having shorter wavelengths (1500 Å – 3500 Å) as compared to ordinary visible light. In this microscope, the lenses are made of fluoride, lithium fluoride or quartz instead of glass.

Ultraviolet microscope is helpful in quantitative determination of all those cell components which absorb ultraviolet rays, *e.g.*, those places where high concentration of nucleic acids is found, appear as darker regions than the remaining cell components.

(vi) Phase contrast microscope

(a) Discovered by Dutch man Fredericke Zernicke (1935).

(b) Source of illumination is visible light.

(c) It is used to study living cells and tissues without staining and effect of chemical and physical agents on the living cells.

(d) The optical system of the phase contrast microscopy converts these phase variations into visible variations in light intensity or contrast.

(e) It also used to study spindle formation, pinocytosis, karyokinesis, cytokinesis etc.

(f) It is draw back is low magnification power so subcellular organelles smaller than 0.2μ , like ribosomes, lysosomes, ER, cannot be visualised.

(vii) Interference microscope (Morten et.al.)

(a) It's principle is similar to that of the phase contrast microscope and gives / studies quantitative data.

(b) Nomarski interference contrast microscope is useful to study mitosis /cell components in living state.

(c) It gives better image of living structures. It also used to measure thickness of the cell and determination of several light absorbing chemicals like nucleic acid, proteins, lipids etc.

(d) It helps to measure dry weight and water contents of the specimen.

(viii) Dark field microscope

(a) Zsigmondy (1905) invented this microscope.

(b) It is based on the fact that light is scattered at boundaries between regions having different refractive index.

(c) The object smaller than those seen with ordinary light microscope can be detected but can not be resolved.

(d) It makes use of visible light.

(ix) **Electron microscope :** This was developed by *M. Knoll* and *E. Ruska* (1931) in Germany. It is a large sized instrument which has an internal vacuum, high voltage (50,000 - 1,00,000 volts), a cooling system, a fast beam of electrons (0.54 Å wavelength), a cathod filaments of tungsten and electromagnetic lens (which having a coil of wire enclosed in soft iron casing) for focusing.

Thus an electron microscope essentially comprises an electron gun and electron lenses. The electron gun is the source of electrons consisting of a heated tungsten filament. It is preferred because it can be heated upto 3000°C. The electron beam can be reflected by magnetic field. Therefore, a very powerful magnetic coil acts as lens. The focal length of the electromagnetic lenses change with the wavelength of illumination. Since the wavelength is controlled by the voltage, it should be controlled and made constant. Three types of magnetic lenses are used namely projector, objective and condenser. The magnetic field produced is concentrated by soft iron casing. When the filament is heated to incandescence, it emits electron. The electrons then move to positively charged anode. The entire microscope column operates under conditions of high vacuum. It is due to this fact that we can not observe living objects through an electron microscope (EM). For viewing objects under EM, ultrathin sections are prepared through an ultramicrotone.

Electron microscope can magnify the objects upto 2,00,000 times (now possible upto 2,50,000 – 4,00,000) and direct study of objects is possible on this microscope. The resolving power of electron microscope is 10 Å which is 100 times more than the light microscope. The images obtained in electron microscope have usually black gray and white shades. Computer is used to enhance contrast and develop colour. The most recent technique for examining objects through electron microscope is freeze fracture. The material is frozen quickly in liquid nitrogen (-196° C). This material during microtomy tends to along lines of weakness.

Electron microscope are of two types: -

(a) **Transmission electron microscope (TEM) :** It was the first microscope developed by *Ruska* (1932). It produces two dimensional images. Study of living cells can not be done through this microscope because of high voltage, which is required to operate it, kills the living materials.

Magnification of TEM is 1–3 *lakh* and resolving power is 2–10Å. Because of them transmission electron microscope has helped in the discovery of a number of small cell organelles *e.g.*, ER, ribosomes, centrioles, microtubules etc. Details structure of larger cell organelles could also be known only with the help of TEM. *e.g.*, chloroplast (thylakoids), mitochondria (elementary particles, DNA, ribosomes) etc. Study of virus, mycoplasma and other small entities could also be made possible with the advent of electron microscope.

(b) Scanning electron microscope (SEM) : This microscope was invented by *Knoll* (1935). It is used to see the surface view of structures by forming an image with the secondary electrons reflected by those structures and it gives three dimensional image. The specimen to be studied is first super cooled (in liquid propane at $-180^{\circ}C$) and dehydrated in alcohol (at $-70^{\circ}C$). It is then coated with gold, platinum or some other metal for creating a reflecting surface for electrons. Magnification of SEM varies from 15 - 2,00,000. Resolution power is 5 - 20 nm.

Compound microscope	Electron microscope				
Source of illumination is visible part of	Source of radiation is a beam of				
electromagnetic radiation.	electrons.				
It does not require vacuum.	The apparatus is enclosed in vacuum				
	chamber.				
Glass lenses are used.	Not used.				
It does not use magnets.	It uses high power magnets.				
High voltage electricity is not required.	High voltage used to generate beam of				
	electrons.				
The specimen used may be 6 mm or	The specimen must be ultra thin, about				
more in thickness.	100 Å in thickness.				
Contrast is achieved by dyes like	Contrast is achieved by using heavy				
heamatoxylin, fast green, saffranin, etc.	metals likes lead acetate and				

Difference between compound and electron microscope

	phosphotungstate.
The human eye can directly observe the	Can not be seen directly by eye, instead,
image formed by the instrument.	a fluorescent screen or a photographic
	plate is used.
Radiation risk is absent.	Radiation risk is always there.
The specimen or object is kept in liquid	The specimen must be completely dried.
medium or a resin.	

(x) Advanced high power microscope

(a) **Scanning probe microscope :** The microscope is capable of resolving the outer texture of the material to the minutest detail since it has the potential to image even a single atom. Magnification is upto 100 million.

(b) **Scanning tunnelling microscope :** It has a tiny tungsten probe for moving over the surface of specimen. The microscope is used to detect defect in electrical conductors and computer chips.

(c) **Atomic force microscope :** It has an extremely fine diamond probe for moving over the surface of biochemicals. Oscillations produced in the probe are changed into images by a computer. The microscope is useful in viewing detailed structure of biological molecules, *e.g.*, DNA, proteins, etc.

(3) Units of measurement used in microscopy

1 micron (μ)	=	10^{-6} or one millionth
1 micrometer (µm)	=	$10^{-6} m$, $10^{-4} cm$, $10^{-3} mm = 1000 nm$
1 Nanometer (<i>nm</i>)	=	$10^{-9}m$, $10^{-7}cm$, $10^{-6}mm$, $10^{-3}\mu m = 10$ Å
1 Angstrom (Å)	=	$10^{-10} m$, $10^{-8} cm$, $10^{-7} mm$, $10^{-4} \mu m$, $10^{-1} nm$, $0.1 nm$
1 Picometer (pm)	=	$10^{-12}m, 10^{-3}nm$
1 Fempometer (fm)	=	$10^{-15}m, 10^{-6}nm$

(4) **Cytochemistry :** A number of dyes or stains are known to colour specific parts. Certain dyes can be used even in case of living materials. They are called vital stains, *e.g.*, neutral red, methylene blue. Fuelgen or Schiff's reaction was developed by *Fuelgen* and *Rossenbeck* (1924). Identification and localization of chemical compounds of a cell is studies in cytochemistry. It is based on four main analytical techniques.

(i) Separation of cell fractionation by conventional bio-chemical techniques.

(ii) Isolation of minute amount of tissue and even single cells by micro and ultramicromethod.

(iii) Direct detection of cell components in the cell by chemical staining.

(iv) Use of measurement of physical parameters.

Cytochemical stains : Some of the important stains are as follows.

Stain	Used for staining	Final colour		
Acetocarmine	Chromosomes	Pink		
Acid fuchsine	Cortex, cellular walls,	Magenta		
	mitochondria			
Aniline blue	Fungal hyphae	Blue		
Basic fuchsine	Nucleus	Magenta red		
Crystal violet	Bacteria	Violet		
Chloro zinc iodine test	Cellulose			
Eosin	Cytoplasm	Pink		
Feulgen's stain	DNA	Purple or Red		
Geimsa orcein	Nucleus			
Haematoxyline	Nuclei, cell wall and	Violet		
	cellulose			
Iodine solution	Starch	Blue		
Janus green	Fungi and mitochondria	Green		
Methylene blue	Yeast and Glogi complex	Blue		
Ninhydrin	Protein and amino acid			
Nephthal yellow	Protein			
Phloroglucinol +HCl	Lignin	Red		
Pyronin <i>Y</i>	RNA			
Ruthenium red	Pectin	Red		
Saffranin	Nuclei, lignified tissue	Red		
Schiff's reagent	DNA			
Sudan- III or IV	Suberin, cutin, oil	Red		
Sudan black	Fatty substance	Black		
Toludine blue	RNA	Blue		
Cotton blue	Fulngi	Violet		

(5) Cell fractionation : In isotonic medium cells components are separated, it is two step process.

(i) **Homogenisation :** Cell products are separated in isotonic medium (0.25 *M* sucrose solution) either with the help of homogeniser of ultrasonic vibrations kept at $0 - 4^{\circ}$ C. A homogenised cell is called homogenate.

(ii) **Differential centrifugation :** Homogenisation product is rotated (centrifuged) at different speeds. The sediment or pellete of each speed is collected. *e.g.*, nuclei at $1000 \times g$ (g= force of gravity) for 10 minutes, chloroplast and mitochondria at $10,000 \times g$ for 15 minutes. The particle settle according to their sedimentation ratios. Sedimentation coefficient is expressed in svedberg unit 'S' related with molecular weight of the particles. For mitochondria it is the best technique.

The various cell organelles and macromolecules sediment in the following order.

Nucleus \rightarrow Chloroplas t \rightarrow Mitochondr ia \rightarrow Ribosome \rightarrow DNA \rightarrow mRNA \rightarrow tRNA

(6) **Chromatography :** Discovered by *Michael Tswett* (1906). This technique is used to separate the molecules of different substances present together. Mixture of molecules is run over an adsorption medium. Chromatography may be following types.

(i) Adsorption or Column chromatography : The stationary phase consist of a column of charcoal, silica, alumina, calcium carbonate or magnesium oxide. The solution is made to percolate through this column when different chemicals get adsorb at various levels. The technique is useful for separation of tissue lipids.

(ii) **Thin layer chromatography :** The stationary phase consists of a thin plate of cellulose powder or alumina. As a few drops of mixture are poured over it, the different chemicals spread to different distances. The method is useful in separation of amino acids, nucleotides and other low molecular weight products.

(iii) **Paper chromatography :** A paste of mixture is applied near one end of a chromatographic paper (or Whatman 1). The lower end below the paste is dipped in a solvent. As the solvent rises in chromatographic paper, the different chemicals of the mixture spread to different distances. The paper can be rotated to obtain two dimensional chromatogram.

(iv) **Ion exchange chromatography :** Beads of cellulose and other materials having negative and positive charges are placed in a column. The mixture (mobile phase) is poured over the column. As the mixture passes through the column, its constituents separate according to their charges. The technique is used in purification of insulin, plasma fractionation and separation of proteins.

(v) Gel fractionation chromatography (Molecular sieve chromatography) : Dextran gel sephadex is available with various pore size. A mixture is poured over a column of sephadex. The various chemicals pass through the pores and come out of the column with heavier larger molecules do so first followed by progressively smaller sized molecules provided the pores are larger than the size of largest molecules. The technique is used in determining the molecular weight of proteins by calibrating the column with proteins of different molecular weights.

(vi) Affinity chromatography : Satationary phase consists of column of ligands (molecules that bind to other specific molecules at particular sites). Mixture is allowed to pass through the column. Chemical linkages are established between ligands and their specific chemicals. Others pass out of the column. The technique is used in separation of enzymes, immunoglobulins, mRNA, etc.

(7) **Electrophoresis :** It is an another technique of separation. In which patricles of different charges and sizes are separated under the influence of electric field. *e.g.*, nucleic acids, proteins, amino acid, nucleotides can be separated by this method. The technique was discovered by Russian phyicist *Alexender Reuss* in 1807.

A base material is used for the passage of molecules of the mobile phase. In PAGE (ployacrylamide gel electrophoresis) the base material is polyacrylamide or polymer of acrylamide and methylene bisacrylamide. In agarose gel electrophoresis, the base material is agarose. The base material

dip in solution having cathode at one end anode at the other end. As the electric current is switched on, the chemicals of the mixture separate and pass to different distances. The gel functions as a sieve. In two dimensional electrophoresis, molecules are separated in two directions. In immunoelectrophoresis antibodies coupled with radioisotopes, specific enzymes or fluorescent dyes are used in detection of particular proteins. The technique is highly sensitive. It can separate molecules in picogram and nanogram quantities and distinguish proteins which differ from each other in only one amino acid.

(8) Autoradiography

(i) It is a technique of studying the route of chemicals in chemical reactions taking place inside the cell and organisms with the help of radioactive isotope.

(ii) Commonly used radio isotopes are ${}^{14}C$, ${}^{3}H$, ${}^{32}P$.

(iii) In this technique the radioisotopes are incorporated into the precursor molecule. Then the labelled precursor molecules introduced into the cells and their path is followed with the help of their radiation.

(iv) Radioactive precursors emit radiations and their position in the cell is located by bringing the cell in contact with a photographic plate or film.

(v) ${}^{32}P$ is used for the study of nucleic acids.

(vi) Melvin Calvin detected the intermediate involved in Calvin cycle of photosynthesis by the use of ${}^{14}C$.

(9) *X*-ray crystallography : It was developed by the *Bragg* (1913). The wavelength of *X*-rays depends upon the distance between atoms. Therefore, they can be used as a tool for determining the arrangement of atoms in various biological molecules. When the *X*-rays pass through a molecule, they are scattered by the atoms. The diffraction pattern of the *X*-rays is photographed. The nature of diffraction is related to the orientation of the atoms in the molecule. By using this technique *Wilkins et al.*, 1953 found out details of the DNA molecule for which he was also awarded Nobel Prize along with *Watson* and *Crick* in 1962. *Kendrew*, 1957 by using the same technique studied the molecules of myoglobin.

(10) **Pulse-labelling technique :** Some of the biological molecules undergo changes after their synthesis. We can cite here the case of RNA. The transcription of hnRNA from DNA ultimately leads to the formation of m-RNA. These changes can be studied through pulse-labelling technique. Here, first the radioactive precursors are introduced in the system for a short time. These precursors are then chased away by non-radioactive precursors by any process of maturation.

(11) **Intracellular electrodes :** The concentration of various ions in different parts is now studies by using a glass microelectrode. It has silver wire dipped in *KCl* solution. This technique is used for studying the movement of ions through ions channels. The ions channels are intrinsic membrane proteins. For studying this passive transport of ions through ion channels *Neher and Sakman* developed a Patch clamp technique for which they are awarded Nobel prize in 1991.

Important Tips

- The term microscope was coined by Faber 1625.
- ☞ R.B. Tolles made oil immersion lens in 1830.
- The structure of membrane is observed by freeze fracturing an freeze etching technique.
- *•* Electron microscope is used to study ultrastructure of organelles.
- For microscopic examination of sections are cut with the help of a machine called Microtome or ultramicrotome. It was first developed by W.His.
- ☞ X-ray microscope was developed by Kirkpatrick.
- Three dimensional image are obtained with the help of scanning electron microscope and X-ray microscope. Where as all other microscopes give two dimensional image.
- A staining technique, which is used for distinguishing cell structure known as metallic impregnation technique. e.g., golgibody by osmium chloride and silver salts, flagella by silver salts.
- Tracer isotopes / radioactive isotopes : Which functions like normal elements but emit radiations. They can, therefore, be located by Geiger muller counter or scintillalion counter and autoradiography, e.g., ³*H*, ¹⁴*C*, ³²*P*, ³⁵*s*, etc.

1.2 CELL AS A UNIT OF LIFE

(1) **Cytology :** (G.k. *kyios* = cell ; *logas* = study) is the branch of biology. Which comprises the study of cell structure and function. "*Cell is the structure and functional unit of all living beings*".

All living organisms are composed of repeated structural units called cells. Each cell is independent in performing all necessary processes of life and is the least complex unit of matter which can be called living. *Robert Hooke* (1665) discovered hollow cavities (empty boxes) like compartments in a very thin slice of cork (cell wall) under his microscope. He wrote a book *"Micrographia"* and coined the term cellula, which was later changed into cell. *Grew and Malpighi* also observed small structures in slice of plants and animals. *Leeuwenhoek* was the first to see *free cells*. He observed bacteria, protozoa, RBCs, sperms, etc. under his microscope.

(i) Cell theory : H.J. Dutrochet (1924) a French worker gave the idea of cell theory.

The actual credit for cell theory goes to two German scientists, a Botanist *M.J. Schleiden* (1838) and a *Zoologist T. Schwann*(1839). They gave the concept "all living organisms are composed of cell". *Schleiden* and *Schwann* both supported the theory of "spontaneous generation". They also mentioned that "the new cell arises from nucleus by budding". Main postulates of cell theory are :

(a) Living beings are made of cells. They may be unicellular, colonial or multicellular.

(b) Cell is a mass of protoplasm having nucleus.

- (c) Cells are similar in structure and metabolisms.
- (d) The functions of an organism are due to activities and interactions of cells.

(ii) **Exceptions to the cell theory :** Viruses, viroids and prions are an exception to the cell theory as they are obligate parasites (sub–cellular in nature). *Paramecium, Rhizopus, Vaucheria* are some examples, which may or may not be exceptions to the cell theory.

(iii) **Modification of cell theory :** Modification of cell theory was done by *Rudolf Virchow* (1885). He proposed the "law of cell lineage" which states that cell originates from pre-existing cells. *i.e.* (*omnis cellula-e-cellula*). It is also called "cell principle" or "cell doctrine". It states : –

(a) Life exists only in cells.

(b) Membrane bound cell organelles of the protoplasm do not survive alone or outside the protoplasm.

(c) Cells never arise *de novo*. The new cells are like the parent cell in all respect.

(d) All cells have similar fundamental structure and metabolic reactions.

(e) Cells display homeostasis and remain alive.

(f) Functions of an organism as a whole are the sums of the activities and interactions of its constituent cell units. An organism can not show functions which is absent in its cells.

(g) Genetic information is stored in DNA and expressed within the cells.

(h) DNA controls structure and working of a cell.

(iv) **The cell as a self contained unit :** Autonomy of a cell is believed due to presence of DNA and its expressibility, otherwise, cell components have different shape and function. It has two positions.

(a) **Autonomy in unicellular organisms :** Unicellular organisms lead to a totally independent life due to different shape, size and role of different organelles shows division of labour. All these display homeostasis. Unicellular organisms are more active due to large surface volume ratio.

(b) **Autonomy in multicellular organisms :** In multicellular organisms life activities are displayed by each of the cells independently. Multicellular organisms have one thing advantage over unicellular organisms is division of labour.

(v) **Cellular totipotency :** Totipotency was suggested by *Haberlandt* (1902). When cells have tendency or ability to divide and redivide the condition of the cell is called totipotent and this phenomenon is called *totipotency*.

(vi) **Steward's experiment :** *Steward et.al.* showed the phenomenon of cellular totipotency in carrot culture. Small fragments (phloem) of mature carrot roots were placed in liquid medium in special containers and growth factors like "coconut milk" was added. The culture developed into clumps or embryoids. When these were shifted to semisolid media, full plants were formed. The plants flowered normally and even bore the seeds.

(vii) Surface volume ratio : *Metabolically active cells are small*, as small cells have higher nucleocytoplasmic ratio for better control and higher surface volume ratio for quicker exchange of

materials between the cell and its outside environment. Larger cells have lower surface volume ratio as well as lower nucleocytoplasmic ratio. Surface volume ratio decreases by one half if cell size doubles.

Plant cell	Animal cell
Cell wall present.	Cell wall absent.
Nucleus usually lies near periphery due	Nucleus present near the centre.
to vacuole.	
Centrosome is usually absent from	Usually centrosome is present that helps in
higher plant cells, except lower motile	formation of spindle fibres.
cells.	
Plastids are present, except fungi.	Plastids are absent.
Mitochondria is generally spherical or	Generally tubular in shape.
oval in shape.	
Single large central vacuole is present.	Many vacuoles occurs, which are smaller in
	size.
Number of mitochondria from 200 -	Number of mitochondria is approximately
2000.	1600 – 16000 in liver cells.
Cytoplasm during cell division usually	Cytoplasm divides by furrowing or cleavage
divides by cell plate method.	method.
Plant cells are capable of forming all the	Animal cells cannot form all the amino
amino acids coenzymes and vitamins.	acids, coenzymes and vitamins.
There is no contractile vacuole.	Contractile vacuole may occur to pump
	excess water.
Sodium chloride is toxic to plant cells.	Tissue fluid containing sodium chloride
	bathes the animal cells.
Plant cells are generally well over 100	Generally much smaller than 100 µm.
μm long.	
Spindle formed during cell division is	Spindle formed during cell division are
anastral.	amphiastral.
Lysosomes present in less number.	Lysosomes present in more number.
Chromosomes are larger in size.	Chromosomes are smaller in size.

Differences between plant cell and animal cell

Important Tips

- *T* Jan swammerdam : First to see red blood cells of frog.
- Marcello Malpighi : Observed small utricles in slice of plant and animal tissue.
- ☞ N. Grew : Initiated cell concept
- Lamarck : All living beings are formed of cells.
- Corti : First to point out living substance filled inside the cell. It was called "Sarcode" by Dujardin.
- ☞ In vivo (in life) study : Study of cells in their natural environment within the intact organism.
- In vitro (cultural condition) study : Study of isolated life system in laboratory and cultural condition
- *•* Max Shultze proposed protoplasm theory.
- Sachs proposed organismic theory.
- Crystallo : colloidal theory (Fischer), substances dispersed and dissolved in water forming both true solution as well as colloidal solution.
- Energy transducers : Photosynthetic cells are called energy transducers because they convert radiant energy to chemical energy and store it as food energy.
- *•* Intrinsic information is primary while hormonal information is extrinsic and secondary information.
- Largest organelles is nucleus. Largest cytoplasmic organelle is mitochondria in animal cells and chloroplast in plant cell.
- *Smallest* component is microfilament but smallest organelle is ribosome.
- *^{or}* Viruses do not have cellular structure.
- *•* Monerians and protistians are not divisible into cells they are rather acellular.
- *Certain organisms are multinucleated eg., Rhizopus, Vaucheria, etc.*
- Fibre of ramie, Boehameria nivea longest plant cell (55 cm in size).
- The shrunken state of RBC caused by exosmosis is called crenation.
- ☞ In human beings cell of kidney are smallest and of nerve fibre largest.
- Pyrenoid is a proteinaceous body around which starch is stored in green algae.
- The smallest cell considered so far is of PPLO (Pleuropneumonia like organisms) or Mycoplasma gallisepticum i.e. 0.1 μ.
- The largest cell is an egg of ostrich.
- ☞ Acetabularia a unicellular green alga is about 10 cm in length.
- ☞ In the alga caulerpa (Siphonales) the length of cell may be up to one metre.
- The bacteriophages or viruses are still smaller in size (but cannot be considered as cells because of sub cellular nature).

1.3 STRUCTURE OF THE CELL

(1) Introduction

(i) Study of cell is called cytology.

(ii) Study of metabolic aspects of cell component is called cell biology.

(iii) *Leeuwenhoek* : First to see free cells called them "wild animalcules" and published a book "The secret of nature".

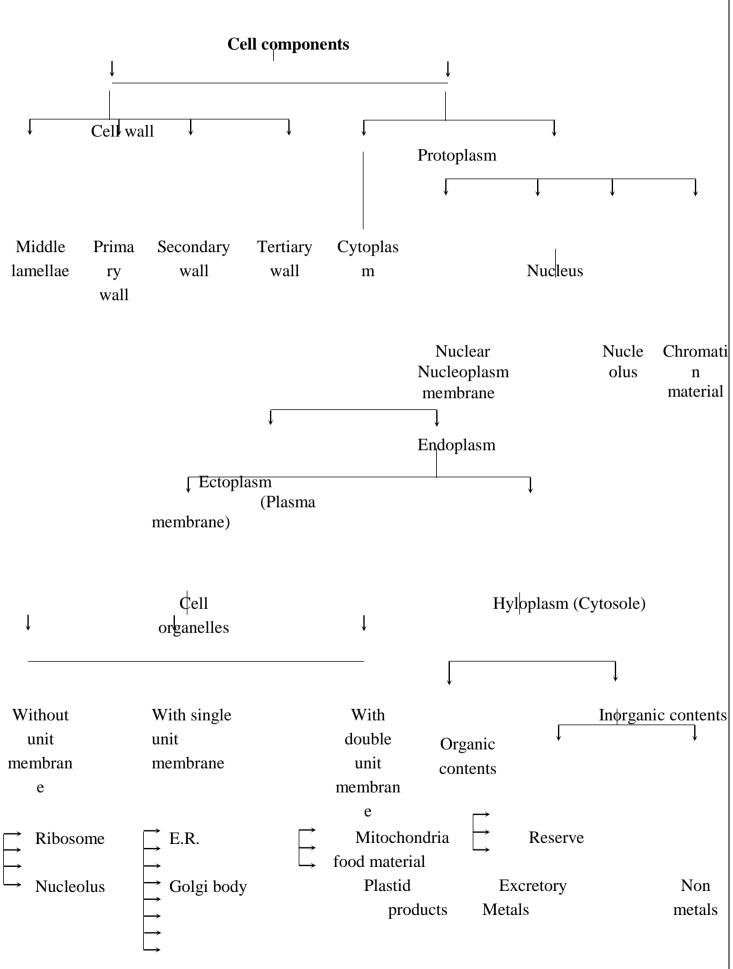
(iv) Robert Hooke is known as father of cytology.

(v) C.P. Swanson is known as father of modern cytology/ cell doctrine.

(vi) A.K. Sharma is known as father of cytology in India.

(vii) Dougherty classified cells based on plan as prokaryotic and eukaryotic.

(2) **Mesokaryon :** *Dodge* gave the term 'Mesokaryon' for dinoflagellates. These are intermediate type of cell organisation in dinophyceae of algae. In mesokaryotic there is present a true or eukaryotic nucleus with definite nuclear membrane and chromosomes. Chromosomes are not well organised and basic proteins or histones are absent. Nuclear membrane is persistent during cell division. Chromosomes are permanently attached to nuclear membrane. They show dinomitosis *e.g.*- Dinophysis Heterocapsa, Dinothrix etc.


(3) **Types of cell :** Chatton gave the term prokaryote and eukaryote. Depending upon the nature of nucleus cells are classified. A primitive ill defined or incipient nucleus is present in prokaryotes, where as in eukaryotes. Well organised nucleus is present.

Prokaryotic cell	Eukaryotic cell
It is a single membrane system.	It is a double membrane system.
Cell wall surrounds the plasma membrane.	Cell wall surrounds the plasma membrane in some protists, most fungi and all plant cell. Animal cell lack it.
Cell wall composed of peptidoglycans. Strengthening material is mureir.	It is composed of polysaccharide. Strengthening material is chitin in fungi & cellulose in others plants.
Cell membrane bears <i>respiratory enzymes</i> .	It lacks respiratory enzymes.
Cytoplasm lacks cell organelles <i>e.g.</i> , Mitochondria, ER, Golgi body etc.	Cytoplasm contains various cell organelles.

Differences between Prokaryotic and Eukaryotic cell

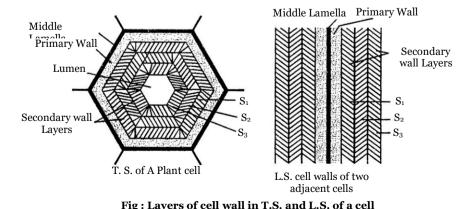
Ribosomes are 70 S type.	Ribosomes are 80 S type.					
There are no streaming movements of cytoplasm.	Cytoplasm show streaming movements.					
Endocytosis and exocytosis do not occur.	Endocytosis and exocytosis occur in animal cells.					
Mitotic spindle is not formed in cell division.	Mitotic spindle is formed in cell division.					
The mRNA does not need processing.	The mRNA needs processing.					
Nuclear material is not enclosed by nuclear envelope and lies directly in cytoplasm. It is called nucleoid.	It is enveloped by nuclear envelope. Nucleus is distinct from cytoplasm.					
DNA is circular and not associated with histone proteins.	Nuclear DNA is linear and associated with histone proteins extranuclear DNA is circular and protein free.					
Replication of DNA occurs continuously through out cell cycle.	Replication of DNA occurs during <i>S</i> -Phase of cell cycle only.					
These have small size $(0.5 \text{ to } 10 \mu\text{m})$ and have much less DNA.	These are relatively large $(10 - 15 \mu m)$ and have much more DNA.					
Sexual reproduction absent but parasexuality present.	Sexual reproduction is present.					
Plasmids and pili occur in many prokaryotes	There are no plasmids and pili in eukaryotic cells					
Example – E. coli	Example – Spirogyra, Chlorella					
Cell division mostly amitotic.	Cell division is typically mitotic.					
Plasma invaginates and from finger like process. Mesosome which take part in respiration	Absent					

(4) Cell compartmentation map

Centriole	Lysosome	Nucleus products	Secretory	
Kinetosome	Glyoxysome	_		
etc.				
	Sphaerosome			
	Peroxisome			
	Vacuole			
	Microtubule etc.			

1.4 CELL WALL

(1) **Discovery :** It was first discovered by *Robert Hooke* in 1665.


Cell wall is the outer most, rigid, protective, non living and supportive layer found in all the plant cells, bacteria, cyanobacteria and some protists. It is not found in animal cells.

(2) **Chemical composition :** Mainly cell wall consists of two parts, matrix and cellulosic fibres (microfibriles). Matrix consists of hemicellulose, pectin, glycoproteins, lipids and water. A cellulose molecule is long unbranched chain of glucose molecules. There are about 6,000 glucose units in each chain. In most of the plants cell wall is made up of cellulose ($C_6H_{10}O_5$)_n, a polymer made-up of unbranched chain of glucose molecule linked by β ,1-4 glycosidic bond. *About* 100 *molecules of cellulose form a micelle*, about 20 *micelle* form a microfibril and *approx* 200 *microfibril* form a fibril. The cell wall of bacteria and the inner layer of blue green algae is made-up of mucopeptide and not of cellulose. The mucopeptide is a polymer of two amino sugars namely N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM) held alternately in β -1,4- linkage. In higher fungi, the cell wall is made up of chitin, polymer of glucosamine.

Pectin is a mixture of polymerised and methylated galacturans, galacturonic acid and neutral sugars. Hemicellulose is a mixture of polymerised xylans, mannans, glucomannans, galactans, xyloglucans and arabinogalactans. Glycoproteins are known to influence metabolic activities of the wall. A glycoprotein called extensin or expansin takes part in loosening and expansion of cell was through incorporation of cellulose molecules to cellulose microfibrils.

Plant cell wall may have lignin for strength (*e.g.*, woody tissue), silica for stiffness and protection (*e.g.*, epidermal cells of grasses, *Equisetum*), cutin for preventing loss of water (*e.g.*, epidermal cells),

wax as component of cuticle and surface bloom as water repellent (floating leaves) and checking transpiration, suberin for impermeability (*e.g.*, cork cells, endodermal cells), etc.

(3) Structure : Cell wall consists of middle lamella, primary wall, secondary wall, tertiary wall.

(i) **Middle lamella :** Middle lamella is the outermost region which functions as a cementing layer between two cells. It is absent on the outer free surface. It ruptures to create intercellular spaces. Middle lamella is formed of calcium and magnecium pectate. Fruit softening is due to gelatinisation of pectic compounds of middle lamella. Pectin is used as commercial jellying agent. Which is present outside the primary wall.

(ii) **Primary wall :** A young plant cell forms a single layer of wall material. This layer is known as the primary cell wall. The primary wall is thin, elastic and capable of expansion in a growing cell. It grows by intussusception. Meristematic and parenchymatous cells have primary cell wall only. The cells of leaves and fruits too have only primary wall.

(iii) **Secondary wall :** In mature cell, more layers of wall material are added internal to the primary wall. These are called the secondary cell wall. Growth by addition of new wall material on the primary wall is called accretion. The secondary wall is thick and rigid. It usually consists of three layers, which are often named S_1, S_2 and S_3 . It is found in collenchyma and sclerenchyma cells, xylem vesseles.

(iv) **Tertiary wall :** Sometimes tertiary wall is laid down on secondary wall, *e.g.*, tracheids of gymnosperms. It is composed of cellulose and xylan, another ploysaccharides.

(4) **Origin :** A cell wall is organised at telophase stage of cell division. The plane and place of cell wall is determined by the microtubules. Fragments of ER and vesicles of golgi body alligned at the equator, called as *phragmoplast, later which forms the cell plate*. The synthesis of cellulose takes place by the help of enzyme *cellulose synthase* present in the plasma membrane.

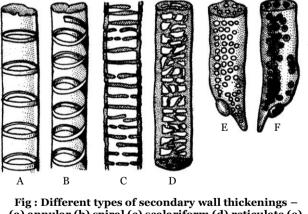
The cell plate forms the cell wall. A cell posses three phases of growth namely cell formation, cell elongation and cell maturation. The formation of new cells occurs by mitotic activity. The cell elongation is initiated by an increase in cell turgor. It is brought about by special proteins called *expansion*. They are of two types α -expansion and β -expansion. As a result, lacunae or gaps appear in between the cellulose micelle. There are two possibilities for the deposition of new wall material.

(i) **By intussuception :** As the cell wall stretches in one or more directions, new cell wall material secreted by protoplasm gets embedded within the original wall.

(ii) **By apposition :** In this method new cell wall material secreted by protoplasm is deposited by definite thin plates one after the other.

Primary cell wall	Secondary cell wall
Primary wall is laid inner to middle lamella	Secondary wall is laid inner to primary wall.
It is formed in a growing cell.	It is formed when the cells have stopped growing.

Differences between primary and secondary cell wall


It is capable of extension.	Extensibility is absent except in collenchyma cells.
It is single layered.	It is three or more layered.
Cellulose content is comparatively low $(5-20\%)$.	Cellulose content is comparatively high $(20 - 90\%)$.
Cellulose microfibrils are shorter, wavy and loosely arranged.	They are longer, closely arranged straight and parallel.
Protein content up to 5%.	Protein content up to 1%.
Hemicellulose content is high up to 50%.	It is 25% of the total.
Lipid content up to $5 - 10\%$.	Lipid is absent.
Primary wall is comparatively thin $1 - 5 \mu m$.	It is comparatively thick $5 - 10 \mu m$

(5) **Thickenings of cell wall :** In many secondary walls specially those of xylem the cell wall becomes hard and thick due to the deposition of lignin. With the increasing amount of lignin, deposition protoplasm is lost. First the lignin is deposited in middle lamella and primary wall and later on in secondary wall. Like cellulose lignin is permeable to water and substances dissolved in it. Lignin is deposited at specific places of the cell walls due to which xylem tracheids and trachea take up following forms:

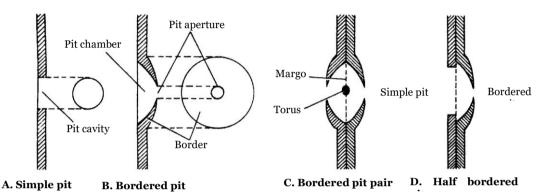
(i) **Annular thickenings :** Deposition of lignin takes place in the form of rings on the inner surface of protoxylem cells. These rings are placed one above the other leaving some space in between each other.

(ii) **Spiral thickenings :** In these thickenings deposition of lignin takes place in the form of complete spiral bands and are formed in tracheids and trachea of protoxylem.

(iii) Scalariform (Ladder like) thickenings : In these thickenings lignin is deposited in the form of transverse rods of the ladder. The unthickened areas

(a) annular (b) spiral (c) scalariform (d) reticulate (e) pitted-simple pits (f) pitted-bordered pit

between the successive thickenings appear as elongated transverse pits. This type of thickening is common in protoxylem.


(iv) **Reticulate (Net like) thickenings :** The lignin is deposited in the form of a net or reticulum. The unthickened areas are irregular in shape. These are found in metaxylem.

(v) **Pitted thickenings :** These are found in metaxylem. In such thickening the whole inner wall is more or less uniformly thickened leaving here and there some unthickened areas called pits.

(6) **Pits :** Secondary walls may have irregular thickenings at some places and these places are called pits. Pits are of two types :-

(i) Simple pit : In which pit chamber is uniform in diameter.

(ii) **Bordered pit :** In which pit chamber is flask shaped in tracheids of gymnosperm and vessels of angiosperms.

(7) **Plasmodesmata :** *Tangle* (1879) first of all discovered them and were studied elaborately by *Strasburger* (1901). A number of plasmodesmata or cytoplasmic strands are present in pit through which the cytoplasm of one cell is in contact with another. Endoplasmic reticulum plays a role in origin of plasmodesmata.

(8) **Intercellular spaces :** In mature cells certain spaces or cavities are produced which are of 3 types.

(i) **Schizogenous cavities** : In mature cells, the cell walls separate from each other and form a cavity. *e.g.*, resin canals in Pinus.

(ii) Lysogenous cavities : It is formed by the break down of cell walls *e.g.*, *Citrus* oil cavities.

(iii) **Schizo-lysogenous cavities :** Both the above processes are involved in this cavity formtion *e.g.*, protoxylem of maize.

(9) Function of cell wall : The cell wall serves many functions –

(i) It maintain shape of the cells.

(ii) It protect the cells from mechanical injury.

(iii) It wards off the attacks of pathogens (viruses, bacteria, fungi, protozoans).

(iv) It provides mechanical support against gravity. It is due to the rigid cell walls that the aerial parts of the plants are able to keep erect and expose their leaves to sunlight.

(v) The cell wall prevents undue expansion of the cell when water enters by osmosis to compensate for the lack of contractile vacuole. This prevents bursting of cells.

(vi) It allows the materials to pass in and out of the cell.

(vii) Though permeable, the cell wall plays some regulatory role on the passage of materials into and out of the cell.

(viii) Many enzymic activities associated with metabolism are known to occur in the cell wall.

(ix) Cutin and suberin deposits check loss of water form the cell surface by evaporation.

(x) The cell wall helps in the maintenance of balance of intracellular osmotic pressure with that of its surroundings.

(xi) Pores in the cell walls permit plasmodesmata to link up all the protoplasts into a system called symplast (symplasm).

(xii) The walls of xylem vessels, tracheids and sieve tubes allow movement of materials.

(xiii) The wall in some cases has a role in defence and offence by means of spines.

(xiv) Growth of the cell wall enables the cells to enlarge in size.

(xv) Cell wall and intercellular spaces constitute a nonliving component of plant body known as apoplasm.

Important Tips

- Peptidoglycane = murein = mucopeptide is the only cell wall material of prokaryotes. It's sugar portion consists of NAG and NAM.
- In fungi cell wall is made up of chitin (polymer of N- acetyl glucosamine). In bacteria it is composed of protein lipid polysaccharide having N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM).

☞ Cell wall proteins –

HRGP – Hydroxy proline rich glycoprotein \rightarrow Phloem and cambium.

PRP– Proline rich protein \rightarrow Xylem, fibres, cortex.

GRP– Glycine rich protein \rightarrow Xylem.

1.5 PLASMA MEMBRANE

(1) **Definition :** Every living cell is externally covered by a thin transparent electron microscopic, elastic regenerative and *selective permeable membrane* called plasma membrane. It is quasi fluid in nature. According to *Singer* and *Nicolson* it is "protein iceberg in a sea of lipid". A cell wall lies external to plasmalemma in plant cells, many monerans, some protists and fungal cells. Membranes also occur inside the cells. They are collectively called biomembranes. The term cell membrane was given by *C. Nageli* and *C. Cramer* (1855) for outer membrane covering of the portoplast. It was replaced by the term plasmalemma or plasma membrane by *Plowe* (1931).

(2) **Chemical composition :** Proteins lipoprotein (Lipid +Protein) are the major component forming 60% of the plasma membrane. *Proteins provide* mechanical strength and responsible for transportation of different substances. Proteins also act as enzyme. *Lipids account may* 28%-79% depending upon the type of cell and organism involved (in humans, myelin 79%). Because of the presence of lipids, membranes are always continuous, unbroken structures and are deformable and their over all shape can change. The lipids of plasma membrane are of three types namely *phospholipids, glycolipids* and *sterols*. A glycolipid may be cerebroside or ganglioside. The sterol found in the membrane may be cholesterol (Animals), phytosterol (Plants) or ergosterol (Microorganisms). A lipid molecule is distinguishable into a head of glycerol and two tails of fatty acids.

Carbohydrates form 2%-10%. Oligosaccharides are the main carbohydrates present in plasma membrane. The carbohydrates of plasma membrane are covalently linked to both lipid and protein components. The common sugars found in the plasma membrane are D – glucose, D – mannose, D – glactose, N – acetyl glucosamine, N – acetyl galoactosamine (Both are amino sugars) and sialic acid. Generally the terminal sugar of oligosaccharides is sialic acids (Also known as N – acetylneuraminic acid NANA) which gives them a negative charge.

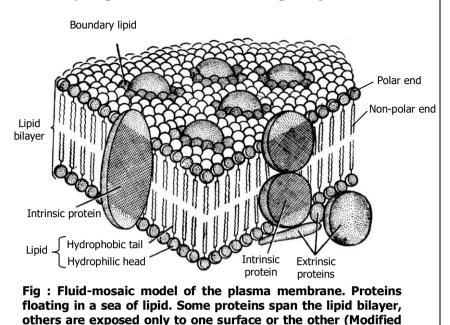
(3) **Ultra structure :** Under electron microscope the plasma membrane appears three layered, *i.e.* trilaminar or tripertite. *One optically light layer* is of lipid and on *both sides two optically dense protein layers* are present.

Generally the plasma membrane is 75 Å thick (75 – 100Å), light layer is 35 Å while dark layers are 20 Å + 20 Å in thickness.

(4) **Molecular structure and different models :** Several models have been proposed to explain the structure and function of the plasma membrane.

(i) Overton's model : It suggests that the plasma membrane is composed of a thin lipid bilayer.

(ii) **Sandwich model :** It was proposed by *Davson* and *Danielli* (1935). According to this model the light biomolecular lipid layer is sandwiched between two dense protein layers. This model was also said to be unit membrane hypothesis.


(iii) **Robertson's unit membrane model :** It states that all cytoplasmic membranes have a similar structure of three layers with and electron transparent phospholipid bilayer being sandwiched between two electron dense layer of proteins. All biomembranes are either made of a unit membrane or a multiple of unit membrane. Its thickness is about 75 Å with a central *lipid layer of* 35 Å *thick* and two peripheral *protein layers of* 20 Å *thick*.

(iv) **Fluid mosaic model :** The most important and *widely accepted latest model* for plasma membrane was given by *Singer and Nicolson in* 1972. According to them it is "protein iceberg in a sea of lipids."

According to this model, the cell membrane consists of a highly viscous fluid matrix of two layers of phospholipid molecules. These serve as relatively impermeable barrier to the passage of most water

soluble molecules. Protein molecules occur in the membrane, but not in continuous layer; Instead, these occur as separate particles asymmetrical arranged in a mosaic pattern.

Some of these are loosely bound at the polar surfaces of *lipid layers*, called peripheral or *extrinsic proteins*. Others penetrate deeply into the lipid layer called integral or *intrinsic proteins*. Some of the integral proteins penetrate through the phospholipid layers and project on both the surface. These are called trans membrane or

tunnel proteins (glycophorins). Singly or in groups, they function as channels for passage of water ions and other solutes. The channels may have gate mechanism for opening in response to specific condition. The carbohydrates occur only at the outer surface of the membrane. Their molecules are covalently linked to the polar heads of some lipid molecules (forming glycolipids) and most of the proteins exposed at outer surface (forming glycoproteins).

The sugar protions of glycolipids and glycoproteins are involved in recognition mechanisms :-

(a) Sugar recognition sites of two neighbouring cells may bind each other causing cell to cell adhesion. This enables cells to orientate themselves and to form tissues.

(b) Through glycoproteins, bacteria recognise each other. *e.g.*, female bacteria are recognised by male bacteria.

(c) These provide the basis of immune response and various control system, where glycoproteins act as antigens. Lipid and integral proteins are amphipathic in nature *i.e.*, they have hydrophilic and hydrophobic groups with in the same molecules. The *NMR* (Nuclear magnetic resonance) and *ESR* (Electron spin resonance) studies showed that the membrane is dynamic. The lipid tails show flexibility. The molecule can rotate or show *flip flop* motion.

E	xtrinsi	c Prot	ein					Intri	nsic P	rotei	n	
These are associated with surface only.			These 1	ie thr	oughou	t pho	sphol	ipid ma	trix and			
						project	on	both	sur	faces,	also	called
						transme	embra	ne or tu	ınnel	protei	in.	
They form	about	30%	of	the	total	They f	orm	about	70%	of to	otal me	mbrane

Difference between protein types

membrane protein.	proteins.
Example – Spectrin in red blood cells &	Example – Rhodopsin in retinal rod cells.
ATPase in mitochondria.	

(5) Membrane protein can be of following types with different functions

(i) **Carrier molecules :** These bind with the specific molecules into or out of the cell. This provides selective exchange of materials. The carrier protein molecules are called "permeases" *e.g.*, $Na^+ - K^+$ pump, Na^+ sugar transport.

(ii) **Receptor molecules :** The glycoproteins on the cell surface act as receptors that recognize and bind with specific molecules.

(iii) **Enzyme molecules :** The inner mitochondrial membrane carrier enzyme comprising the electron transport chain for cellular respiration.

(6) Cell membranes are fluid and dynamic due to

(i) The constituent molecules can move freely in the membrane.

(ii) The cell membranes are constantly renewed during the cells life.

(iii) They can repair minor injuries.

(iv) They expand and contract during cell movement and during change in shape.

(v) They allow interactions of cells such as recognition of self and fusion of cells.

(7) Membrane permeability : According to permeability, membranes are classified as -

(i) **Permeable membrane** : They allow both solvent and solute molecules or ions through them. *e.g.*, cellulose wall, lignified cell walls.

(ii) **Impermeable membrane :** They do not allow solute and solvent molecules. *e.g.*, heavily cutinised or suberinised cell walls in plants.

(iii) **Semi-permeable membrane :** They allow solvent molecules only. *e.g.*, membranes of colloidion, parchment paper and copper ferrocyanide membranes.

(iv) **Differentially permeable membrane :** All membranes found in plants allow some solutes to pass through them along with the solvent molecules. *e.g.*, plasma membrane, tonoplast (vacuolar membrane) etc.

(8) Intercellular communications/modification of plasma membrane/following structures are derived from plasma membrane

(i) **Microvilli :** They are fingers like evaginations of 0.1 μm diameter, engaged in absorption. *e.g.*, intestinal cells, hepatic cell, mesothelial cells. The surface having microvilli is called striated border or brush border.

(ii) **Lomasomes :** They are plasmalemma foldings found in fungal cells.

(iii) Mesosomes : It serves as site for cellular respiration in prokaryotes.

(iv) **Tight junctions :** Plasma membrane of two adjacent cells are fused at a series of points with a network of ridges or sealing strands. *e.g.*, capillaries, brain cells collecting tubules etc.

(v) **Plasmodesmata :** <u>*They are protoplasmic bridges amongst plant cells*</u>, which occur in area of cell wall pits. It was discovered and reported by *Tangle* and *Strasburger* respectively.

(vi) **Desmosomes :** concerned with cell adherence.

(9) Functions

(i) They control the flow of material through them and provides passage for different substances.

(ii) It is differentially permeable, solute particles (1-15 Å) can pass through it.

(iii) It is not only provides *mechenical strength* but also acts as a protective layer.

(iv) Plasma membrane is *responsible for the transportation of materials*, molecules, ions etc.

(v) It helps in osmoregulation.

(vi) Diffusion of gases take place through plasma membrane by simple and facilitated diffusion.

(vii) <u>Transport of ions, small polar molecules through</u> active (energy used) and passive transport (energy not used).

(viii) Gases like O_2 and CO_2 diffuse rapidly in solutions through membranes.

(ix) Ions and small polar molecules diffuse slowly through the membranes.

(x) Some solute molecules or ions first bind with certain specific carrier or transport proteins called permeases.

(xi) Water as well as some solute molecules and ion pass through membranes pores; pores are always bordered by channel proteins.

(xii) When diffusion takes place through channel, called simple diffusion and through carrier proteins, called facilitated diffusion.

(10) **Membrane transport :** It is passage of metabolites, by-products and biochemicals across biomembrane. Membrane transport occurs through four methods–passive, facilitated, active and bulk. Size of the particles passing through plasmalemma is generally 1 - 15 Å.

(i) **Passive transport :** No energy spent. Passive transport occurs through diffusion and osmosis.

(a) **Diffusion :** It is movement of particles from the region of their higher concentration or electrochemical potential to the region of their lower concentration or electrochemical potential. Electrochemical potential operates in case of charged particles like ions. Diffusion can be observed by opening a bottle of scent or ammonia in one corner, placing a crystal of copper sulphate in a beaker of water or a crystal of *KMnO*₄ on a piece of gelatin. Simple diffusion does not require carrier molecules.

Independent Diffusion : In a system having two or more diffusion substances, each individual substance will diffuse independent of others as per gradient of its own concentration, diffusion pressure or partial pressure form region of higher one to region of lower one.

Rate of diffusion is proportional to difference in concentration and inversely to distance between the two ends of the system, inversely to square root of relative density of substance and density of medium, directly to temperature and pressure.

(b) **Osmosis** is diffusion of water across a semipermeable membrane that occurs under the influence of an osmotically active solution.

(c) **Mechanism of passive transport :** Passive transport can continue to occur if the absorbed solute is immobilised. Cations have a tendency to passively pass from electropositive to electronegative side. While anions can pass from electronegative to electropositive side. There are two modes of passive transports.

Lipid matrix permeability : Lipid soluble substances pass through the cell membrane according to their solubility and concentration gradient, *e.g.*, triethyl citrate, ethyl alcohol, methane.

Hydrophillic membrane channels : They are narrow channels formed in the membrane by tunnel proteins. The channels make the membrane semipermeable. Water passes inwardly or outwardly from a cell through these channels according to osmotic gradients. CO_2 and O_2 also diffuse through these channels as per their concentration gradients. Certain small ions and other small water soluble solutes may also do so.

(d) **Ultrafiltration** is fine filtration that occurs under pressure as from blood capillaries, epithelia and endothelia. It is of two types : –

• Paracellular through leaky junctions or gaps in between cells.

• Transcellular through fenestrations in the cells. 'Dialysis' is removal of waste products and toxins from blood by means of diffusion between blood and an isotonic dialysing solution.

(e) Facilitated transport or Facilitated diffusion : It is passage of substances along the concentration gradient without expenditure of energy that occurs with the help of special permeating substances called permeases. Permeases form pathways for movement of certain substances without involving any expenditure of energy. At times certain substances are transported alongwith the ones requiring active transport. The latter phenomenon called cotransport. Facilitated transport occurs in case of some sugars, amino acids and nucleotides.

(ii) Active transport : It occurs with the help of energy, usually against concentration gradient. For this, cell membranes possess carriers and gated channels.

(a) **Carrier particles or Proteins :** They are integral protein particles which have affinity for specific solutes. A solute particles combines with a carrier to form carrier solute complex. The latter undergoes conformational change in such a way as to transport the solute to the inner side where it is released into cytoplasm.

(b) **Gated channels :** The channels are opened by either change in electrical potential or specific substances, *e.g.*, Calcium channels.

Active transport systems are also called pumps, *e.g.*, H^+ pump, K^+ pump, Cl^- pump, $Na^+ - K^+$ pump. The pumps operate with the help of ATP. $K^+ - H^+$ exchange pump occurs in guard cells.

 $Na^+ - K^+$ exchange pump operates across many animal membranes. For every ATP hydrolysed, three Na^+ ions are passed out while two K^+ ions are pumped in. Sea Gulls and Penguins operate $Na^+ - K^+$ pump for excreting *NaCl* through their nasal glands.

Active transport of one substance is often accompanied by permeation of other substances. The phenomenon is called secondary active transport. It is of two main types, cotransport (*e.g.*, glucose and some amino acids alongwith inward pushing of excess Na^+) and counter-transport (Ca^{2+} and H^+ movement outwardly as excess Na^+ passes inwardly).

(iii) **Bulk transport :** It is transport of large quantities of micromolecules, macromolecules and food particles through the membrane. It is accompanied by formation of transport or carrier vesicles. The latter are endocytotic and perform bulk transport inwardly. The phenomenon is called endocytosis. Endocytosis is of two types, pinocytosis and phagocytosis. Exocytic vesicle perform bulk transport outwardly. It is called exocytosis. Exocytosis performs secretion, excretion and ephagy.

(a) **Pinocytosis :** (Lewis, 1931). *It is bulk intake of fluid*, ions and molecules through development of small endocytotic vesicles of 100 - 200 nm in diameter. ATP, Ca^{2+} , fibrillar protein clathrin and contractile protein actin are required. Fluid-phase pinocytosis is also called cell drinking. It is generally nonselective. For ions and molecules the membrane has special receptor or adsorptive sites located in small pits. They perform adsorptive pinocytosis. After coming in contact with specific substance, the area of plasma membrane having adsorptive sites, invaginates and forms vesicle. The vesicle separates. It is called pinosome. Pinosome may burst in cytosol, come in contact with tonoplast and pass its contents into vacuole, form digestive vacuole with lysosome or deliver its contents to Golgi apparatus when it is called receptosome.

(b) **Phagocytosis :** (Metchnikoff, 1883). It is cell eating or ingestion of large particles by living cells, e.g., white blood corpuscles (neutrophils, monocytes), Kupffer's cells of liver, reticular cells of spleen, histiocytes of connective tissues, macrophages, Amoeba and some other protists, feeding cells of sponges and coelentrates. Plasma membrane has receptors. As soon as the food particle comes in contact with the receptor site, the edges of the latter evaginate, form a vesicle which pinches off as phagosome.

One or more lysosomes fuse with a phagosome, form digestive vacuole or food vacuole. Digestion occurs inside the vacuole. The digested substances diffuse out, while the residual vacuole passes out, comes in contact with plasma membrane for throwing out its contents through exocytosis or ephagy.

Important tips

- E. Grater and H. Grendel (1926) : Proposed leaflet model which states that plasma membrane is formed of bilayer sheet of phospholipids.
- Wolpers (1941) : Proposed lattice model which states lipids are distributed in a framework of proteins.
- Hilleir and Hoffman (1953) : Proposed micellar model. Plasma membrane is formed of micelles of lipid molecules.

- Sandwich model of Danielli and Davson (1935) is based on physical and chemical properties.
- Troteins of plasma membrane provide functional specificity, elasticity and mechanical support.
- The arrangement of phospholipid molecules in bilayer forms a water resistant barrier.
- Glycoproteins of plasma membrane determine antigen specificity of cell. These glycoproteins from major histocompatible complex (MHC) which are of specific type in every individual so act as finger print of the cell.
- The set of the membrane is due to N acetyl neuraminic acid (NANA)/sialic acid.
- The contract of the percentage of extrinsic and intrinsic protein.
- There are the terms of the plasma membrane of target cells act as signal transduction.
- Phospholipids show asymmetric distribution in plasma membrane lacithin and sphingomycelin mainly found in outer phospholipids layer while cephalin and phosphatidyl serine are mainly present in inner phosphalipid layer.
- Compare Lomasomes : Infolds of plasma membrane found in fungi. These were reported by Moore and Mclean.
- Transosomes found in follicular cells of ovary of birds and have triple unit membrane. First reported by Press(1964).
- Lipid soluble substances pass through the plasma membrane move readily than the water soluble substances.
- Term biomembrane was coined by Singer and Nicolson.
- Prize For it in 1971.
 Prize for it in 1971.
- Tinocytosis and phagocytosis do not take place in prokaryotic cells.
- Tinger and Nicolson's model differs from Robertson's model in the arrangement of proteins.
- The Plasma membrane contains ATPase enzymes.
- The Plasma gel or ectoplasm are the synonyms of plasma membrane.
- The secondary structure of the integral protein buried in the lipid bilayer of a cell membrane is nature.

1.6 PROTOPLASM

(1) **Definition :** Protoplasm is a complex, granular, elastic, viscous and colourless substance. It is selectively or differentially permeable. It is considered as "*Polyphasic colloidal system*".

- (2) **Discoveries**
- (i) J. Huxley defined it as "physical basis of life".
- (ii) Dujardin (1835) discovered it and called them "sarcode".
- (iii) Purkinje (1837) renamed it as "Protoplasm".
- (iv) Hugo Von Mohl (1844) gave the significance of it.

- (v) Max Schultz (1861) gave the protoplasmic theory for plants.
- (vi) Fischer (1894) and Hardy (1899) showed its colloidal nature.
- (vii) Altman (1893) suggested protoplasm as granular.
- (3) Composition : Chemically it is composed of

Water	75 - 85%	Carbon	20%
Proteins	10 - 25%	Oxygen	62%
Lipids	2-3%	Hydrogen	10%
Inorganic	1%	Nitrogen	3%
Materials			

Trace elements -5% (*Ca*, *P*, *Cl*, *S*, *K*, *Na*, *Mg*, *I*, *Fe*, etc.)

Maximum water content in protoplasm is found in hydrophytes, <u>*i.e.*</u> 95% where as minimum in seeds, spores (dormant organs) *i.e.* 10 - 15%. In animals water is less (about 65%) and proteins are more (about 15%).

(4) **Physical properties of protoplasm :** <u>*Cyclosis*</u> movement are shown by protoplasm. These are of two types.

(i) **Rotation :** In one direction, either clockwise or anticlockwise *e.g.*, *Hydrilla*, *Vallisneria*. <u>Found</u> <u>only in eukaryotes</u>.

(ii) **Circulation :** Multidirectional movements around vacuole *e.g. Tradescantia*.

(a) It shows stimulation or irritability.

(b) Protoplasm is polyphasic. Colloidal substance or true solution because true solution act as dispersion medium and different colloidal particles constitute dispersed phase.

(c) It shows increased surface area and adsorption.

(d) It shows sol – gel transformation.

(e) It is highly viscous.

(f) It coagulates at 60° C or above or if treated with concentrated acids or bases.

(g) It shows Brownian movements.

(h) It's specific gravity is slightly more than 1.

(i) It's pH is on acidic side, but different vital activities occur at neutral pH which is considered as 7, injury decreases the pH of the cell (*i.e.* 5.2 - 5.5) and if it remains for a long time, the cell dies.

(j) Scattering and dispersion of light is shown by protoplasm *i.e.* Tyndall effect.

1.7 CYTOPLASM

The substance occur around the nucleus and inside the plasma membrane containing various organelles and inclusions is called cytoplasm.

(1) The cytoplasm is a semisolid, jelly – like material. It consists of an aqueous, structureless ground substance called cytoplasmic matrix or hyaloplasm or cytosol.

(2) It forms about half of the cell's volume and about 90% of it is water.

(3) It contains ions, biomolecules, such as sugar, amino acid, nucleotide, tRNA, enzyme, vitamins, etc.

(4) The cytosol also contains storage products such as glycogen/starch, fats and proteins in colloidal state.

(5) It also forms crystallo – colloidal system.

(6) Cytomatrix is differentiated into ectoplasm or plasmagel and endoplasm or plasmasol.

(7) Cytomatrix is three dimensional structure appear like a network of fine threads and these threads are called microfilaments (now called actin filaments or microtrabecular lattice) and it is believed to be a part of cytoskeleton. It also contains microtubules and inter mediate cytoplasmic filaments.

(8) Hyaloplasm contains metabolically inactive products or cell inclusions called deutoplast or metaplasts.

(9) Cytoplasmic organelles are plastid, lysosome, sphaerosome, peroxisome, glyoxysomes, mitochondria, ribosome, centrosome, flagellum or cilia etc.

(10) The movement of cytoplasm is termed as *cyclosis* (absent in plant cells).

1.8 MITOCHONDRIA

(1) **Definition :** (Gk - mito = thread; chondrion = granule) Mitochondria are <u>semi autonomous</u> having hollow sac like structures present in all eukaryotes except mature RBCs of mammals and sieve tubes of phloem. These are absent in all prokaryotes like bacteria and cyanobacteria. Mitochondria are also called chondriosome, chondrioplast, plasmosomes, plastosomes and plastochondriane.

(2) **Discoveries**

(i) These were first observed in striated muscles (Voluntary) of insects as granules by Kolliker (1850), he called them "sarcosomes".

(ii) *Flemming* (1882) called them "fila" for thread like structure.

(iii) Altman (1890) called them "bioplast".

(iv) <u>C. Benda (1897) gave the term</u> <u>mitochondria</u>.

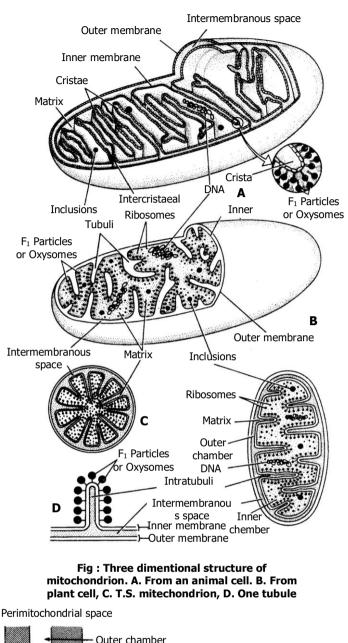
(v) *F. Meves* (1904) observed mitochondria in plant (*Nymphaea*).

(vi) *Michaelis* (1898) demonstrated that mitochondria play a significant role in respiration.

(vii) *Bensley* and *Hoerr* (1934) isolated mitochondria from liver cells.

(viii) *Seekevitz* called them "Power house of the cell".

(ix) *Nass* and *Afzelius* (1965) observed first DNA in mitochondria.


(3) Number of mitochondria : Presence of mitochondria depends upon the metabolic activity of the cell. Higher is the metabolic activity, higher is the number e.g., in germinating seeds.

(i) Minimum number of mitochondria is one in <u>Microasterias</u>, Trypanosoma, Chlorella, Chlamydomonas (green alga) and Micromonas. Maximum numbers are found (up to 50,000) in giant Amoeba called Chaos – Chaos. These are 25 in human sperm, 300 -400 in kidney cells and 1000 – 1600 in liver cells.

(ii) Mitochondria of a cell are collectively called chondriome.

(4) Size of mitochondria : Average size is $0.5-1.00 \ \mu m$ and length up to $1 - 10 \ \mu m$.

(i) Smallest sized mitochondria in yeast cells $(1 \mu m^3)$.

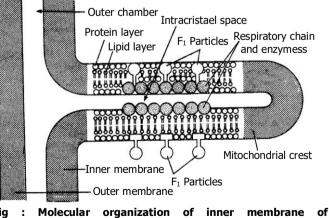


Fig : Molecular organization of inner membrane of mitochondria

(ii) Largest sized are found in oocytes of *Rana pipiens* and are $20 - 40 \mu m$.

(iii) A dye for staining mitochondria is Janus B – green.

(5) Ultrastructure of mitochondria : Mitochondrion is bounded by two unit membranes separated by perimitochondrial space (60 - 80 Å). The outer membrane is specially permeable because of presence of integral proteins called porins. *The <u>inner membrane is selective permeable</u>*. The inner membrane is folded or convoluted to form mitochondrial crests. In animals these are called <u>cristae</u> and in plants these folding are called tubuli or microvili.

The matrix facing face is called 'M' face and face towards perimitochondrial space is called 'C' face. The 'M' face have some small <u>stalked particles called oxysomes</u> or <u>F₁ particle or elementory</u> <u>particle or Fernandez</u> – Moran Particles. Each particle is made up of base, stalk and head and is about 10*nm* in length. Number of oxysomes varies to 10^4 to 10^5 per mitochondrion and chemically they are made of phospholipid core and protein cortex. <u>Oxysomes</u> have ATPase enzyme molecule (Packer, 1967) and therefore, responsible for <u>ATP synthesis</u>. These elementary particles are also called F₀ – F₁ particles.

In the matrix 2–6 copies of naked, double stranded DNA (circular) and ribosome of 70 S type are present. It is rich in G-C ratio. Basic histone proteins are absent in mitochondrial DNA. The synthesis of ATP in mitochondria is called oxidative phosphorylation, which is O_2 dependent and light independent. Cristae control dark respiration. F_0 particles synthesize all the enzymes required to operate Kreb's cycle. Inner membrane contains cytochrome.

(6) **Semi-autonomous nature of mitochondrion :** Mitochondria contain all requirements of protein synthesis :

(i) 70 S ribosomes.

(ii) DNA molecules to form *m*RNA and also replicate.

(iii) ATP molecules to provide energy.

The mitochondria can form some of the required proteins but for most of proteins, these are dependent upon nuclear DNA and cytoplasmic ribosomes, so the mitochondria are called semi-autonomous organelles.

(7) **Two states of mitochondria :** When ATP synthesis is low or the respiratory chain of mitochondrion is inhibited, it is called inactive or orthodox state, and has large amount of matrix and only a few cristae. But when mitochondria are active or condensed state, and have small amount of matrix and highly developed cristae. This shows that the development of mitochondria depends upon the physiological activity of the cell.

(8) Chemical composition : Cohn gave the chemical composition of mitochondrion:

Proteins = 65 - 70%

Lipids = 25 - 30% (90% phospholipids and 10% cholesterol, Vit. E., etc)

2-5% RNA Some amount of DNA

The mitochondrial matrix has many <u>catabolic</u> enzymes like cytochrome oxidase and reductases, fatty acid oxidase, transaminase, etc.

(9) Enzymes of Mitochondria

(i) **Outer membrane :** Monoamine oxidase, glycerophosphatase, acyltransferase, phospholipase A.

(ii) **Inner membrane :** <u>Cytochrome</u> b,c₁,c,a, (cyt.b, cyt.c₁, cyt.c, cyt.a, cyt.a₃) NADH, dehydrogenase, <u>succinate dehydrogenase</u>, <u>ubiquinone</u>, <u>flavoprotein</u>, <u>ATPase</u>.

(iii) **Perimitochondrial space :** Adenylate kinase, nucleoside diphosphokinase.

(iv) **Inner matrix :** Pyruvate dehydrogenase, citrate synthase, aconitase, isocitrate dehydrogenase, fumarase, α – Ketoglutarate dehydrogenase, malate dehydrogenase.

(10) **Origin :** Mitochondria are self-duplicating organelles due to presence of DNA molecules so new mitochondria are always formed by growth and division of pre-existing mitochondria by binary fission.

Difference between	outer and inner	r membrane of mitrochondria
--------------------	-----------------	-----------------------------

Outer membrane	Inner membrane
It is smooth having less area.	It is infolded to form cristae hence large surface area.
It is freely permeable.	Semipermeable, impermeable to coenzyme A and NAD.
It consist 50% lipid and 50% protein.	It consist 80% protein and 20% lipid.
Sialic acid is more $(4 - 5 \text{ time})$.	Sialic acid is less.
Near about 14% enzymes are present.	Near about 60 enzymes are present.

(11) Functions of mitochondria

(i) Mitochondria are called *power house* or storage batteries or ATP mills as these are sites of ATP formation.

(ii) Intermediate products of cell respiration are used in the formation of steroids, cytochromes, chlorophyll, etc.

(iii) These are also seat of some amino acid biosynthesis.

(iv) Mitochondria also regulate the calcium ion concentration inside the cell.

(v) Site of Krebs cycle and electron transport system.

(vi) Site of thermiogenesis.

(vii) Yolk nucleus (a mitochondrial cloud and golgi bodies) controls vitellogenesis.

(viii) Mitochondria of spermatid form <u>nebenkern</u> (middle piece) of sperm during spermiogenesis.

(ix) It is capable of producing its own DNA.

(x) Mitochondria release energy during respiration.

(xi) Mitochondria contain electron transport system.

Important Tips

- Petite character in yeast and cytoplasmic male sterility in maize are examples of mitochondrial inheritance.
- Mitochondria are believed to be bacterial <u>endosymbionts</u>.
- *•* Mitochondria show a large degree of autonomy or independence in their functioning.
- Mitochondria as a place of cellular respiration were first observed by Hogeboom. Enzymes of Kreb's cycle or TCA cycle or citric acid cycle are present in matrix except succinic dehydrogenase which is found attached to inner mitochondrial membrane.
- ☞ With the help of phase contrast microscope mitochondria has been studied well.
- *The Mitochondria can be separated by centrifugation.*
- Mitochondria are called as "cell inside cell" by Schiff (1982).
- Life of mitochondria is not more than 5 days.
- *The Mitochondria are yellowish due to riboflavin.*
- ☞ 70% of total enzymes of a cell are found in mitochondria.
- Mitochondrial genome has 200 kilobase pairs.
- ☞ Mitochondria has the similarity, with bacteria as both have 70 S ribosome, circular DNA and RNA.
- *•* Mitochondria are rich in manganese.
- ☞ It has its own electron transport system.
- *The Mitochondria and chloroplasts have many resemblances.*
- According to endosymbiotic origin of mitochondria by Kirns Altman, mitochondria were intially a free living, aerobic bacteria which during to the process of evolution entered an anaerobic cell and become established as mitochondria. This theory is supported by many similarities which exist between bacteria and mitochondria.
- Lehninger discovered oxysomes.
- Percentage of mitochondrial DNA in cells is 1% of the total cellular DNA.
- Parson discovered stalkless and hollow spherical particles present on outer surface of outer mitochondrial membrane.
- When mitochondria treated with detergents like digitonin or lubral, their outer unit membrane is removed and remaining part is called <u>Mitoplast</u>
- The F₁ particle is made up of five types of subunits namely $\alpha, \beta, \gamma, \delta$ and ε of these α is heaviest and ε is lightest.
- In prokaryotic cell, plasma membrane infolding makes a structure mesosome. Which is analogous structure of <u>mitochondria</u> of eukaryotic cell (both part in respiration).

1.9 PLASTIDS

(1) **Definition :** Plastids are semiautonomous organelles having DNA, RNA, Ribosomes and double membrane envelope which store or synthesize various types of organic compounds as ATP and NADPH + H^+ etc. These are largest cell organelles in plant cell.

(2) History

(i) Haeckel (1865) discovered plastid, but the term was first time used by Schimper (1883).

(ii) A well organised system of grana and stroma in plastid of normal barley plant was reported by de Von Wettstein.

(iii) Park and Biggins (1964) gave the concept of quantasomes.

(iv) The term chlorophyll was given by <u>Pelletier</u> and <u>Caventou</u>, and structural details were given by <u>Willstatter</u> and <u>Stall</u>.

(v) The term thylakoid was given by <u>Menke</u> (1962).

(vi) Fine structure was given by Mayer.

(3) **Types of plastids :** According to Schimper, Plastids are of 3 types: Leucoplasts, Chromoplasts and Chloroplasts.

Leucoplasts : <u>*They are colourless*</u> plastids which generally occur near the nucleus in nongreen cells and possess internal lamellae. Grana and photosynthetic pigments are absent. They mainly store food materials and occur in the cells not exposed to sunlight *e.g.*, seeds underground stems, roots, tubers, rhizomes etc. These are of three types.

(i) Amyloplast : Synthesize and *store starch grains*. e.g., potato tubers, wheat and rice grains.

(ii) Elaioplast (Lipidoplast, Oleoplast) : They store lipids and oils *e.g.* castor endosperm, tube rose, etc.

(iii) Aleuroplast (Proteinoplast) : Store proteins e.g., aleurone cells of maize grains.

Chromoplasts : <u>Coloured plastids other than green are kown as chromoplasts</u>. These are present in petals and fruits, imparting different colours (red, yellow, orange etc) for attracting insects and animals. These also carry on photosynthesis.

These may arise from the chloroplasts due to <u>replacement of chlorophyll by</u> other pigments *e.g.* <u>tomato</u> and chillies or from leucoplasts by the development of pigments.

All colours (except green) are produced by flavins, flavenoids and cyanin. Cyanin pigment is of two types one is anthocyanin (blue) and another is erythrocyanin (red). Anthocyanin express different colours on different pH value. These are variously coloured *e.g.* in flowers. They give colour to petals and help in pollination. They are water soluble. They are found in cell sap.

Green tomatoes and chillies turn red on ripening because of replacement of chlorophyll molecule in chloroplasts by the red pigment lycopene in tomato and capsanthin in chillies. Thus, chloroplasts are changed into chromatophores.

Chloroplast : Discovered by Sachs and named by Schimper. They are greenish plastids which possess photosynthetic pigments.

(i) **Number :** It is variable. Number of chloroplast is 1 in *Spirogyra indica*, 2 in *Zygnema*, 16 in *S.rectospora*, up to 100 in mesophyll cells. The minimum number of one chloroplast per cell is found in Ulothrix and species of *Chlamydomonas*.

(ii) Shape : They have various shapes

Shape	Example
Cup shaped	Chlamydomonas sp.
Stellate shaped	Zygnema.
Collar or girdle shaped	Ulothrix
Spiral or ribbon shaped	Spirogyra
Reticulate	Oedogonium
Discoid	Voucheria

(iii) Size : It ranges from $3 - 10 \ \mu m$ (average $5 \ \mu m$) in diameter. The discoid chloroplast of higher plants are $4 - 10 \ \mu m$ in length and $2 - 4 \ \mu m$ in breadth. Chloroplast of spirogyra may reach a length of 1 *mm*. Sciophytes (Shade plant) have larger chloroplast.

(iv) Chemical composition :

(a) Proteins 50 - 60%,

(b) Lipids 25 - 30%,

(c) Chlorophyll -5-10 %,

(d) Carotenoids (carotenes and xanthophylls) 1-2%,

(e) DNA - 0.5%, RNA 2 - 3%,

(f) Vitamins K and E,

(g) Quinines, Mg, Fe, Co, Mn, P, etc. in traces.

(v) **Ultrastructure :** It is double membrane structure. Both membranes are smooth. The inner membrane is less permeable than outer but rich in proteins especially carrier proteins. Each membrane is 90 - 100 Å thick. The inter-membrane space is called the *periplastidial space*. Inner to membranes, matrix is present, which is divided into two parts.

(a) Grana : Inner plastidial membrane of the chloroplast is invaginated to form a series of parallel

membranous sheets, called lamellae, which form a number of oval - shaped closed sacs, called thylakoids. Thylakoids are structural and elements of chloroplasts. These functional thylakoids contain all the requirements of light reactions e.g., pigments like chlorophyll, carotenoids, plastoquinone, plastocyanin, etc. that are involved in photosynthesis. Each thylakoid

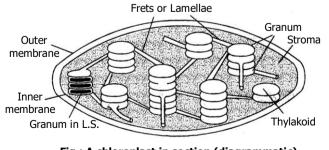


Fig : A chloroplast in section (diagrammatic)

has an intrathylakoid space, called loculus (size 10-30Å) bounded by a unit membrane. Along the inner side of thylakoid membrane, there are number of small rounded para-crystalline bodies, called

quantasomes (a quantasome is the photosynthetic unit) which can trap a mole of quantum of light and can bring about photosynthetic act. Each quantasome contains about <u>230 *chlorophyll*</u> molecules and 50 carotenoid molecules.

In eukaryotic plant cells, a number of thylakoids are superimposed like a pile of coins to form a granum. The number of thylakoids in <u>a granum</u> ranges from 10-100 (average number is 20-50). The number of grana per chloroplast also varies widely *e.g.*, one granum per chloroplast in *Euglena* while there are 40-60 grana per chloroplast in spinach. The size of each granum varies from $0.2 - 0.6 \mu m$ in diameter. But in blue-green algae, the thylakoids are not organised to form granum.

Adjacent grana are interconnected by branched tubules, called stromal lamellae or Fret-channel or Fret membrane's.

(b) **Stroma :** It is transparent, proteinaceous and watery substance. Dark reaction of photosynthesis occurs in this portion. Stroma is almost filled with "Rubisco" (about 15% of total enzyme, protein) enzyme CO_2 is accepted by this enzyme. CO_2 assimilation results in carbohydrate formation. It has 20 – 60 copies of naked circular double stranded DNA. Each DNA copy is 40 μ in length, which can code for 125 amino acids. All plastids of a cell called as "*Plastidome*" (Dangeared 1920) in stroma. Amount of DNA per chloroplast is 10^{-15} g. Chloroplast genome has 145 kilobase pairs. It shows semiautonomous nature and ribosomes are of 70 S type.

(vi) **Pigments of chloroplast :** Willsttater and Stall observed the following pigments:

- (a) **Chlorophyll a :** $C_{55} H_{72} O_5 N_4 Mg$ (with methyl group)
- (b) **Chlorophyll b :** $C_{55} H_{70} O_6 N_4 Mg$ (with aldehyde group)
- (c) Chlorophyll c : $C_{35}H_{32}O_5 N_4Mg$
- (d) **Chlorophyll d :** $C_{54} H_{70} O_6 N_4 Mg$
- (e) Carotenes, Xanthophylls : Carotenoids.

Chl. a	Chl. b
Absorption peak at 430, 662.	It is 453, 642.
Bluish green in colour.	Yellowish green.
Soluble in petroleum, ether.	Soluble in methyl alcohol.
Functional group at C_3 position is CH_3	Functional group attached to pyrrol ring is <i>CHO</i> .
Present in all green plants excepts autotrophic bacteria.	Present in all green plants except blue green, brown and red algae.
In chloroplast it is 75%.	It is 25%

Difference between Chl. a and Chl. b

In reflected light Chl. a shows blood red	In reflected light it show dull brown		
colour while in transmitted light, it shows	colour while in transmitted light, it		
blue green colour.	shows yellowish green colour.		

(vii) **Chlorophylls and their presence :** Term by Cavantou (1818). It's molecule has tetrapyrollic or porphyrin head (15 Å×15 Å) and phytol tail (20 Å long). Mg^{++} is present in the centre of porphyrin head. If chlorophyll is burnt only Mg is left.

(a) **Chlorophyll** *b* : It is found in members of chlorophyceae.

(b) Chlorophyll c : It is found in members of phaeophyceae, bacillariophyceae.

(c) **Chlorophyll** *d* : It is found in members of rhodophyceae.

(d) Chlorophyll *e* : It is found in members of xanthophyceae.

(e) **Phycoerythrin and phycocyanin** (phycobilins) are the red and blue green pigments in rhodophyceae and cyanophyceae respectively.

(f) **Fucoxanthin** (brown pigment) in phaeophyceae.

(g) **Bacteriochlorophyll** $(C_{55}H_{74}O_6N_4M_g)$ or chlorobium chlorophyll present in photosynthetic bacteria. These pigment are red in acidic and blue in alkaline medium.

(viii) **Carotenoids :** These are hydrocarbons, soluble in organic solvents. These are of 2 types:

(a) **Carotenes :** $C_{40}H_{56}$ derivatives of vitamin A. Carrot coloured α, β, γ carotene, lycopene, etc.

(b) **Xanthophyll :** $C_{40}H_{56}O_2$, yellowish in colour, fucoxanthin, violaxanthin. Molar ratio of carotene and xanthophyll in young leaves is 2 : 1.

(ix) Plastids are interchangeable

Leucoplast
Chloroplast

Chromoplast

(degenerate chloroplast)

<u>The leucoplast and chloroplast are interconvertible</u> but once they have converted into chromoplast, the reverse can not take place. Because, chromoplasts are aged or degenerated form of chloroplast e.g. in tomato.

Young ovary (colourless)	_	Leuco	oplast
Young fruit (green)	_	Chlor	oplast
Mature fruits (red) (due to Lycopene	e)	_	Chromoplast.
In carrot leucoplast	_	Chroi	noplast (carotene) etc.

(x) **Origin of chloroplast :** Plastids, like the mitochondria, are self duplicating organelles. These develop from colourless precursors, called *proplastids*. They are believed to be evolved from endosymbiont origination.

(4) Function of plastids

(i) It is the site of photosynthesis, (light and dark reaction).

(ii) Photolysis of water, reduction of NADP to NADPH2 take place in granum.

(iii) Photophosphorylation through cytochrome $b_6 f$, plastocyanine and plastoguinone etc.

(iv) They store starch or *factory of synthesis of sugars*.

(v) Chloroplast store fat in the form of plastoglobuli.

(vi) They can be changed into chromoplasts to provide colour to many flowers and fruits for attracting animals.

(vii) They maintain the percentage of CO_2 and O_2 in atmosphere.

Important Tips

The Murphy and Leech (1978) have reported the synthesis of fatty acids in the spinach chloroplast.

Troplastids are precursor of all type of plastids.

- Tapasanthin is the pigment in carotenoids found in bacteria, fungi and chilly.
- Solar energy is trapped in lamella by chlorophylls but in bacteria trapping centre is B₈₉₀.
- The chloroplast with nitrogen fixing genes (nif genes) constitute nitroplast.
- Pyrenoids : A proteinaceous core around which starch is deposited mostly found in the chloroplast of algae and in some bryophytes.
- The Algal classification is based on pigmentation pattern.
- Type spot or stigma is photosensitive carotenoid pigment.
- That chloroplast can be separated by sugar solution (2.5 M).
- <u>Mitochondria and plastids</u> both have own DNA molecules which is called as <u>Extranuclear/</u> <u>Extrachromosomal DNA</u>.
- Plastids are absent from monerans, fungi and animals these are also absent from gametes and zoospores of plants.
- Ris and Plaut (1962) reported DNA in chloroplast and was called plastidome. It forms about 0.5% of total cellular DNA and is rich in G-C pairs.
- Plastidoribosomes : Ribosomes of plastids and are of 70S type. These were reported by Jacobson et. al. (1963)
- Thylakoid term was given by Menke (1961).
- Transducers : Structure which are involved in energy transformations e.g. mitochondria and plastids.
- The plastide are the largest cell organelles. The plastide in the order of their increasing size are Chloroplast \rightarrow Chromoplast \rightarrow Elaioplast \rightarrow Aleuroplast \rightarrow Amyloplast

- Quantasome is formed of 160 chlorophyll a + 70 chlorophyll b molecules and 50 carotenoid molecules.
- Scattered thylakoids in the cytoplasm of cyanobacteria and photosynthesis bacteria are known as chromatophores.
- Chromatophore term was given by <u>Schmitz</u>.

1.10 ENDOPLASMIC RETICULUM (ER)

(1) **Definition :** It is well developed electron microscopic network of interconnected cisternae, tubules and vesicles present throughout the cytoplasm, especially in the endoplasm.

(2) **Discovery :** Garnier (1897) was first to observe the ergastoplasm in a cell. The ER was first noted by *Porter*, Claude, and Fullman in 1945 as a network. It was named by Porter in 1953.

(3) **Occurrence :** The ER is present in almost all eukaryotic cells. A few cells such as ova, embryonic cells, and mature RBCs, however, lack ER. It is also absent in prokaryotic cell.

In muscle cells, it is called sarcoplasmic reticulum, myeloid bodies and nissel granules are believed to be formed from ER. ER is little develop in meristematic cells.

(4) **Chemical composition :** All the components of ER are lipoperoteins and trilaminar like the plasma membrane but differ in following

(i) Thinner (50 - 60 Å) than plasma membrane.

(ii) With less cholesterol.

(iii) With more lipids.

(iv) The lumen is filled with fluid containing 70% phospholipids lecithin and cephalin etc.

(5) Ultrastructure : The ER is made up of three components :

(i) **Cisternae :** These are flattened, unbranched, sac like structures. They lie in stacks (piles) parallel to one another. They bear ribosomes. They contain glycoproteins named ribophorin-I and ribophorin-II that bind the ribosomes. Found in protein forming cells.

(ii) **Vesicles :** These are oval or rounded, vacuole like elements, scattered in cytoplasm. These are also studded with ribosomes.

(iii) **Tubules :** Wider, tubular, branched elements mainly present near the cell membrane. They are free from ribosomes. These are more in lipid forming cells.

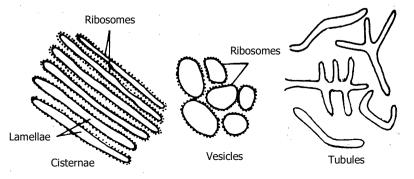


Fig : Elements of Endoplasmic Reticulum

All the three structures are bound by a single unit membrane.

(6) **Types of ER :** Depending upon the presence of ribosomes, the ER has been categorised into two types:

(i) A smooth or Agranular endoplasmic reticulum (SER) : It consists mainly of tubules and vesicles. It has no ribosomes associated to it. It is well developed in the muscle cells, adipose tissue cells, <u>interstitial</u> cells, glycogen storing liver cells, etc. and the cells that synthesize and secrete steroids. SER also takes part in synthesis of vitamins, carbohydrates and detoxification. Detoxification of pollutants carcinogens and drugs is carried out SER of liver cells and mitochondria, SER is associated with storage and release of Ca^{2+} ions. It gives rise to spherosomes.

(ii) **Rough or Granular endoplasmic reticulum (RER) :** It mainly consists of cisternae. It has ribosomes attached on its cytoplasmic surface. It is abundant in cells engaged in production and excertion of proteins, *e.g.*, plasma cells, goblets cells, pancreatic acinus cells and certain liver cells. The RER is more stable than SER. The RER is basophilic due to the presence of ribosomes. Ribosomes are attached to ER through hydrophobic interaction.

The proteins synthesised by the ER membrane bound ribosomes pass into the ER lumen, where most of the proteins are glycosylated. For this, an oligosaccharide is always linked to the $-NH_2$ group on side chain of an asparagine residue. The ER lumen serves as a compartment to contain substances which must be kept separate from cytosol. In the ER lumen, the enzymes modify the proteins.

00000000000000000000000000000000			
SER	RER		
SER or smooth endoplasmic reticulum does	RER possesses ribosomes attached to its		
not possesses ribosomes over the surface of	membrane.		
its membrane.			
It is mainly formed of vesicles and tubules.	It is mainly formed of cisternae and few		
	tubules.		
It is engaged in the synthesis of glycogen	The reticulum takes part in the synthesis		
lipids and steroids.	of proteins.		
Pores are absent so that materials	RER possesses narrow pores below its		
synthesised by SER do not pass into its	ribosomes for the passage of synthesised		
channels.	polypeptides into ER channels.		
SER is often peripheral. It may be	It is often internal and connected with		
connected with plasmalemma.	nuclear envelope.		
Ribophorins are absent.	RER contains Ribophorins I and II for		

Differences between SER and RER

	providing attachment to ribosomes.	
SER gives rise to sphaerosomes.	It helps in the formation of lysosome	
	through the agency of golgi apparatus.	

(7) **Origin :** RER is formed from nuclear membrane while SER is formed from RER by loss of ribosomes. Rough vesicles originate only from RER after homogenisation of cell. RER breaks in small fragments (Vesicles) and it is called microsome (This is not a cell organelle). <u>ER constitute cytoskeleton</u> and also help as intracellular transport system. And it is sensitive to irritation.

(8) Functions

(i) <u>Synthesis and secretion of specific proteins</u> via – golgi bodies.

(ii) Formation of protein ribophorin. Which helps in attachment of ribosome.

(iii) Give rise to SER.

(iv) Provides surface for synthesis of cholesterol, steroid, ascorbic acid and visual pigments.

(v) It helps in synthesis of harmones *e.g.*, testosterone and estrogen.

(vi) It helps in glycogenolysis in the liver cells and brings about detoxification (SER).

(vii) Gastric cells secreting zymogen have well developed SER.

(viii) ER is a component of <u>cytoskeleton</u> (Spread as a net) of cell and provides mechanical support and shape to the cell.

(ix) ER acts as segregation apparatus and divides the cytoplasm into chambers. Compartmentalisation is most necessary for cellular life.

(x) It participates in the formation of cell-plate during cytokinesis in the plant cells by the formation of phragmoplasts.

(xi) ER has many types of enzymes *e.g.* ATPase, reductases, dehydrogenases and phosphatases.

(9) **Sacroplasmic reticulum :** It is a modified SER striated muscle fibres which forms a network of interconnected tubules in the sarcoplasm. It helps in conduction of motor nerve impulses throughout the muscle fibre and in the removal of lactic acid so prevents muscle fatigue. It is called "ergastoplasm" in muscle and "nisslegranules" in nerve cells.

Important Tips

- Annullated lamellae : It was first reported by Mc Culloch (1952) in the egg of sea urchin. Formed by blebbing of outer nuclear membrane.
- Transitional ER : It is RER without ribosomes.
- Microsome : This term was used by Claude (1941). It probably refers to these fragments of ER which are associated to ribosomes.
- Sjostrand gave the term α -cytomembrane for RER.
- Veratti (1902) reported sacroplasmic recticulum in the muscle fibers.

- Nissl's granules are the masses of RER in the cyton of neurons.
- Myeloid bodies are the masses of tubules (S0 SER) found in retinal cells and are related with photoreception.
- \sim Total ER in the cell 2/3 RER + 1/3 SER.
- In rapidly dividing cells endoplasmic reticulum is poorly developed.

1.11 GOLGI COMPLEX

(1) **Definition :** Golgi complex is made up of various membranous system e.g. cisternae, vesicles and vacuoles. These are also called golgi bodies, golgisomes, lipochondrion, dictyosomes, Dalton complex, idiosomes or Baker's body. These are also called "traffic police" of the cell.

(2) **Discovery :** First observed by George (1867) but it's morphological details were given by Camillo Golgi (1898), in nerve cells of barn fowl and cat.

(3) Occurence : It is present in all eukaryotic cells. They form 2% of total cell volume. In a cell

these are found above centriole or near nucleus. *In plants*, these are scattered irregularly in the cytoplasm and called as "*dictyosomes*". These are absent in bacteria and blue green algae, RBCs, spermatozoa of bryophytes and pteridophytes, and sieve tube cells of phloem of angiosperm.

(4) Size and number : The size of the golgi body varies with the metabolic state of cell and hence it is called pleomorphic. Large in mature functional and secretary cell e.g., germinal cells, goblet cells, but small size in

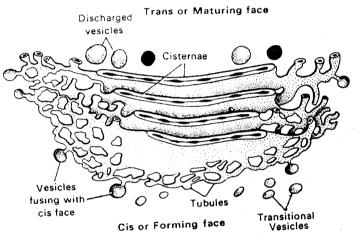


Fig : Arrangement of membrane, tubles and vesicles in golgi

non-secretary cells. There may be 25,000 dictysomes present in rhizoidal cells of *Chara*. Average number 10 - 20 per cell. Number increases during cell division.

(5) **Structure :** Under transmission electron microscope the st. of golgibodies was study by Dalton and Felix (1954), golgi body is made of 4 parts.

(i) **Cisternae :** Golgi apparatus is made up of stack of flat. Sac like structure called cisternae. The margins of each cisterna are gently curved so that the entire golgi body takes on a cup like appearance. The golgi body has a definite polarity. The cisternae at the convex end of the dictyosome comprises forming face (F. face) or cis face. While the cisternae at the concave end comprises the maturing face (M. face) or trans face. The forming face is located next to either the nucleus or endoplasmic reticulum. The maturing face is usually directed towards the plasma membranes. It is the *functional unit of golgi body*.

(ii) **Tubules :** These arise due to fenestration of cisternae and it forms a complex of network.

(iii) Secretory vesicles : These are small sized components each about 40 Å in diameter presents along convex surface of edges of cisternae. These are smooth and coated type of vesicles. Smooth or

secretory vesicles, which have a smooth surface and contain secretions of the cell and coated vesicles, that have rough surface. They carry materials to or from the cisternae.

(iv) **Golgian vacuoles :** These are spherical components each about 600 Å in diameter. These are produced by vesiculation of saccules of cisternae. Scattered cisternae are called dictyosomes and condition is called diffused.

(6) Function

(i) The main function of golgi body <u>is secretion</u>, so it is large sized among the secretory cells. Secretion are released either by exocytosis or reverse pinocytosis.

(ii) <u>Glycosidation</u> of lipids *i.e.* addition of oligosaccharides to produce glycolipids.

(iii) Glycosylation of proteins *i.e.* addition of carbohydrate to produce glycoproteins.

(iv) Formation of lysosomes.

(v) Golgi body forms the cell plate. During cell division by secreting hemicellulose formation of enzyme and hormones (Thyroxine) etc.

(vi) Matrix of connective tissue is formed by golgi complex.

(vii) In oocytes of animal, golgi apparatus functions as the centre around which yolk is deposited *i.e.* vitellogenesis.

(viii) Membrane of the vesicles produced by golgi apparatus join in the region of cytokinesis to produce new plasmalemma.

(ix) It is also called export house of cell.

(x) Golgi body contains phospholipids, proteins, enzymes and vitamin-c.

(xi) The golgi complex gives rise to the acrosome in an animal sperm.

(7) **Origin :** Most accepted view is that golgi body originates from RER-that has lost its ribosomes from this RER arise transport vesicles that contain Golgi membrane and fuse with the saccule on the forming face of Golgi apparatus. This is why this face is called the forming face.

Important Tips

- According to Camillo Golgi "Apparato reticulare interno" (internal reticular apparatus) is Golgi body.
- Cellulose, hemicellulose and pectin are synthesized by Golgi body.
- Metal silver impregnation technique was used by Camillo Golgi.
- Sperm acrosome is made of golgi apparatus.
- The main enzyme of golgi complex are glycosyl transferase, nucleoside diphosphatase and thiamine pyrophosphatase.
- Zymogen is processed in it.
- Term "trophospongium" given by Holmgen.
- The number of golgi bodies increase during cell division. <u>Phragmoplast is the precursor of cell plate</u>.
- The basophilic ergastoplasm in gland cells indicate the richness of golgi bodies.

- *•* <u>Root cap cells</u> are rich in golgi complex secreting mucilage, which lubricates the root tip.
- Proteins and fats are stored in vacuoles and vesicles of golgi complex.
- In fungi, unicisternal dictyosomes are found.
- Zone of exclusion : A zone of clear cytoplasm with no ribosomes, mitochondria etc. around the golgi body.
- *•* Perner gave the term dictyosome.
- Mollenhaver and Whaley (1963): Reported polarity in golgi complex.
- GERL : Golgi-endoplasmic reticulum-lysosome system.
- GER : Golgi associated endoplasmic reticulum.

1.12 Lysosomes

(1) **Definition :** Lysosomes are electron microscopic, vesicular structures of the cytoplasm, bounded by a *single membrane* which are involved in intracellular digestive activities, contains hydrolytic enzymes, so called lysosomes.

(2) **Discovery :** These were first discovered by a Belgian biochemist, <u>*Christian de Duve* (1995)</u> in the liver cells and were earlier named pericanalicular dense bodies. Terms Lysosome was given by *Novikoff* under the study of electron microscope. Maltile (1964) was first to demonstrate their presence in plants, particularly in the fungus *neurospora*.

(3) **Occurrence :** These are absent from the <u>prokaryotes but</u> are present in all <u>eukaryotic animal</u> cells except mammalian RBCs. They have been recorded in fungi, euglena, cotton and pea seeds.

(4) Shape : These are generally spherical in shape but are irregular in plant root tip cells.

(5) Size : Size range is 0.2-0.8 μm while size is 0.5 μm (500 nm).

(6) **Number :** Lysosomes are more in those cells which are involved in intracellular digestive activities *e.g.*, *WBCs* of blood, *histiocytes* of connective tissue; *phagocytes* of liver and spleen; *osteoclasts*; cells of degenerating tissue like tail of tadpole larva etc.

(7) Ultrastructure : Under electron microscope, a lysosome is formed of two parts :

(i) **Limiting membrane :** It is outer, single layered, lipoproteinous and trilaminar unit membrane. It keeps a limit on glycoproteinous digestive enzymes.

(ii) **Matrix :** It is inner, finely granular and highly heterogeneous group substance inside the membrane.

(8) **Types :** The lysosomes change the nature of their contents at different times in the same cell. This variation is referred to as polymorphism. On the basis of their contents, four types of lysosomes are recognised.

(i) **Primary Lysosomes :** A newly formed lysosome contains enzymes only. It is called the *primary lysosomes*. Its enzymes are probably in an inactive state.

(ii) **Secondary Lysosomes :** When some material to be digested enters a primary lysosome, the latter is named the <u>secondary lysosome</u>, or <u>phagolysosome</u> or <u>digestive vacuole</u>, or <u>heterophagosome</u>. This commonly occurs by fusion of a primary lysosome with a vacuole (pinosome or phagosome) or a secretory granule.

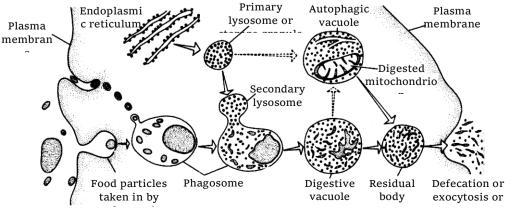


Fig : Different types of lysosomes and their origin

(iii) **Tertiary lysosomes/Residual bodies :** In a secondary lysosome, the enzymes digest the incoming materials. The products of digestion pass through the lysosome membrane into the cytoplasmic matrix for use as a source of nutrition or energy. Indigestible matter remains in the secondary lysosome. A secondary lysosome containing indigestible matter is known as the *residual body* or *tertiary lysosome*. The latter meets the cell by *exocytosis (ephagy)*.

(iv) **Autophagosomes /Autolysosomes /Autophagic vaculoes :** A cell may digest its own organelles, such as *mitochondria, ER. This process is called autophagy or autolysis*. These are formed of primary lysosomes. The enzymes (hydrolytic) of lysosomes digest the organelles thus enclosed. Therefore, the lysosome are sometimes called disposal units/suicidal bags.

(9) Chemical composition : Matrix of primary lysosome is formed of hydrolases, which is involved in hydrolysis or polymeric compounds, that operate in acidic medium at pH 5, so called acid hydrolases. Upto now 50 types of enzyme have been reported to be present in latent form in different types of lysosomes. These enzymes are synthesized on RER, transported to cisternae of golgi body where these are packed into the lysosomes. These are as

(i) **Proteases** *e.g.*, cathepsin and collagenase.

(ii) Nucleases e.g., DNAse and RNAse.

(iii) **Glycosidases** *e.g.*, β -galactosidase, β -glucoronidase.

(iv) Phosphatases e.g., ATPase, acid phosphatase (marker enzyme).

(v) Sulphatases e.g., for sulphate-linked organic compounds.

(vi) Esterases e.g., phospholipase, acid lipase.

(10) **Origin :** Lysosomes arise from the golgi complex their membrane and hydrolytic enzymes are synthesized on the RER and are transported invesicles to the golgi complex for modification and packaging.

(11) Functions

(i) Lysosomes take part in digestion of food through phagosomes, known as intracellular digestion.

(ii) In metamorphosis of many animals certain embryonic parts are digested by it.

(iii) Obstructing structures are destroyed by lysosome.

(iv) Lysosomes perform the function of exocytosis and endocytosis.

(v) Lysosomes of sperms provide enzyme for breaking limiting membrane of egg e.g., hyaluronidase enzyme.

(vi) They cause breakdown of ageing and dead cells.

(vii) Lysosomes functions as <u>trigger of cell division</u> or initiate cell division by digesting repressor molecules.

(viii) Nucleases (DNAse) of lysosomes may cause gene mutations which may cause disease like leukemia or blood cancer (partial deletion of 21st chromosome).

(ix) Sometimes residual bodies accumulate inside the cells leading to storage diseases *e.g.* a glycogen storage disease called Pompe's disease, polynephritis Hurler's disease (deformed bones due to accumulation of mucopolysaccharides).

(x) Lysosomes also engulf the carcinogens.

Important Tips

- Cholesterol, cortisol and cortisone acts as a stablizers of lysosomal membrane, while absence of oxygen, X-rays UV rays and excess of vitamin A and E act as labilizers and weaken the lysosomal membrane.
- *Polymorphism in lysosomes were described by De Robertis et. al (1971).*
- *•* Lysosomes can hydrolyse all types of organic compounds except cellulose.

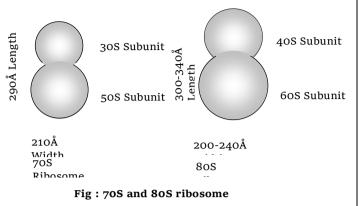
1.13 RIBOSOMES

(1) **Definition :** The ribosomes are smallest known <u>electron microscopic</u> without membrane, ribonucleo–protein particles attached either on RER or floating freely in the cytoplasm and are the sites of protein synthesis.

(2) **Discovery :** In 1943 *Claude* observed some basophilic bodies and named them as <u>microsome</u>. *Palade* (1955) coined the term ribosome (form animal cell). Ribosomes in nucleoplasm were observed by *Tsao* and *Sato* (1959). First isolated by Tissieres and Watson (1958) from *E. coli*. Ribosomes found in groups are termed as polyribosomes or ergosomes (*Rich* and *Warner* 1963 observed first time polyribosomes).

(3) **Occurrence :** These are found in both prokaryotes as well as eukaryotes these are present only in free form in the cytoplasm. While in the eukaryotes the ribosomes are found in two forms in the cytoplasm, free form and bind form (bound on RER and outer nuclear membrane). These are also reported inside some cell organelles like <u>mitochondria and plastids respectively called mitoribosomes</u> and plastidoribosomes.

(4) **Number :** The number of ribosomes depends upon the RNA contents of the cell. These are more in plasma cells, liver cells, Nissl's granules of nerve cells, meristematic cells and cancerous cells.


(5) **Types of ribosomes :** It is determined on the basis of sedimentation coefficient measured in Svedberg unit or 'S' unit and their size. Velocity of sedimentation is 1×10^{-13} cm / sec/dyne/gm.

(i) **70S ribosomes :** Found in prokaryotes, mitochondria and plastid of eukaryotes. Each is about $200 - 290\text{\AA} \times 170 - 210\text{\AA}$ in size and 2.7×10^6 dalton in molecular weight.

(ii) **80S ribosomes :** Found in cytoplasm of eukaryotes. Each is about 300 - 340 Å $\times 200 - 240$ Å in size and $4.5 - 5.0 \times 10^6$ daltons in molecular weight.

(iii) **77S, 60S and 55S ribosomes :** Levine and Goodenough (1874) observed 77S ribosomes in fungal mitochondria 60S ribosomes in animal mitochondria and 55S in mammalian mitochondria.

(6) **Structure :** Each ribosome is formed of two unequal subunits, which join only at the time of protein synthesis. In 70S and 80S ribosomes, 50S and 30S, 60S and 40S are larger and smaller subunits respectively. Larger subunits is dome shaped and attached to ER by glycoproteins called "ribophorins". It has a depression on the flate side which leads into a channel having elongating polypeptide chain. It has a protuberance, a ridge

and a stalk. It also has 2 binding sites. Peptidyl or P or Donor site and Amino actyl or A or Acceptor site. These sites are for the attachment of charged tRNA molecules. Smaller subunit is oval shaped and fits as a cap on flat side of larger subunit. It has a platform, cleft head and base. It has binding site for mRNA. Delimiting membrane is not found in it. Ribosomes are attached to ER through hydrophobic interactions.

(7) **Chemical composition :** Ribosomes are chemically composed of <u>rRNA and proteins</u> Ribonucleo-Protein (RNP). Lipids are altogether absent in ribosomes. Ribosomes are strongly negative binding cations and basic dyes. 70S ribosomes has 60-65% rRNA and 35-40% proteins (ratio is 1.5 : 1). rRNAs are of three types : 23S type and 5S type rRNAs in 50S and 16S type rRNA in 30S sub-units. There are about 55 types of proteins in 70S ribosome out of which 21 proteins are found in 30S while 34 proteins are found in 50S ribosomal sub-unit and are called *core-proteins*.

80*S* ribosome has 45% rRNA and 55% proteins (ratio is about 1 : 1). r-RNA are of four types : 28*S*, 5*S* and 5.8*S* types of rRNAs in 60*S* and 18*S* type rRNA in 40*S* sub-units. There are about 70 types of proteins in 80*S* ribosome out of which 30 proteins are found in 40*S* while 40 proteins are found in 60*S* ribosomal sub-units. The ribosomal proteins are basic and almost surround the rRNA. Some proteins act as structural proteins while other proteins act as enzymes *e.g.*, *peptidyl transferase* of 50*S* (controls the interlinking of amino acids by peptide bonds).

A 1×10^{-3} (0.001 *M*) molar concentration of Mg^{++} is needed for the structural cohesion of ribosomes i.e., for holding the two subunits together. If this concentration is increased by ten folds, two ribosomes unite to form a *dimer*. The sedimentation coefficient of dimer of 70S ribosmes is 100S and that of 80S is 120S. By decreasing the Mg^{++} conc. to normal, the dimer breaks into <u>monomers (single</u> <u>ribosomes)</u>.

$$\frac{+Mg^{++}}{100S} + \frac{+Mg^{++}}{-Mg^{++}} = 100S, \quad 80S + 80S = \frac{+Mg^{++}}{-Mg^{++}} = 120S$$

If the Mg^{++} concentration is decreased to 1×10^{-4} molar, the ribosomes break up into its sub-units. The 70S ribosome breaks up into 50S and 30S sub-units. These 50S and 30S sub-units further dissociates into RNA and protein components. Similarly, the 80S ribosomes dissociates into 60S and 40S sub-units which further breakup into RNA and protein components.

(8) Biogenesis of ribosome :

(i) In eukaryotes the ribosomal RNAs like 18S, 5.8S and 28S are synthesized by nucleolus and 5S RNA out of the nucleus.

(ii) In prokaryotes both rRNA and its protein are synthesized as well as assembled by cytoplasm.

(9) **Polyribosomes or Polysomes :** When many ribosomes (generally 6 - 8) are attached at some mRNA strand. It is called polysome. The distance between adjacent ribosomes is of 90 nucleotides. These are functional unit of protein synthesis.

(10) Function :

(i) Ribosomes are also called protein factory of the cell or work branch of proteins.

(ii) Free ribosomes synthesize structural proteins and bounded ribosomes synthesize proteins for transport.

(iii) Ribosomes are essential for protein synthesis.

(iv) Help in the process of photosynthesis.

(v) They are found numerously in actively synthesizing cells like liver cells, pancreas, endocrine, yeast cells and meristematic cells.

(vi) Ribosomes also store the proteins temporarily.

(vii) These also store rRNAs, which helps in protein synthesis.

(viii) Enzyme peptidyl transferase occurs in large subunit of ribosome which helps in protein synthesis.

(ix) Newly formed polypeptide is protected from degradation by cytoplasmic enzymes in large sub-unit of ribosomes before releasing it into RER lumen.

Important tips

- Gunter Blobel and David Sabatini of Rockfeller university proposed signal hypothesis in 1971.
 Both scientist has been awarded the Nobel prize (1999) for this protein signalling.
- ☞ Ultra-structure of ribosomal subunits was given by James A. Lake (1981).
- ☞ Palade and Kuff (1966) gave the ultrastructure of ribosomes.
- Chaperons are proteins which assist in proper folding of proteins.

1.14 MICROBODIES

Microbodies are single membrane bounded small spherical or oval organelles, which take part in oxidation reactions other than those of respiration. They can only be seen by electron microscope. Microbodies posses a crystalline core and granules matrix. They are following types :--

(1) Sphaerosomes

(i) **Discovery :** These were first observed by Hanstein (1880) but discovered by <u>Perner</u> (1953).
 Term sphaerosomes was given by <u>Dangeard</u>.

(ii) **Occurrence :** These are found in all the plant cells which involves in the synthesis and storage of lipids *i.e.* endosperm and cotyledon.

(iii) **Shape, size and structure :** These are spherical or oval in shape about 0.5-2.5 μm in diameter. They contain hydrolytic enzymes like protease, ribonuclease, phosphatase, esterase etc. They are bounded by a single unit membrane.

(iv) **Function :** The main function of sphaerosomes is to help in lipid metabolism. These are also known as plant lysosomes.

(2) Peroxisomes (Uricosomes)

(i) **Discovery :** These were first discovered by J. Rhodin (1954) in the cells of mouse kidney with the help of electron microscope, and were called microbodies. De Duve (1965) isolated certain sac like organelles from various types of animals and plants. These were called peroxisomes because these contain peroxide producing enzymes (oxidases) and peroxide destroying enzymes (catalases).

(ii) **Occurrence :** These are found in photosynthetic cells of plants. In animals peroxisomes are abundant in the liver and kidney cells of vertebrates. They are also found in other organs like brain, small intestine, testis and adrenal cortex. They also occur in invertebrates and protozoans *e.g.*, Paramecium.

(iii) Shape, size and structure : These are spherical in shape, about 1.5 μm in size. They are bounded by a single unit membrane. They contains granular consents condensing in the centre. Their membrane is permeable to amino acids, uric acids, etc. They contain four enzymes of H_2O_2 metabolism. The enzymes urate oxidase, *d*-amino oxidase, α -hydroxy acid oxidase produce H_2O_2 whereas the catalases plays a significant protective role because H_2O_2 is toxic for cells.

 $\begin{array}{ccc} \text{Uric acid } + O_2 & & & & & \\ \text{Amino acid } + O_2 & & & & \\ \end{array} \xrightarrow[D-\text{amino oxidase}]{} \end{array} \xrightarrow[D-\text{amino oxidase}]{} \xrightarrow{} H_2O_2 & & & \text{Methyl alcohol } + H_2O_2 & & & \\ \hline \text{Formic acid } + H_2O_2 & & & & \\ \hline \text{Formic acid } + H_2O_2 & & & & \\ \end{array} \xrightarrow[Catalase]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \text{Formic acid } + H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array} \xrightarrow[D-\text{anino oxidase}]{} \xrightarrow{} H_2O_2 & & & \\ \hline \end{array}$

(iv) **Function :** These are involved in the formation and degrading of H_2O_2 . Plant peroxisomes are also involved in photorespiration. In which glycolic acid oxidase enzyme oxidises the glycolic acid to glyoxylic acid. In case of plants peroxisomes is also known as glyoxisomes.

(3) Glyoxysomes

(i) **Discovery :** These were discovered by Beevers in 1961 and Briedenbach in 1967.

(ii) **Occurrence :** These are found in fungi, some protists and germinating seeds especially in germinating fatty seeds where insoluble lipid food reserves must be turned into soluble sugars.

Animals cannot execute this conversion because they do not posses glyoxylate enzymes.

(iii) **Shape, size and structure :** These are spherical in shape, about 0.5-1 μm in size, they contain enzymes of metabolism of glycolic acid via glyoxylate cycle and bounded by a unit membrane. These are also contain enzymes for β -oxidation of fatty acids.

(iv) Functions : The main function of glyoxysomes is conversion of fats into carbohydrates.

(4) **Lomasomes :** These are sac like structures found between cell wall and plasmalemma in the haustoria of fungal hyphae. These were first discovered by *Bowen* and *Berlin*. Webster called them border bodies.

1.15 CENTROSOME

(1) **Discovery :** Centrosome was first discovered by Van Benden (1887) and structure was given by T. Boveri.

(2) **Occurrence :** It is found in all the animal cell except mature mammalian RBC's. It is also found in most of protists and motile plant cells like antherozoids of ferns, zoospores of algae and motile algal forms *e.g.*, *Chlamydomonas* but is absent in prokaryotes, fungi, gymnosperms and angiosperms.

(3) Structure : Centrosome is without unit membrane structure. It is formed of two darkly stained granules called centrioles, which are collectively called diplosome. These centrioles are surrounded bv a cytoplasmic transparent area called centrosphere or Kinetoplasm. Centriole and collectively centrosphere are called centrosome. Before the cell division the centrioles at each pole of the spindle. The two centrioles are situated at 90° to each other. Each centriole is a microtubular

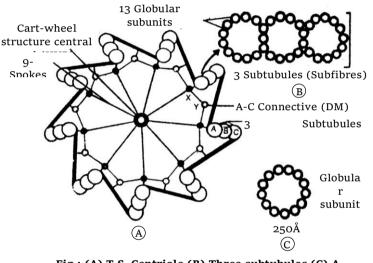


Fig : (A) T.S. Centriole (B) Three subtubules (C) A

structure and is formed of microtubules arranged in 9 + 0 manner (all the 9 microtubules are peripheral in position).

Each microtubule is a triplet and is formed of three subtubules which are called A, B and C. A subtubule is about 45\AA thick and is formed of 13 parallel protofilaments while each of B and C subtubule is formed of 10 parallel protofilaments. Each protofilament is formed of a row of α , β -tubulin dimers. C sub-tubule of each microtubule is linked to A sub-tubule of adjacent microtubule by a dense material (DM) strand called A-C linker, so all the microtubules are tilted at 40° . Each microtubule is about 250\AA in diameter.

Inside the microtubules, there is an intra-centriolar or cart-wheel structure which is formed of a central hub (about 25Å in diameter) and 9 radial spokes or radial fibres. Each radial spoke ends into a dense material (DM) thickening, called X-body or foot which is further linked to A-subtubule. Between two adjacent X-bodies there is another DM-thickening, called Y-body, which is linked to X-body on either side and to A-C linker on outer side.

Centriole is rich in tubulin and ATPase. Centriole can replicate but has no DNA. Centrioles replicate in G_2 phase of interphase of cell cycle but do not initiate cell division.

(4) **Chemical composition :** Centrosome is lipoproteinaceous structure. The microtubules of centriole are composed of protein tubulin and some lipids. They are rich in ATPase enzyme.

(5) **Origin :** The daughter centricle is formed from the pre-existing centricle in G_2 of interphase so called self-replicating organelle.

(6) Functions

(i) The centrioles help organising the spindle fibres and astral rays during cell division. Therefore, they are called microtubules organising centres. The cells of higher plants lack centrioles and still form a spindle.

(ii) They provide basal bodies which give rise to cilia and flagella.

(iii) The distal centriole of a spermatozoan give rise to the axial filament of the tail.

Important Tips

Centriole is also called microcentrum or cell centre.

• Each centriole is formed of $9 \times 3 = 27$ subtubules or subfibres.

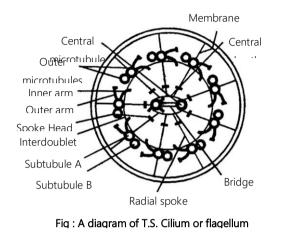
1.16 CILIA AND FLAGELLA

(1) **Discovery :** Flagellum presence was first reported by *Englemann* (1868). *Jansen* (1887) was first scientist to report the structure of sperm flagellum.

(2) **Definition :** Cilia and flagella are microscopic, hair or thread-like motile structures present extra-cellularly but *originate intra-cellularly from the basal body* and help in movements, locomotion, feeding, circulation etc.

(3) **Occurrence :** Cilia are found in all the ciliate protozoans *e.g.*, Paramecium, Vorticella etc. flame cells of flat worms; in some larval forms *e.g.*, Trochophore larva of *Nereis*, *Bipinnaria* larva of starfish etc.; in some body structures *e.g.* wind-pipe, fallopian tubes, kidney-nephrons etc.

Flagella are found in all the flagellate protozoans *e.g.*, *Euglena*, *Trichonympha* etc., collar cells of sponges; gastrodermal cells of coelenterates; spermatozoa of animals and lower plants; zoospores of algae etc. These are absent in red algae, blue-green algae, angiosperms, nematodes, arthropodes etc.


(4) Flagella are 1 - 4 per cell where as cilia are infinity in number.

(5) Cilia are smaller and flagella are longer in size, $5 - 10 \,\mu m$ and $150 \,\mu m$ respectively.

(6) Structure : Both cilia flagella are structurally similar and possess similar parts-basal body, rootlets, basal plate and shaft

(i) **Basal body :** These are also termed as blepharoplast (kinetosome) or basal granule. It is present below the plasma membrane in cytoplasm. The structure is similar to centriole made of 9 triplets of microtubules. Out of the 3 fibrils of a triplet first is A which is round and other two B and C are semi-circular. 9 triplets are connected to the centre by spokes. 'C' fibrils disappears as it enters into shaft.

(ii) Rootlets : Made of microfilament and providing support to the basal body. These are striated fibrillar outgrowths.

ĥ

(iii) Basal plate : Central fibril develop in this area. It is highly dense and lie above plasmamembrane.

(iv) Shaft : It is the hair like projecting part of cilia and flagella which remains outside the cytoplasm. It has 9 duplets of microtubules in radial symmetry. These are called axonema. Each axonema has 11 fibrils, 9 in the periphery and 2 in the centre. The arrangement is called 9 + 2 pattern. Central fibrils are singlet fibrils and covered by a central sheath. 9 pheripheral fibrils are duplet and are present at 10° difference from each other. Inner fibril of duplet is known as subfibre A with two bent arms and the outer one is subfibre-B. Peripheral fibrils are linked with each other by peripheral linkage and with the central fibril by radial linkage.

(7) Chemical composition : Chemically, the central tubules are formed of dynein protein while the peripheral microtubules are formed of tubulin protein. Dynein is the ATPase enzyme which hydrolyses the ATP to provide free energy for ciliary /flagellar beating. The interdoublet linkers are formed of nexin protein. Quantitatively, it is formed of X

Proteins = $74 - 84\%$ Lipids = $13 - 23\%$	1	Æ
Carbohydrates = $1 - 6\%$ Nucleotides = $0.2 - 0.4\%$		Ŧ
(8) Type of flagella : There are two types of flagella.		
(i) Tinsel – type : In this, flagellum has lateral hair-like processes, called flimmers or mastigonemes.		Å
(ii) Whiplash – type : In this, flagellum has no flimmers.	Whiplas	Tinsel
(9) Motion : Cilia beat in coordinated rhythm either simultaneously	Fig :	Types of

(synchronus) or one after the other (metachronic rhythm). The cilia produce a sweeping or pendular stroke. The flagella beat independently, hence produce undulatory motion.

(10) Function

(i) They help in locomotion, respiration, cleaning, circulation, feeding, etc.

(ii) Being protoplasmic structure they can function as sensory organs.

(iii) They show sensitivity to changes in light, temperature and contact.

(iv) Ciliated larvae take part in dispersal of the species.

(v) The cilia of respiratory tract remove solid particles from it. Long term smoking damages the ciliated epithelium, allowing dust and smoke particles to enter the long alveoli.

(vi) The cilia of urinary and genital tracts drive out urine and gametes.

Characters	Cilia	Flagella	
Number	More in number (may be upto 14,000 per cell).	Less in number (1-8).	
Size	Small sized $(5-10 \mu m)$.	Large sized (upto 100- $200 \mu m$).	
Distribution	Generally distributed on whole body.	Generally located at anterior end of body.	
Beating	Beat in either metachronous or synchronous coordination.	Beat independently.	
Type of motion	Sweeping or rowing motion.	Undulatory motion.	
Function Locomotion, feeding, circulation, Only 1 etc.		Only locomotion.	

Difference between cilia and flagella

Important Tips

- Kinocilia : True or motile cilia e.g. of epithelial cells of respiratory tracct.
- ☞ Stereo cilia : Immobile cilia e.g. of epididymis.
- Bacterial flagellum consists of a single fibril composed of flagellin protein.

1.17 CYTOSKELETON

In eukaryotic cell, a framework of fibrous protein elements became necessary to support the extensive system of membranes. These elements collectively form cytoskeleton of the cell. There are of three types.

(1) Microtubules :

(i) **Discovery :** These were first discovered by <u>*De Robertis* and *Franchi*</u> (1953) in the axons of medullated nerve fibres and were named neurotubules.

(ii) **Position :** The microtubules are electron-microscopic structures found only in the eukaryotic cellular structures <u>like cilia, flagella</u>, centriole, basal-body, astral fibres, spindle fibres, sperms tail, neuraxis of nerve fibres etc. These are absent from amoebae, slime-moulds and prokaryotes.

(iii) **Structure :** A microtubule is a hollow cylindrical structure of about 250 Å in diameter with about 150 Å luman. Its wall is about 50Å thick. Its walls is formed of 13 parallel, proto-tubules, each being formed of a liner series of globular dimeric protein molecules.

(iv) **Chemical composition :** These are mainly formed of tubulin protein. A tubulin protein is formed of 2 sub-units : α -tubulin molecule and β -tubulin molecule which are alternatively in a helical manner.

(v) Function

(a) These form a part of cytoskeleton and help in cell-shape and mechanical support.

(b) The microtubules of cilia and flagella help in locomotion and feeding.

(c) The microtubules of asters and <u>spindle fibres of the mitotic apparatus</u> help in the movement of chromosomes towards the opposite poles in cell-division.

(d) These help in distribution of pigment in the chromatophores, so help in skin colouration.

(e) These also form micro-circulatory system of the cell which helps in intracellular transport.

(f)These control the orientation of cellulose microfibrils of the cell wall of plants.

(2) Microfilament

(i) **Position :** These are electron-microscopic, long, narrow, cylindrical, non-contractile and proteins structures found only in the eukaryotic cytoplasm. These are present in the microvilli, muscle fibres (called myofilaments) etc. But these are absent from the prokaryotes. These are also associated with the pseudopodia, plasma membrane of fibroblats, etc. These are either scattered or organized into network or parallel arrays in the cytoplasmic matrix.

(ii) **Discovery :** These were discovered by Paleviz et. al. (1974).

(iii) **Structure :** Each microfilament is a solid filament of 50-60 Å diameter and is formed of a helical series of globular protein molecules. These are generally grouped to form bundles.

(iv) Chemical composition : These are mainly formed of actin-protein.

(v) Functions

(a) The microfilaments forms a part of cytoskeleton to support the relatively fluid matrix.

(b) The microfilaments bring about directed movements of particles and organelles along them in the cell.

(c) The microfilaments also produce streaming movements of cytoplasm.

(d) The microfilaments also cause cleavage of animal cells which is brought about by contraction of a ring of microfilaments.

(e) The microfilaments also participate in gliding amoeboid motion shown by amoebae, leucocytes and macrophages.

(f) The microfilaments are also resoponsible for the change in cell shape curing development, motility and division.

(g) Myofilaments bring about muscle contraction.

(h) The microfilaments cause movements of villi to quicken absorption of food.

(i) The microfilaments are responsible for the movement of cell membrane during endocytosis and exocytosis.

(j) The microfilaments cause plasma membrane undulations that enable the firoblasts to move.

(3) Intermediate filaments

(i) **Location :** They are supportive elements in the cytoplasm of the eukaryotic cells, except the plant cells. They are missing in mammalian RBCes and in the prokaryotes.

(ii) **Structure :** The IFs are somewhat larger than the microfilaments and are about 10 *nm* thick. They are solid, unbranched and composed of nonmotile structural proteins, such as keratin, desmine, vimentin.

(iii) Functions

(a) They form a part of cytoskeleton that supports the fuild cytosol and maintains the shape of the cell.

(b) They stabilize the epithelia by binding to the spot desmosomes.

(c) They form major structural proteins of skin and hair.

(d) They integrate the muscle cell components into a functional unit.

(e) They provided strength to the axons.

(f) They keep nucleus and other organelles in place.

Differences between microtubules and microfilaments

Microtubules	Microfilaments	
Are hollow cylinders.	Are solid rods.	
About 200 to 270 Å thick.	About 50 to 60 Å thick.	
Composed of 13 longitudinal protofilaments each.	Not composed of protofilaments.	
Formed of protein tubulin.	Formed of proteins actin and myosin.	
Subunits are dimers that have bound GTP and GDP.	Subunits are monomers that have bound ATP and ADP.	
Are noncontractile.	Are contractile.	
Have no role in cytoplasmic streaming, endocytosis and exocytosis.	Play a role in cytoplasmic streaming, endocytosis and exocytosis.	

Important Tips

- *•* Microtubule term was given by Slautterback.
- Tubulin proteins is dimeric protein formed of two globular polypeptides called α -tubulin and β -tubulin.
- Microtubules associated proteins like Tau- protein and kinase control polymerization of tubulin dimer's.
- ☞ Hyman (1917) proposed sol-gel-theory for amoeboid locomotion and was supported by Mast.

1.18 METABOLICALLY INACTIVE CELL INCLUSIONS/DEUTOPLASMIC SUBSTANCES/ERGASTIC MATERIAL

Within the cytoplasm of a cell there occur many different kinds of non-living structures which are called inclusions or ergastic substances. They are formed as a result of metabolic activities. They are of following types:

(1) **Vacuoles :** It is a <u>non-living</u> reservoir, bounded by a <u>differentially or selectively permeable</u> <u>membrane</u>, the tonoplast. The structure of tonoplast is similar to that of single unit membrane i.e. tripartite structure. The vacuole is filled with cell sap or tonoplasm. The thin layer of protoplasm, pushed towards the wall of the cell is called as primordial utricle. They contain water and minerals.

The vacuole in plants was discovered by *Spallanzani*. The vacuole is not air filled cavity, rather it is filled with a highly concentrated solution the vacuolar sap. It is generally neutral, but at maturity it becomes acidic. The cell sap contains following.

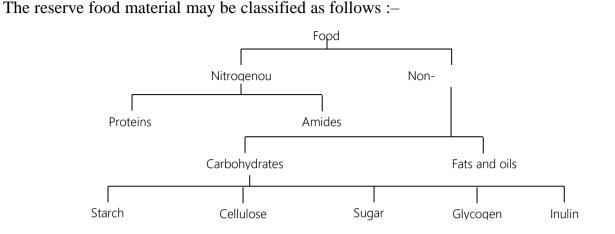
(i) Gases : CO_2 , O_2 and N_2 .

(ii) Inorganic salts : Nitrates, chlorides, sulphates, phosphates of K, Na, Ca and Mg.

(iii) Organic acids : Malic acid, formic acid, acetic acid, oxalic acid or their salts.

(iv) Sugars : Cane sugar, glucose and maltose.

(v) Soluble proteins : Enzymes.


(vi) Glycosides : *Like anthocyanins (water soluble pigment)*

Some protozoans have contractile vacuoles which enlarge by accumulation of fluid or collapse by expelling them from the cell. The vacuoles may be sap vacuoles, contractile vacuoles or gas vacuoles (pseudo vacuoles).

(vii) **Function of vacuoles** : Vacuole maintains osmotic relation of cell which is helpful in absorption of water. They also act as reservoir of cells. Turgidity and flaccid stages of a cell are due to the concentrations of sap in the vacuole.

In animal cell, it is phagocytic, food vacuole, autophagic or contractile in nature.

(2) Reserve food material

(i) **Carbohydrates :** Non-nitrogenous, soluble or non- soluble *important reserve food material*. Starch cellulose and glycogen are all insoluble.

(a) Starch : Found in plants in the form of minute solid grains. Starch grains are of two types:

Assimilation starch : It is formed as a result of photosynthesis of chloroplasts. Diastase enzyme converts it into soluble sugar at night time. The conversion of sugar into reserve or storage starch is brought about by leucoplast as amyloplast.

Reserve starch : Thick layers are deposited around an organic centre called hilum. When hilum is situated just at the centre of starch grain, it is said to be concentric *e.g.* pea, bean, wheat etc. While it is situated not at the centre, but nearer the margin it is said to eccentric *e.g.* potato.

(b) **Glycogen :** Glycogen or animal starch occurs only in colourless plants like fungi. It occurs in the cytoplasm as an amorphous body.

(c) **Inulin :** It is a complex type of polysaccharide, soluble found dissolved in cell sap of roots of Dahlia, Jaruslem, Artichoke, Dandelion and members of compositae. When these roots are preserved in alcohol it precipitates in the form of "Sphaerites" or fan shaped crystals.

(d) **Sugars :** A number of sugars are found in solution of cell sap. These include glucose, fructose, sucrose, etc. Glucose and fructose are monosaccharides while can sugar is disaccharide and occurs in beet root and sugar- cane.

(e) **Cellulose :** Chemical formula is $(C_6H_{10}O_5)_n$. The cell wall is made up of cellulose. It is insoluble in water.

(ii) Fats and Oils : These are important reserve food material. These are always decomposed into glycerol and fatty acids by enzymatic action. Fat is usually abundant in cotyledons than in the endosperm. *e.g.* flax seed produce linseed oil, castor produce castor oil, cotton seeds produce cottonseed oil, etc.

(iii) **Proteins and Amides (Aleurone grains) :** Storage organ usually contain protein in the form of crystalline bodies known as crystalloids (potato). Proteins may be in the form of aleurone grains as

in pea, maize, castor, wheat, etc. Each aleurone grain consists of a large crystalline grain of protein known as crystalloid associated with it there is a smaller body globoid. It is not a protein but double phosphate of calcium and magnesium.

(3) **Excretory Products :** The organic waste products of plants are by-product of metabolism. They are stored as inclusions. Depending upon chemical composition they are classified as:

(i) **Resins :** They are believed to be aromatic compounds consisting of carbon, hydrogen and oxygen and are acidic in nature. Sometimes they are found in combination with gums and are called gum resin. *e.g. Asafoetida* (heeng). These are used in making varnishes and gums.

(ii) **Tannins :** They are complex nitrogenous compounds of acid nature having an astringent taste. They are used in conversion of hide into leather. With ferric salt they are largely used manufacture of ink. Presence of tannin in plants makes its wood hard durable and germ proof.

(iii) **Alkaloids :** These are organic, basic, nitrogenous substance. They occur in combination with organic acids and most of them are poisonous. From plants, cocaine, hyoscine, morphine, nicotine, quinine, atropine, strychnine and daturine etc. are extracted.

(iv) **Glucosides** : Some glucosides or glycosides function as storage substance e.g. amygdaline of the bitter almond. Erythrocyanins and Anthocyanins are responsible red and blue colour and flavines for cream colour. Carotene is an unsaturated fatty acid and not a glycoside, gives red and orange colour to roots.

(v) **Etherial and Essential oils** : These consist mixture of various hydrocarbons known as tarpenes and their oxygen derivatives. They are responsible for flavor of many fruits and scent of many flowers etc. They are volatile and are soluble in water, ether, petroleum etc. *e.g.* lavender, mint, clove oil, eucalyptus oil, theme oil etc.

(vi) Mineral matter : Many minerals are waste products in plants.

(a) **Calcium oxalate :** It occurs in the form of crystals of various shapes.

Raphides : Needle shaped crystals are known as raphides. They are found single or in bundles. e.g. in plants like jamikand, *Colocasia*, water hyacinth (Jal kumbhi), amorphophallus and aroids.

Rosette or Sphaeraphides : Star shaped crystals. They occur in special mucilaginous parenchyma cells of the petiole of arum, water hyacinth, etc. Crystals in the form of cubes are found in tunic of onion bulb. In the leaf of belladona, these crystals are in the form of sand and also called as sand crystals.

Calcium oxalate crystals : In members of family solanaceae. They are found as cubics, rods and prisms.

(b) **Calcium carbonate :** It is deposited in the form of crystalline masses hanging from a cellulose stalk in enlarged epidermal cells of leaves of *Ficus elastica* (Indian rubber plant) and is called as *cystolith*.

(vii) **Latex :** It is an emulsion in water having many substances either in suspension or in true solution. It may contain sugars, alkaloids and oils. It is watery in banana, milky white in *Euphorbia*, yellow or orange red in opium (poppy) is dried latex.

(viii) **Organic acids :** Tartaric acid in tamarind, and grapes, citric acid in lemon, orange etc. malic acid in apple and *Bryophyllum*. Oxalic acid in the form of crystals.

(ix) **Gums :** It is formed by decomposition of cellulose cell wall. Gum arabic of commerce is obtained from *Acacia senegal*.

(4) **Secretory products :** The chief secretion of plants are enzymes nectar, colouring matter, water etc. These secretion are helpful to plants.

1.19 NUCLEUS

(1) **Definition :** (Karyon = Nucleus) The nucleus also called director of the cell. It <u>is the most</u> <u>important part of the cell which directs and controls all the cellular function</u>.

(2) **Discovery :** The nucleus was first observed by *Robert Brown* (1831). Nucleus plays determinative (in heredity) role in cell and organism, that was experimentally demonstrated by *Hammerling* (1934) by conducting surgical experiments with green marine unicelled algae <u>Acetabularia</u>.

(3) **Occurence :** A true nucleus with definite nuclear membrane and linear chromosome, is present in all the eukaryotes except mature mammalian RBCs, <u>sieve tube cell of phloem</u>, tracheids and vessels of xylem. The prokaryotes have an incipient nucleus, called <u>nucleoid</u> or prokaryon or genophore or false nucleus or bacterial chromosome.

(4) **Number :** Usually there is a single nucleus per cell i.e. mononucleate condition, e.g. *Acetabularia*.

(i) **Anucleate (without nucleus) :** RBCs of mammals, phloem sieve tube, trachids and vessels of xylam.

(ii) **Binucleate :** *e.g.* Ciliate, Protozoans like Paramoecium.

(iii) **Polynucleate :** *e.g.* fungal hyphae of Rhizopus, Vaucheria. Polynucleate condition may be because of fusion of a number of cells. *i.e.* syncytium, coconut endosperm or by free nuclear divisions without cytokinesis *i.e.* coenocyte.

(5) **Shape :** It varies widely, generally spherical e.g. cuboidal germ cells, oval e.g. columnar cells of intestine, bean shaped in *paramoecium*, horse-shoe shaped in vorticella, bilobed, e.g. WBCs (acidophils), 3 lobed e.g. basophil, multilobed *e.g.* neutrophils, long and beaded form (moniliform) *e.g.* stentor and branched in silk spinning cells of platy phalyx insect larva.

(6) Size : The size of nucleus is variable *i.e.* $5 - 30\mu$. In metabolically active cells size of the nucleus is larger than metabolically inactive cells. The size depends upon metabolic activity of the cells. It is directly proportional to number of chromosomes.

(7) Chemical composition of nucleus

Proteins = 80% (65% acidic, neutral and enzymatic proteins; 15% basic proteins-histones)

DNA = 12%

RNA = 5%

Lipids = 3%

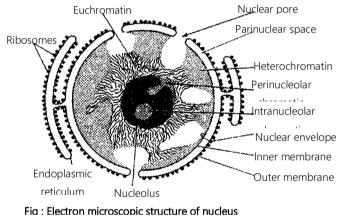
Enzymes like polymerases are abundantly present and help in synthesis of DNA and RNA. Minerals like Ca^{2+}, Mg^{2+}, Na^{+} , and K^{+} are present in traces.

(8) Ultrastructure : The nucleus is composed of following structure

(i) The nuclear membrane

(ii) The nucleous.

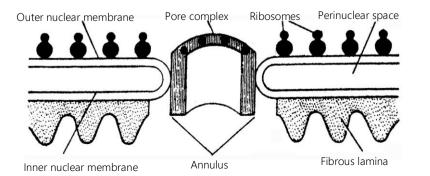
(iii) The nuclear sap or nucleoplasm.


(iv) The chromatin fibres.

The nuclear membrane or karyotheca

(i) **Definition :** It is defined as a regulatory envelope which controls the nucleo-cytoplasmic interacitons and exchange of materials.

(ii) **Discovery :** Nuclear membrane, also called nuclear envelope or nucleolemma or karyotheca, was first discovered by *Erclab* (1845).


(iii) **Structure :** <u>It is a bilayered envelope</u>. Each membrane is about 90 Å thick lipoproteinous and trilaminar. Outer membrane, called ectokaryotheca, is studded with ribosomes on its cytoplasmic surface and is continuos with

RER at some points. Inner membrane, called endokaryotheca, is without ribosomes and is internally lined by electron-dense material of protein fibres called fibrous or nuclear lamina nuclear cortex or hoeny comb layer (about 300 Å thick). Two membranes are separated by a fluid-filled intermembranous <u>perinuclear space</u> (about 100-300Å). Nuclear membrane contains following structure.

(a) **Nuclear pore :** Nuclear membrane is porous and has 1,000-10,000 octagonal nuclear pores. Each nuclear pore is about 400-1,000 Å in diameter (average size is 800 Å). The number and size of

the nuclear pores depend upon the needs of the cell. Nuclear pores are interspaced at about 1000-1500 Å. Each nuclear pore is fitted with a cylindrical structure, called annulus (with a lumen of 500 Å) and both

Fia : V.S. of nuclear envelope showing nuclear pore, Ribosomes and fibrous lamina 61

collectively form the pore complex or pore basket. Annulus has 8 micro-cylinders (each about 200 Å in diameter and with a lumen of 50 Å) in its wall. It also encloses a channel having nucleoplasmin for the movement of substances. Annulus acts as a diphragm and regulates the size of the nuclear pore.

(b) **Nuclear blebbing :** The nuclear envelope shows evagination. As a result, blebs are formed which are pinched off. This phenomenon is called blebbing. The nuclear vesicles so formed are thought to give rise to mitochondria, plastids, etc. Blebbing may also occur from the outer unit membrane only. A row of these blebs move towards the periphery. As a result of deposition of matrix material in between these blebs, and annulate lamella is formed. The annulate lamellae is thought to give rise to ER cisternae.

(iv) **Origin :** It is formed by the fusion of ER elements during the telophase of cell division.

(v) Functions

(a) It regulates the <u>nucleo-cytoplasmic interactions</u>.

(b) It allows the passage of inorganic ions and small organic molecules.

(c) It helps in pinocytosis and phagocytosis of large sized molecules .

(d) It allows passage of ribosomal subunits, RNAs and proteins through nuclear pores.

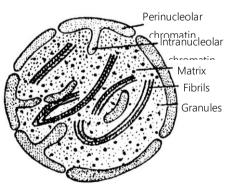
(e) It maintains the shape of the nucleus.

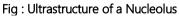
(f) Fibrous lamina strengthens the nuclear envelope. It also helps in dissolution and reformation of nuclear membrane during cell division.

The nucleolus (Little nucleus)

(i) **Discovery :** Nucleolus was first observed by *Fontana* (1781) in the skin cells of an eel. Term 'nucleous' was coined by *Bowman* (1840). Its light microscopic structure was given by *Wagner* (1840).

(ii) **Position :** It is generally associated with <u>nucleolar organizer region (NOR)</u> of the nucleolar chromosomes. It is absent in muscle fibres, RBC, yeast, sperm and prokaryotes.


(iii) **Number :** Generally, a diploid cell is with two nucleoli but there are five nucleoli in somatic cell of man and about 1000 nucleoli in the oocytes of Xenopus.


(iv) **Structure :** (*De Robertis et. al* 1971). A nucleolus is distinguishable into following regions :-

(a) **Chromatin :** The nucleolus is surrounded by perinucleolar chromatin. Heterochromatic intrunsions are also seen in the nucleolus which constitutes the intranucleolar chromatin.

(b) **Pars fibrosa :** Fibrils of 80 - 100 Å size form a part of the nucleolus.

(c) **Pars granulosa :** Granules of 150 - 200 Å diameter constitute the granular part of the nucleolus. They appear like

vesicle with a light central core. The granules may be joined by filament forming a beaded primary nucleolonema. The fibrils may also be associated to it. The primary nucleolonema may further coil to form the secondary nucleolonema.

(d) **Pars amorpha :** The granules and the fibrils lie dispered in an amorphous proteinaceous matrix. Nucleolus contains large amount of proteins mainly phosphoproteins. There are no histones proteins. RNA methylase, an enzyme that transfers methyl groups to the RNA bases has been localized in nucleolus. Nucleolus is stained by "pyronine". It is not bounded by any limiting membrane. Fibrillar region of nucleolus is called secondary constriction or nucleolar organising region (NOR) and this region directs the synthesis of rRNA. Ribosomes are assembled here as such it is also called ribosome producing machine or factory. Ribosomal units so formed are joined together by thin filament (rRNA) forming a structure like string of beads and it is called "*nucleonema*".

(v) **Chemical composition :** Nucleolus is mainly formed of RNA and non histone acidic proteins. It is a *storehouse of RNA*.

(vi) **Origin :** A nucleolus is formed at specific sites, called the nucleolar organizers, present on certain chromosomes region (NOR).

(vii) Functions

(a) It is seat of biogenesis of rRNA and also stores rRNA.

(b) It plays important role in spindle formation during cell division.

(c) It receives the ribosomal proteins from the cytoplasm, combines the rRNAs and ribosomal proteins to form ribosomal subunits.

Nucleoplasm : It is also called karyolymph. It is transparent, homogenous, semifluid, colloidal, ground substance present inside the nuclear membrane in which nuclear chromatin and nucleoli are embedded. Chemically it contains. Nucleoplasm is also known as protoplasm of nucleus.

(i) Nucleic acid : Monomer nucleotides of DNA and RNA

(ii) **Proteins** : Basic proteins (nuclear protamines and nucleohistones and acidic proteins (non-histone)

(iii) **Enzymes :** DNA polymerase, RNA polymerase, NAD synthetase, nucleoside triphosphatase, and pyruvic acid kinase, etc.

(iv) Minerals : Phosphorus, potassium, sodium, calcium, magnesium, etc.

(v) **Ribonucleoproteins :** Contain perichromatin granules and interchromatin granules. Histone proteins are basic because they contain arginine in much amount *e.g.* H_1, H_2A, H_2B, H_3 and H_4 .

The nucleoplasm helps in maintaining the shape of nucleus formation of spindle protein of NAD, ATP, DNA, RNAs and ribosomal subunits. Plasmosome and karyosome combindly called *"amphinucleoli"*.

Chromatin fibres /Nuclear chromatin : The nucleoplasm contains many thread like, coiled and much elongated structures which take readily the basic stains such as "basic fuschin". These thread like

structures are known as chromatin fibre. They are uniformly distributed in the nucleoplasm. They are observed only in the "interphase stage". Chromatin fibres are made of chromosomes. In resting nondividing eukaryotic cells the genome is nucleoprotein complex and it is called chromatin.

1.20 CHROMOSOME

(1) **Definition :** During <u>interphase</u>, chromatin threads are present in the form of a network called <u>chromatin</u> reticulum. At the time of cell division, these thread like structures of chromatin become visible as independent structures, called chromosomes.

(2) **Structure of chromosome :** Each chromosome consists of two coiled filaments throughout its length called chromonemata by *Vejdovsky*. These have *bead like* structures called *chromomeres which bear genes*. Chromatid is a half chromosome or daughter chromosome. The *two chromatids are connected at the centromere or primary constriction*. Primary constriction (centromere) and secondary constriction gives rise to satellite. The secondary constriction consists of genes which code for ribosomal RNA and nucleolus hence it is called as "nucleolar organizer region". Chromosomes having satellite are called SAT chromosomes.

The ends of chromosomes <u>are called</u> <u>"telomeres"</u> (which do not unite with any other structure). A tertiary constriction is also present in chromosomes, which perhaps helps in recognition of chromosomes.

In 1928 *Emile Heitz* developed a technique for stainning of chromosomes. Chromosomes can be stainned with acetocarmine or fuelgen (basic fuschin) there are two types of regions are seen :-

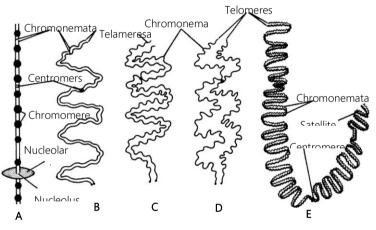


Fig : Chromosomes A. Diagrammatic B, C, D, E-Different parts

(i) **Heterochromatin :** It is formed of thick regions which are more darkly stained than others areas. It is with condensed DNA which is transcriptionally inactive and late replicating. It generally lies near the nuclear lamina. Heterochromatin are of two types : -

(a) **Facultative heterochromatin :** Temporarily inactivated chromatin and forms 2.5% of the genome.

(b) **Constitutive hetrochromatin :** Permanently inactivated chromatin and generally ground near centromeres.

(ii) **Euchromatin :** It is true chromatin and is formed of thin, less darkly stained areas. It is with loose DNA which is transcriptionally active and early replicating.

(3) Chemical chomposition : <u>DNA - 40%</u>. Histone – 50%. Other (acid) Proteins – 8.5%. RNA – 1.5%. Traces of lipids, *Ca*, *Mg* and *Fe*. Histone are low molecular weight basic proteins which occur alongwith DNA in 1:1 ratio. Nonhistone chromosomal or NHC proteins are of three types– structural,

enzymatic and regulatory. Structural NHC proteins form the core or axis of the chromosome. They are also called scaffold proteins. Enzymatic proteins form enzymes for chemical transformation, *e.g.*, phosphates, RNA polymerase, DNA polymerase. Regulatory proteins control gene expression. HMG (high mobility group) proteins get linked to histones for releasing DNA to express itself.

(4) Ultrastructure and Models of chromosomes : (See in genetics).

Important Tips

- Syncytium is multinucleate condition formed by the fusion of cells e.g. in plasmodium of slime moulds.
- Coenocytic is multinucleate condition by repeated Karyokinesis but not followed by cytokinesis e.g. in vaucheria, rhizopus.
- *Callan and Tamlin (1950) first to observe nuclear pore in nuclear membrane.*
- Staining property of chromosomes is called as heteropycnosis.
- *•* Satellite is also called trabant.
- *Centromere or kinetochore is responsible for chromosomal movement during cell division.*
- *F* Idiogram : Karyotype of a species is represented with the help of a diagram called idiogram.
- ☞ Genome : It is defined as the haploid set of chromosomes.
- Plasmon : Genes present in cytoplasm are called "plasmons"
- ☞ Non histone proteins (acidic proteins) are rich in nucleus and less chromosome.

1.21 MICROMOLECULES

(1) **Definition :** These are molecules of low molecular weight and have higher solubility. These include minerals, water, amino acid, sugars and nucleotides. All molecules or chemicals functional in life activity are called *biomolecules*.

(2) **Elements** : They are naturally occuring and they are classified on the basis of their property into metals and non-metals. Again on the basis of presence and requirement in plants and animals, they are grouped into major and minor bioelements. Which are required in large amount are major bioelements *e.g. Ca, P, Na, Mg, S, K, N*, etc., while those are required in small amount are called minor bioelements e.g. *Fe, Cu, Co, Mn, Mo, Zn, I*, etc.

On the basis of function, they may be of following types :-

(i) Framework elements : Carbon, oxygen and hydrogen.

(ii) **Protoplasmic elements :** Protein, nucleic acid, lipids, chlorophyll, enzymes, etc.

(iii) **Balancing elements :** *Ca*, *Mg* and *K*. counteract the toxic effect of other minerals by ionbalancing. There are 17 essential elements in plants and 24 in animals. 14 elements are non-essential :-

(iv) Proportion of elements in a cell

Oxygen - <i>O</i> - 62%	Chlorine- Cl	0.16%
Carbon - C- 20% major elements (95%)	Sulphur - S	0.14%
Hydrogen- H-10%	Potassium- <i>K</i>	0.11%
Trace elements- 0.75% minor elements (4.25%)	Sodium - <i>Na</i>	0.10%
Calcium – <i>Ca</i> - 2.5%	Magnesium – Mg	0.07%
Phosphorous- P- 1.14%	Iodine- I	0.14%
	Iron - Fe	0.10%

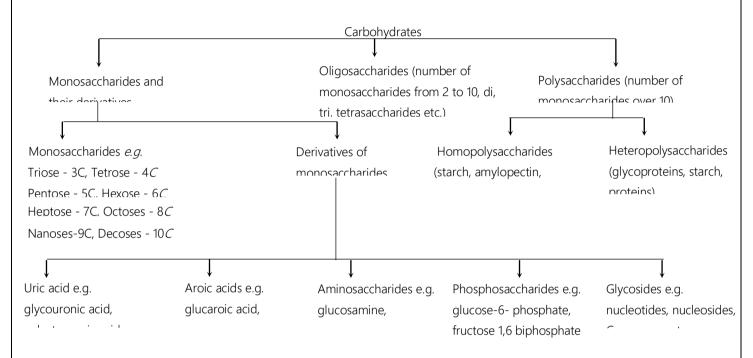
(3) **Biological compounds :** These involve two kinds of compounds.

(i) **Inorganic compounds :** Characterised by absence of carbon, simple structure with low molecular weights *e.g.* water, minerals, ions and gases etc. Water 80% and inorganic salts 1-3%.

(ii) **Organic compounds :** Characterised by presence of carbon bonded to form a straight chain or ring structure.

Carbohydrates	Lipids	Proteins	Nucleotides	Other compounds
1.0%	3.5%	12.0%	2.0%	0.5%

(4) **Cellular pool :** Aggregated and interlinked various kinds of biomolecules in a living system. So cell is called cellular pool. It includes over 5000 chemicals. Inorganic chemicals are present mostly in aqueous phase while organic in both. The aqueous phase may be moleculer solution in which dissolved particles are smaller than 0.000001 *mm* and colloidal phase in which particle size varies between 0.0001 - 0.000001 mm. Cellular pool comprises of both crystelloid and colloidal particles. Hence called as <u>crystal colloids</u> the non-aqueous phase comprises of organic molecules present in cell compartments like plasma membrane, mitochondria, chloroplast, etc.


(5) **Water :** Liquid of life, <u>major constituent of cell (about 60-90%)</u> and exists in intracellular, intercellular and in vacuoles. In cells it occurs in free state or bound state (*KOH*, *CaOH* etc.).

(i) **Properties of water :** It is colourless, transparent, tastless and odourless, neutral (pH-7) liquid. It is universal solvent, as it can dissolve both polar and non-polar solutes. High boiling point due to hydrogen bonding. Shows high degree of cohesion and adhesion. It can undergo three states of matter *i.e.* solid liquid gas. It is dense and heaviest at 4C and solid below it.

(6) **Carbohydrates :** *e.g.* sugars, glycogen (animal starch), plant starch and cellulose.

(i) **Source of carbohydrate :** Mainly photosynthesis. It exists only in 1% but constitutes 80% of the dry weight of plants.

(ii) **Composition :** It consists of <u>carbon, hydrogen and oxygen</u> in the ratio $C_n H_{2n} O_n$. It is also called saccharide and sugars are their basic components. Classification of carbohydrates can be summarised as :-

Monosaccharides : These are single sugar units which can not be hydrolysed furthur into smaller carbohydrates. General formula is $C_n H_{2n} O_n$, *e.g.* Triose-3C, glyceraldehyde, dihydroxyacetone, etc., *tetrose*, *pentose*, *hexose*, etc. About 70 monosaccharides are known, out of which only 20 are present in plants and animals.

(i) Important Hexoses

(a) **Glucose :** $C_6 H_{12} O_6$. Grape sugar is dextrose. Grape is sour due to presence of tartaric acid. Fructose is called fruit sugar (sweetest among natural sugars) and glucose is called " sugar of body". Normal level of blood glucose is 80-120mg/100ml. If it exceeds then condition is called "glucosuria".

(b) **Fructose :** Occurs naturally in fruit juices and honey. Hydrolysis of cane sugar in body also yields fructose.

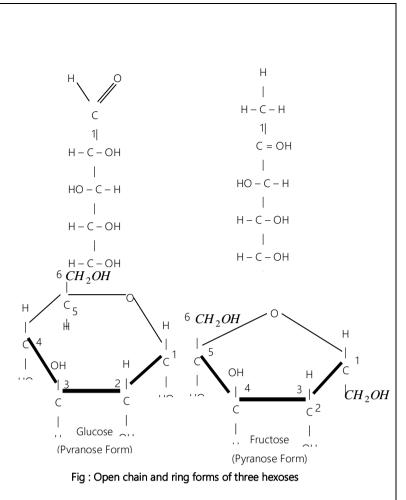
(c) Galactose : It is called as brain sugar. It's an important constituent of glycolipids and glycoproteins.

(d) **Mannose :** It is obtained on hydrolysis of plant mannans and gums. It is constituent of albumins, globulins and mucoproteins.

(ii) Structure of monosaccharides

(iii) Properties of monosaccharide

(a) Monosaccharides are colourless, sweet tasting, solids.


(b) Due to asymmetric carbon, they exist in different isomeric forms. They can rotate polarized light hence they are dextrorotatory and leavorotatory.

(c) D-glucose after reduction gives rise to a mixture of polyhydroxy alcohol, sorbitol or mannitol.

(d) The sugars with a free aldehyde or ketone group reduce Cu^{++} to Cu^{+} (cupric to cuprous)

(e) Sugars show oxidation, esterification and fermentation.

(f) The aldehyde or ketone group of a simple sugar can join an alcoholic group of

another organic compound bond *C*-*O*-*C* the process involves loss of water and is called condensation (H-O-H) or $H+OH \rightarrow H_2O$.

(iv) Functions of monosaccharides

(a) Glucose is the ultimate source of ATP in the cell respiration.

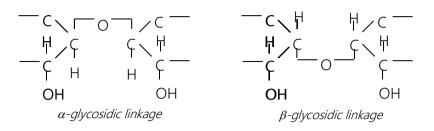
(b) It is used in formation of vitamin C.

(c) The intermediate compounds for the formation of glucose in photosynthesis are triose, tetrose, pentose and heptose, etc.

(d) Galactose is a constituent of agar-agar.

(e) Glucose is a blood sugar and xylose is a non nutritive sweetner.

(f) Polymerisation of these molecules forms macromolecules.


(g) Ribose and deoxyribose are constituent of nucleic acids and nucleotides

(h) Glyceraldehyde and dihydroxyacetone are trioses.

(i) Sugars have free aldehyde or ketone group which can reduce Cu^{++} to Cu^{+} and are called reducing sugars. Benedicts or fehling's test are used to confirm the presence of reducing sugars.

Oligosaccharides : Formed due to condensation of 2-10 monosaccharide units, the Oxygen bridge is known as "glycoside linkage" and water molecule is eliminated.

The bond may be α and β .

(i) **Disaccharides :** Composed of two molecules of same or different monosaccharide units. Also called "double sugars". Molecular formula is $C_{12}H_{22}O_{11}$.

(a) **Maltose :** Also called "malt sugar" stored in germinating seeds of barley, oat, etc. It is formed by enzymatic (enzyme amylase) action on starch. It is a reducing sugar.

(b) **Sucrose :** "Cane sugar" or " table-sugar". Obtained from sugarcane and beet root and on hydrolysis splits into glucose and fructose.

(c) **Lactose :** Milk sugar or 5% in mammalian milk. On hydrolysis yields glucose and galactose. *Streptococus lacti* converts lactose in to lactic acid and causes souring of milk.

(ii) **Trisaccharides :** Composed of three molecules of sugars. Molecular formula is $C_{18}H_{32}O_{16}$.

(a) **Raffinose :** Found in sugar beet, cotton and in some fungi. It is made up of glucose, fructose and galactose.

(b) Gentianose : Found in rhizomes of gentian species, made up of glucose and fructose.

(iii) **Tetrasaccharides :** Composed of four molecules of same or different sugars. Stachyose is found in *Stachys tubefera*. It is made up of two unit of galactose, one unit of glucose and one unit of fructose.

(iv) **Polysaccharides :** General formula is $(C_6H_{10}O_5)_n$ formed by condensation of several molecules (300-1000) of monosaccharides, (Described under "Macromolecules").

(v) **Reducing and Non-reducing carbohydrates :** Those which reduce Tollen's reagent or fehling solution are called reducing sugars and those do not reduce are called non-reducing sugars. All monosaccharides and disaccharides except sucrose are reducing. While all polysaccharides are non-reducing sugars.

(7) **Lipids :** Term lipid was coined by <u>*Bloor*</u>. These are esters of fatty acids and alcohol. They are hydrophobic insoluble in water but soluble in benzene, ether and chloroform. Lipids are classified into three groups:-

(i) Simple lipids : These are the esters of fatty acids and glycerol. Again they are typed as :-

(a) **Fats and Oils :** (Natural lipids or true fats). These triglycerides of fatty acid and glycerol. Fats which are liquid at room temperature are called oils. Oils with polyunsaturated fatty acids are called polyunsaturated e.g. sunflower oil, lower blood cholesterol.

(b) **Fatty acids :** Obtained by hydrolysis of fats. Formic acid is simplest fatty acid (*HCOOH*). These are of 2 types :-

Saturated fatty acids : The fatty acids which do not have double bond in between carbon atoms.e.g. butyric acid, palmitic acid, hexanoic acid, etc. They have high melting points, solid at room temperature and increase blood cholesterol.

Unsaturated fatty acids : The fatty acids which have double bonds in carbon atoms. *e.g.* 8 hexadecanoic acid, 9 octadecanoic acid etc. They have lower melting points mostly found in plant fats, liquid at room temperature and lower the blood cholesterol.

(c) **Waxes :** These are simple lipids composed of one molecule of long chain fatty acid and long chain monohydric alcohol. Waxes have high melting point, insoluble in water, resistant to atmospheric oxidation, chemically inert and not digested by enzymes. They reduce rate of transpiration by making plant tissue water proof and work as excellent lubricant.

Types of waxes

- **Plant wax :** Forms coating.
- **Bee's wax :** It is secretion of abdominal glands of worker honeybee. It consist of palmitic acid and myricyl alcohol.
- Lanolin or Wool fat : It is secreted by cutaneous glands, also obtained from wool of sheeps. It consists of palmitic acid, oleic or stearic acid and cholesterol.
- Sebum : It is secretion of sebaceous gland of skin.
- **Paraffin wax :** Obtained from petrolium.

(ii) **Compound lipids :** They contain some additional or element. Group with fatty acid and alcohol on the basis of group they may be of following types:

(a) **Phospholipids :** These contain phosphoric acid. It helps in transport, metabolism, blood clotting and permeability of cell membrane. It is a bipolar molecule i.e. phosphate containing end is hydrophilic whereas fatty acid molecules represent hydrophobic (non-polar tail). Phospholipids again comprises.

Lecithin : These are yellowish grey solids, soluble in ether and alcohol but insoluble in acetone. On hydrolysis they yield glycerol, fatty acid, phosphoric acid and choline. Lecithins are broken down by enzyme lecithinase to lysolecithin. The enzyme is found in venom of bee and cobra.

Cephalins : Found in animal tissue and soyabean oil. Cephalin contains choline or serine sometimes and stearic acid, oleic acid, linoelic and arachidonic acid.

(b) **Glycolipids :** These contain nitrogen and carbohydrate beside fatty acids. Generally found in white matter of nervous system. *e.g.* sesocine frenocin.

(c) Chromolipids : It includes pigmented lipids *e.g.* carotene.

(d) **Aminolipids :** Also known as sulpholipids. It contains sulphur and amino acids with fatty acid and glycerol. Cutin and suberin are also compound lipids resistant to water and also provide mechanical support in plants.

(iii) **Derived lipids :** These are obtained by hydrolysis of simple and compound lipids. Derived lipids include following components :-

(a) **Sterols :** Lipids without straight chains are called sterols. They are composed of fused hydrocarbon rings and a long hydrocarbon side chain. Best known sterol is cholesterol, present in high concentration in nervous tissue and in bile. Cholesterol is also the precursor of hormones like progesterone, testosterone, estradiol and cortisol and vitamin D. Diosgenin is obtained from yam plant (*Dioscorea*) used in making anti- infertility pills.

(b) **Digitalin :** It is prepared from leaves of Foxglove (*Digitalis lantana*) is a heart stimulant.

(c) **Ergosterol :** Present in food, found in ergot and yeast. It is precursor of another form of vitamin D, ergocalciferol (D_2) .

(d) **Coprosterol :** It is found in faeces. It is formed as a result of the reduction by bacteria in intestine from the double bond of cholesterol between C_5 and C_6 .

(e) **Tarpens :** It is essential oil and present mostly in oils of camphor, eucalyptus, lemon and mint. Phytol is a terpenoid alcohol present in Vitamin A, K, E and in pigments like chlorophyll carotenoid. Other forms are licopene, gibberellins and natural rubber.

(f) **Prostaglandin :** It is hormone like compound derived from arachidonic acid. Mostly present in secretion of seminal vesicles in males and menstrual cycle fluid in females.

(g) **Blubber :** A very thick layer of subcutaneous fat in whale.

(iv) Functions of lipids

(a) Oxidation of lipids yields comparatively more energy in the cell than protein and carbohydrates. 1gm of lipids account for 39.1 *KJ*.

(b) The oil seeds such as groundnut, mustard, coconut store fats to provide nourishment to embryo during germination.

(c) They function as structural constituent *i.e.* all the membrane system of the cell are made up of lipoproteins.

(d) Amphipathic lipids are emulsifier.

(e) It works as heat insulator.

(f) Used in synthesis of hormones.

(g) Fats provide solubility to vitamins A, D, E, and K.

(8) **Amino acids :** Amino acids are normal components of cell proteins (called amino acid). They are 20 in number specified in genetic code and universal in viruses, prokaryotes and eukaryotes. Otherwise amino acids may be termed rare amino acids, which take part in protein synthesis e.g. hydroxyproline and non- protein amino acids do not take part in protein synthesis *e.g.* Ornithin, citrullin, gama-aminobutyric acid (GABA) a neurotransmitter, etc.

(i) **Structure and Composition :** Amino acids are basic units of protein and made up of *C*, *H*, *O*, *N* and sometimes S. Amino acids are organic acids $NH_2 - G$

 $NH_{2} - C - COOH$ R

71

with a carboxyl group (-*COOH*) and one amino group $(-NH_2)$ on the α -carbon atom. Carboxyl group attributes acidic properties and amino group gives basic ones. In solution, they serve as buffers and help to maintain *pH*. General formula is *R* – *CHNH* ₂.*COOH* .

Amino acids are amphoteric or bipolar ions or Zueitter ions. Amino acids link with each other by peptide bond and long chains are called polypeptide chains.

(ii) Classification

Based on R-group of amino acids.

(a) **Simple amino acids** : These have no functional group in the side chain. *e.g.* glycine, alanine , leucine, valine etc.

(b) **Hydroxy amino acids** : They have alcohol group in side chain. *e.g.* threonine, serine, etc.

(c) **Sulphur containing amino acids** : They have sulphur atom in side chain. *e.g.* methionine, cystenine.

(d) **Basic amino acids** : They have basic group $(-NH_2)$ in side chain. *e.g.* lysine, arginine.

(e) Acidic amino acids : They have carboxyl group in side chain. *e.g.* aspartic acid, glutamic acid.

(f) Acid amide amino acids : These are the derivatives of acidic amino acids. In this group, one of the carboxyl group has been converted to amide $(-CO.NH_2)$. *e.g.* asparagine, glutamine.

(g) **Heterocyclic amino acids :** These are the amino acids in which the side chain includes a ring involving at least one atom other than carbon. *e.g.* tryptophan, histidine.

(h) Aromatic amino acids : They have aromatic group (benzene ring) in the side chain. *e.g.* phenylalanine, tyrosine, etc.

On the basis of requirements : On the basis of the synthesis amino acids in body and their requirement, they are categorized as :-

(a) **Essential amino acids :** These are not synthesized in body hence to be provided in diet *e.g.* valine, leucine, isoleucine, theronine ,lysine, etc.

(b) **Semi-essential amino acids :** Synthesized partially in the body but not at the rate to meet the requirement of individual. *e.g.*, arginine and histidine.

(c) **Non-essential amino acids :** These amino acids are derived from carbon skeleton of lipids and carbohydrate metabolism. In humans there are 12 non- essential amino acids *e.g.* alanine, aspartic acid, cysteine, glutamic acid etc. Proline and hydroxyproline have, *NH* (imino group) instead of *NH*₂ hence are called imino acids. Tyrosine can be converted into hormone thyroxine and adrenaline and skin pigment melanin. Glycine is necessory for production of heme. Tryptophan is the precursor of vitamin nicotinamide and auxins. If amino group is removed from amino acid it can form glucose and if *COOH* group is removed, it forms amines e.g. histamine.

(iii) Functions of amino acids

- (a) Amino acids are building blocks of proteins and enzymes.
- (b) By glycogenolysis, they form glucose.
- (c) Hormones like adrenaline and thyroxine are formed with the help of tyrosine.
- (d) Antibiotics often contain non-protein amino acids.
- (e) They are precursour of many substances.

(9) **Nucleotides** : Structurally a nucleotide can be regarded as a phosphoester of a nucleoside. A combination of nitrogens base and a sugar is called nucleoside and combination of a base, a sugar and phosphate group is known as nucleotide.

Types of nitrogen base	Nucleoside	Nucleotide
Adenine	Adenosine	Adenylic acid
Guanine	Guanosine	Guanylic acid
Cytosine	Cytidine	Cytidilic acid
Thymine	Thymidine	Thymidylic acid
Uracil	Uridine	Uridylic acid

There are two types of pentose sugars, ribose found in RNA and deoxyribose found in DNA. Nucleotides form 2% of the cell component.

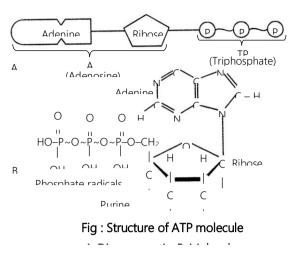
 N_2 base + Pentose sugar \rightarrow 'Nucleoside'

Nucleoside + Phosphoric acid \rightarrow 'Nucleotide' + H_2O .

There are two types of bases which occur in the nucleic acids.

(i) **Purines :** Purines are 9 membered <u>double ringed</u> nitrogenous bases which possess nitrogen at 1',3',7' and 9' positions. They are <u>adenine (A)</u> and <u>guanine (G)</u>.

(ii) **Pyrimidines :** They are smaller molecule than purines. These are 6 membered <u>single ringed</u> nitrogenous bases that contain nitrogen at 1' and 3' positions like cytosine (C), thymine (T) and uracil (U). In DNA adenine pairs with thymine by two H_2 bond and cytosine pairs with guanine by three H_2 bond.


A nucleotide may have one, two or three phosphates, as one in AMP (adenosine monophosphate), two in ADP (adenosine diphosphate). The phosphate bond is called high energy bond and it release about 8 K cal. ATP was discovered by *Karl Lohmann* (1929). Formation of ATP is endergonic reaciton.

(iii) Functions of nucleotides : Following are the major functions of nucleotides.

(a) **Formation of nucleic acids :** Different nucleotides polymerize together to form DNA and RNA.

(b) **Formation of energy carrier :** They help in formation of *ATP,AMP, ADP, GDP, GTP, TDP,TTP, UDP,* etc. which on breaking release energy.

(c) **Formation of Coenzymes :** Coenzymes like NAD, NADP, FMN, FAD, CoA, etc are formed. Coenzymes are non-proteinaceous substance necessory for the activity of the enzymes.

(iv) Some important Coenzymes

(a) NAD^+ (Nicotinamide adenine dinucleotide) or Code hydrogenase-I is involved in many hydrogen transferring reaction. It is Coenzyme I (Vit B_5).

(b) **Coenzyme II** or Code hydrogenase II or NADP⁺; TPN (triphopyridine) etc. it is similar in functioning to Coenzyme-I.

(c) **Coenzyme A :** It is a complex thiol derivative unlike Co-I and Co-II, Co-A is not a oxidisingreducing Coenzyme but is acylating *i.e.* Co-A accepts acetyl groups from one metabolite and denotes them to another in the presence of specific enzymes. Most important Co-A compound is acetyl Co-A (activated acetate). Beside acylation Coenzyme-A can also undergo phosphorylation.

(d) **Flavonucleotides :** FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide) take part in oxidation reaction and also function as dehydrogenase. FMN is vitamin B_2 or riboflavin.

(v) Important points

(a) On the basis of presence of aldehyde or ketone groups glyceraldehyde may be termed as an aldotriose and dihydroxyacetone is then called ketotriose.

(b) General formula of oligosaccharide is $C_n(H_2O)_{n-1}$.

(c) Isomaltose has α -1-6 linkage.

(d) Musein is a polysaccharide.

(e) Cobalt is constituent of vit. B_{12} and required for synthesis of phytochromes and auxins.

(f) Copper is a constituent of plastocyanine and co-factor of respiratory enzymes.

(g) Boron is necessory for plants in sugar translocation.

(h) Galactose is a constituent of 'gum arabic'.

(i) Sweetest protein is monellin.

(j) Lipidosis in born or acquired characteristic syndrome due to lipid metabolism.

(k) Cellulose nitrite is used in propellant explosis.

(1) Nickle is required for activity of urease.

1.22 MACROMOLECULES

Macromolecules are polymerisation product of micromolecules, have high molecular weight and low solubility. They include mainly polysaccharide, protein and nucleic acids.

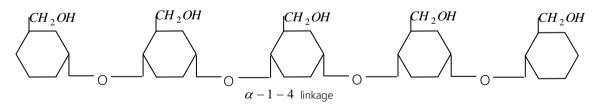
Polysaccharide : They are branched or unbranched polymers of monosaccharides jointed by glycosidic bond. Their general formula is $(C_6H_{10}O_5)_n$. They are also called glycans polysaccharides are amorphous, tasteless and insoluble or only slightly soluble in water and can be easily hydrolysed to monosaccharide units.

(1) Types of polysaccharides

On the basis of structure

(i) **Homopolysaccharides :** These are made by polymerisation of single kind of monosaccharides. *e.g.* starch, cellulose, glycogen, etc.

(ii) **Heteropolysaccharide :** These are made by condensation of two or more kinds of monosaccharides. *e.g.* chitin, pectin, etc.


On the basis of functions

(i) Food storage polysaccharides : They serve as reserve food. *e.g.* starch and glycogen.

(ii) **Structural polysaccharides :** These take part in structural framework of cell wall *e.g.* chitin and cellulose.

(2) Description of some polysaccharides

(i) **Glycogen :** It is a branched polymer of glucose and contain 30,000 glucose units. It is also called *animal starch*. Their general formula is $(C_6H_{10}O_5)_n$. It is also found as storage product in blue green algae, slime moulds, fungi and bacteria. It is a non-reducing sugar and gives red colour with iodine. In glycogen, glucose molecule are linked by 1 - 4 glycosidic linkage in straight part and 1 - 6 linkage in the branching part glycogen has branch points about every 8-10 glucose units.

(ii) **Starch :** Starch is formed in photosynthesis and function as energy storing substance. Generally found in the form of grains, which contain 20% water. It is found abundantly in rice, wheat, legumes, potato (oval and ecentric shaped), banana, etc. Starch is of two types. Straight chain polysaccharides known as amylose and branched chain as amylopectin. Both composed of D – glucose units jointed by $\alpha - 1 - 4$ linkage and $\alpha - 1 - 6$ linkage. It is insoluble in water and gives blue colour when treated with iodine. Amylose consists of 200 - 500 glucose units. It is stored inside chloroplast or spherical leucoplast and known as amyloplasts.

(iii) **Inulin :** Also called "dahlia starch"(found in roots). It has unbranched chain of 30 - 35 fructose units linked by $\beta - 2 - 1$ glycosidic linkage between 1 and 2 of carbon atom of D – fructose unit.

(iv) **Cellulose :** An important constituent of cell wall (20 - 40%), made up of <u>unbranched chain</u> of 6000 <u> β -D glucose units linked by 1 - 4 glycosidic linkage</u>. It is fibrous, rigid and insoluble in water. Wood (20 - 50%) and cotton (90%) contain large amount of it. Rayon (artificial fibre) cellulose, nitrate (used as explosive) and carboxyl methyl cellulose (used as cosmetics and ice cream) are obtained by activity of "cellulase" enzyme. It doesn't give any colour when treated with iodine.

(v) **Chitin :** It is a polyglycol consisting of N-acetyl–D–glucosamine units connected with β –1,4 glycosidic linkage. Mostly it is found in hard exoskeleton of insects and crustaceans and some times in fungal cell wall. Second most abundant carbohydrate.

(vi) **Agar-Agar :** It is a galactan, consisting of both D and L galactose and it is used to prepare bacterial cultures. It is also used as luxative and obtained from cell wall of red algae *e.g.* Gracilaria, Gelidium, etc.

(vii) **Pectin :** It is a cell wall material in collenchyma tissue may also be found in fruit pulps, rind of citrus fruits etc. It is water soluble and can undergo sol \Box gel transformation. It contain arabinose, galactose and galacturonic acid.

(viii) **Neutral sugars :** It is found associated with cellulose in cell wall. The common sugars in hemicellulose are D-xylose, L-arabinose, D-galactose, D-mannose and D-glucusonic acid. *e.g.* hemicellulose.

(ix) **Gum :** It secreted by higher plants after injury or pathogenic attacks. It is viscous and seals the wound. It involves sugars like L-arabinose, D-galactose, D-glucusonic acid. *e.g.* gum arabic.

(x) **Mucopolysaccharides :** These are gelatinous substance, containing amino sugars, uronic acid, etc. All slimy substances of plant are mucopolysaccharide. *e.g.* hyaluronic acid, vitreous humour, chondridine sulphate, heparin, husk of isabgul and mucilage of also.

(xi) **Glycoproteins :** They include some plasmaprotein and blood group substances. They doesn't contain uronic acid.

(xii) **Murein :** It is a peptidoglycan, linked to short chains of peptides. It is constituent of cell wall of bacteria and blue green algae.

(3) Properties of polysaccharides

(i) They are tasteless and colourless solids.

(ii) Insoluble in water, soluble in alcohol and more soluble in ether.

(iii) Can be easily hydrolyzed into their monosaccharide.

(iv) Their molecular weight is high.

(v) They do not diffuse through plasma membrane.

(4) Functions

(i) Cellulose pectin and chitin are constituents in cell wall of higher plants but peptidoglycan in the cell wall of prokaryotes.

(ii) They are reserve food material.

(iii) They form protective covering.

(iv) They can be used as culture medium.

(v) Being insoluble they do no exert osmotic or chemical influence in the cell.

(vi) Fibres are obtained used in making cloth and rope.

(vii) Nitrocellulose and trinitrate cellulose (gun-cotton) used as explosive.

Protein : The word protein was coined by *Berzelius* in 1838 and was used by *G. J. Mulder* first time 1840. 15% of protoplasm is made up of protein. *Average* <u>proteins contain 16% nitrogen, 50–55% carbon, oxygen 20–24%, hydrogen</u> 7% and sulphur 0.3 - 0.5%. Iron, phosphorous, copper, calcium, and iodine are also present in small quantity.

(1) **Structure of proteins :** It is due to different rearrangement of amino acids. When carboxyl group (-COOH) of one amino acid binded with amino group ($-NH_2$) of another amino acid the bond is called peptide bond. A peptide may be dipeptide, tripeptide and polypeptide. The simplest protein is Insulin. According to *Sanger* (1953) insulin consists 51 amino acids. A protein can have up to four level of conformation.

(i) **Primary structure :** The primary structure is the covalent connections of a protein. It refers to linear sequence, number and nature of amino acids bonded together with peptide bonds only. e.g. ribonuclease, insulin, haemoglobin, etc.

(ii) **Secondary structure :** The folding of a linear polypeptide chain into specific coiled structure $(\alpha - \text{helix})$ is called secondary structure and if it is with intermolecular hydrogen bonds the structure is known as β -pleated sheet. α -helical structure is found in protein of fur, keratin of hair claws, and feathers. β -pleated structure is found in silk fibres.

(iii) **Tertiary structure :** The arrangement and interconnection of proteins into specific loops and bends is called tertiary structure of proteins. It is stabilized by hydrogen bond, ionic bond, hydrophobic bond and disulphide bonds. It is found in myoglobin (globular proteins).

(iv) **Quaternary structure :** It is shown by protein containing more than one peptide chain. The protein consists of identical units. It is known as homologous quaternary structure e.g. lactic dehydrogenase. If the units are dissimilar, it is called as heterogeneous quaternary structure *e.g.* hemoglobin which consists of two α – chains and two β – chains.

(2) **Classification of proteins :** Proteins are classified on the basis of their shape, constitution and function.

0

On the basis of shape

(i) **Fibrous protein/Scleroprotein :** Insoluble in water. Animal protein resistant to proteolytic enzyme is spirally coiled thread like structure form fibres. e.g. *collagen* (in connective tissue), actin and myosin, keratin in hairs, claws, feathers, etc.

(ii) **Globular proteins :** Soluble in water. Polypeptides coiled about themselves to form oval or spherical molecules e.g. albumin insulin hormones like ACTH, oxytosin, etc.

On the basis of constituents

(i) **Simple proteins :** The proteins which are made up of amino acids only. *e.g.* albumins, globulins, prolamins, glutelins, histones, etc.

(ii) **Conjugated proteins :** These are complex proteins combined with characteristic non-amino acid substance called as prosthetic group. These are of following types :-

(a) **Nucleoproteins :** Combination of protein and nucleic acids, found in chromosomes and ribosomes. *e.g.* deoxyribonucleoproteins, ribonucleoproteins, etc.

(b) **Mucoproteins :** These are combined with large amount (more than 4%) of carbohydrates *e.g.* mucin.

(c) **Glycoproteins :** In this, carbohydrate content is less (about 2 - 3%) *e.g.* immunoglobulins or antibiotics.

(d) **Chromoproteins :** These are compounds of protein and coloured pigments. *e.g.* haemoglobin, cytochrome, etc.

(e) **Lipoproteins :** These are water soluble proteins and contain lipids. e.g. cholesterol and serum lipoproteins.

(f) **Metalloprotein :** These are metal binding proteins, AB₁–globin known as transferring is capable of combining with iron, zinc and copper e.g. chlorophyll.

(g) **Phosphoprotein :** They composed of protein and phosphate e.g. casein (milk) and vitellin (egg).

(iii) **Derived proteins :** When proteins are hydrolysed by acids, alkalies or enzymes, the degredation products obtained from them are called derived proteins. On the basis of progressive cleavage, derived proteins are classified as primary proteoses, secondary proteoses, peptones, polypeptides, amino acids, etc.

On the basis of nature of molecules

(i) Acidic proteins : They exist as anion and include acidic amino acids. e.g. blood groups.

(ii) **Basic proteins** : They exist as cations and rich in basic amino acids e.g. lysine, arginine etc.

(3) Function of Proteins

(i) Proteins occur as food reserves as glutelin, globulin casein in milk.

(ii) Proteins are coagulated in solutions, alkaline to the isoelectric *pH* by positive ions such as Zn^{2+} , Cd^{2+} , Hg^{2+} etc. Casein – *pH* 4.6, cyt. C – 9.8, resum globulin 5.4, pepsin 2.7, lysozyme 11.0 etc.

(iii) Proteins are the most diverse molecule on the earth.

(iv) Proteins work as hormone as insulin and glucagon.

(v) Antibiotics as gramicidin, tyrocidin and penicillin are peptides.

(vi) They are structural component of cell.

(vii) They are biological buffers.

(viii) Monellin is the sweetest substance obtained from African berry (2000 time sweeter than sucrose).

(ix) Proteins helps in defence, movement activity of muscles, visual pigments receptor molecules, etc.

(x) Natural silk is a polyamide and artificial silk is a polysaccharide. Nitrogen is the basic constituent.

1.23 NUCLEIC ACID

(1) **Definition :** Nucleic acids are the polymers of nucleotide made up of carbon, hydrogen, oxygen, nitrogen and phosphorus and which controls the basic functions of the cell. These were first reported by <u>*Friedrich Miescher*</u> (1871) from the nucleus of pus cell. *Altmann* called it first time as nucleic acid. They are found in nucleus. They help in transfer of <u>genetic information</u>.

(2) **Types of nucleic acids :** On the basis of nucleotides *i.e.* sugars, phosphates and nitrogenous bases, nucleic acids are of two types which are further subdivided. These are DNA (Deoxyribonucleic acid) and RNA (Ribonucleic acid).

DNA (Deoxyribonucleic acids)

(i) **Types of DNA :** It may be linear or circular in eukaryotes and prokaryotes respectively.

(a) **Palindromic DNA :** The DNA helical bears nucleotide in a serial arrangement but opposite in two strands.

 $-T-T-A-A-C-G-T-T-A-A.\ldots..$

 $-A-A-T-T-G-C-A-A-T-T\ldots$

(b) **Repetitive DNA** : This type of arrangement is found near centromere of chromosome and is inert in RNA synthesis. The sequence of nitrogenous bases is repeated several times.

(c) **Satellite DNA** : It may have base pairs up to 11 - 60bp and are repetitive in nature. They are used in DNA matching or finger printing (Jefferey). In eukaryotes, DNA is deutrorotatory and sugars have pyranose configuration.

(ii) **Chargaff's rule :** Quantitatively the ratio of adenine (A) to thymine (T) and guanine (G) to cytosine (C) is equal. *i.e.* "Purines are always equal to pyrimidine".

(iii) C value : It is the total amount of DNA in a genome or haploid set of chromosomes.

(iv) **Sense and Antisense strand :** Out of two DNA strand one which carries genetic information in its cistrons is called sense strand while the other strand does not carry genetic information, therefore, doesn't produce mRNA. The non-functional DNA strand is called antisense strand.

(v) **Heteroduplex DNA :** Hybrid DNA formed as a result of recombination is called heteroduplex DNA. It contains mismatched base pair of heterologous base sequence.

(a) **X-Ray crystallography study of DNA :** It was done by Wilkins. It shows that the two polynucleotide chains of DNA show helical configuration.

(b) **Single stranded DNA (ssDNA) :** It is single helixed circular. And isolated from bacteriophage $\phi \times 174$ by *Sinsheimer* (1959). It does not follow chargaff's rule. The replicative form (RF) has plus – minus DNA helix. e.g. parvovirus.

(c) Double helical model of DNA: It is also known as Watson and Crick model.

RNA or Ribonucleic acid : RNA is second type of nucleic acid which is found in nucleus as well as in cytoplasm *i.e.* mitochondria, plastids, ribosomes etc. They carry the genetic information in some viruses. They are widely distributed in the cell.

Important Tips

- *•* **ds DNA :** All eukaryotes, bacteria, polyoma virus and small pox virus.
- ss DNA : Bacteriophage $\phi \times 174$ and parvovirus.
- *•* **ds RNA :** Reogroup of viruses, wound tumour virus.
- ss RNA : TMV, TNV Poliomyelitis.
- ☞ Single genome : virus, bacteria, F₂ and R₁₇.
- Segmented genome : Orthomyxovirus (influenza virus).
- Natural silk is a polyamide and have nitrogen in high amount.
- *•* Cairns noticed process of replication of DNA in bacteria and said to be "theta mode".
- S. Ochoa (1967) synthesized RNA in vitro.
- Actinomycin D prevents transcription.
- Genomic RNA was discovered by **Franklin and Conrat** (1957).
- *The DNA* end with no unpaired base is called blunt end.
- ☞ Portion of DNA that codes for the final mRNA is exon.
- Pribnow box : The sequence of boxes that orient RNA polymerase so that synthesis proceeds left to right.
- Hogness box : (TATA box). The hypothesized eukaryotic RNA polymerase II promoter. Analogous to the pribnow box.
- ☞ **Nick** A single strand scission of the DNA.
- ☞ Bacteriophage T₂ infects E. coli (bacteria).
- ☞ Width of DNA helix is 2nm (20 Å).

- DNA polymerase-III makes mistake about every 1 in 10⁴ bases and joins an incorrect deoxyribonucleotide to growing chain.
- The two dimensional structure of tRNA is clover leaf like, but three dimensional form is L-shaped.
- *The second polypeptide chain is done by methionine.*
- Term DNA was given by **Zacharis**.
- The mitochondria DNA differs from nuclear DNA because of lacking binding histones.

1.24 CELL DIVISION/CELL REPRODUCTION/CELL CYCLE

(1) **Introduction :** It is the process by which a mature cell divides and forms two nearly equal daughter cells which resemble the parental cell in a number of characters.

"*Continuity of life*" is an important intrinsic characteristic of living organisms and is achieved through the process of reproduction. The reproduction may be asexual or sexual. Both of these involve the division and replication of cells. Even the growth and development of every living organism depends on the growth and multiplication of its cells.

In unicellular organisms, cell division is the means of reproduction by which the mother cell produces two or more new cells. In multicellular organism also, new individual develop from a single cell. The zygote, by the cell division. Cell division is central to life of all cell and is essential for the perpetuation of the species.

(2) **Discovery :** <u>Prevost</u> and <u>Dumas</u> (1824) first to study cell division during the cleavage of zygote of frog.

Nagelli (1846) first to propose that new cells are formed by the division of pre-existing cells.

Rudolf virchow (1859) proposed "omnis cellula e cellula" and "cell lineage theory".

A cell divides when it has grown to a certain maximum size which disturb the karyoplasmic index (KI)/Nucleoplasmic ratio (NP)/Kernplasm connection. Two processes take place during cell reproduction.

(a) Cell growth : (Period of synthesis and duplication of various components of cell).

(b) Cell division : (Mature cell divides into two cells).

(3) **Cell cycle :** *Howard* and *Pelc* (1953) first time described it. The sequence of events which occur during cell growth and cell division are collectively called cell cycle. Cell cycle completes in two steps:

(i) Interphase

(ii) M-phase/Dividing phase

(i) **Interphase :** It is the period between the end of one cell division to the beginning of next cell division. It is also called *resting phase* or not dividing phase. But, it is actually highly metabolic active phase, in which cell prepares itself for next cell division. In case of human beings it will take approx 25 hours. Interphase is completed in to three successive stages.

*G*₁ phase/Post mitotic/Pre-DNA synthetic phase/Gap Ist : In which following events take place.

(a) Intensive cellular synthesis.

(b) Synthesis of rRNA, mRNA ribosomes and proteins.

(c) Metabolic rate is high.

(d) Cells become differentiated.

(e) Synthesis of enzymes and ATP storage.

(f) Cell size increases.

- (g) <u>Decision for a division</u> in a cell occurs.
- (h) Substances of G stimulates the onset of next S phase.
- (i) Synthesis of NHC protein, carbohydrates, proteins, lipids.
- (j) Longest and most variable phase.
- (k) Synthesis of enzyme, amino acids, nucleotides etc. but there is no change in DNA amount.

S-phase/Synthetic phase

- (a) <u>DNA replicates and its amount becomes double (2C 4C)</u>.
- (b) Synthesis of histone proteins.
- (c) Euchromatin replicates earlier than heterochromatin.
- (d) Synthesis of NHC (non-histone chromosomal proteins).
- (e) Each chromosome has 2 chromatids.

G2-phase/Pre mitotic/Post synthetic phase/gap-IInd

- (a) Intensive cellular synthesis.
- (b) Increase in energy store.
- (c) Mitotic spindle protein (tubulin) synthesis begins.
- (d) Chromosome condensation factor appears.
- (e) Synthesis of 3 types of RNA and NHC proteins.
- (f) Synthesis of ATP molecule and storage.
- (g) Duplication of mitochondria, plastids and other cellular macromolecular complements.
 - (h) Damaged DNA repair occur.

(ii)*M*-phase/Dividing phase/Mitotic phase

(a) Nuclear division *i.e.* karyokinesis occurs in 4 phases – prophase, metaphase, anaphase and telophase. It takes 5-10% (shortest phase) time of whole division.

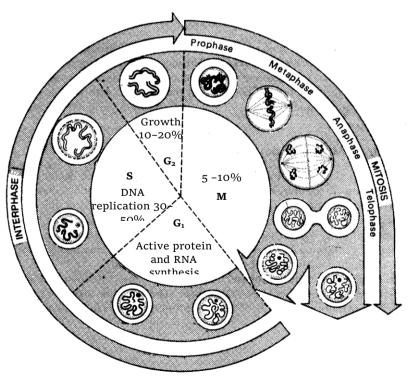


Fig : Different stages of cell cycle (Mitotic cycle).

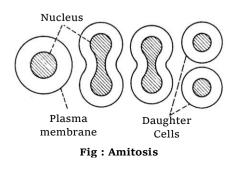
(b) **Cytokinesis :** Division of cytoplasm into 2 equal parts. In animal cell, it takes place by cell furrow method and in plant cells by cell plate method.

(4) **Duration of cell cycle :** It depends on the type of cell and external factors such as temperature, food and oxygen. Time period for G_1 , S, G_2 and M-phase is species specific under specific environmental conditions. *e.g.* 20 minutes for bacterial cell, 8-10 hours for intestional epithelial cell, and onion root tip cells may take 20 hours.

(5) **Regulation of cell cycle :** Stage of regulation of cell cycle is G_1 phase during which a cell may follow one of the three options.

(i) It may start a new cycle, enter the S-phase and finally divide.

(ii) It may be arrested at a specific point of G_1 phase.


(iii) It may stop division and enter G_0 quiscent stage. But when conditions change, cell in G_0 phase can resume the growth and reenter the G_1 phase.

Types of cell division : It is of three types, Amitosis, Mitosis and Meiosis.

Important tips

- G_0 phase : The cells, which are not to divide further, do not proceed beyond the G₁ phase and start undergoing differentiation into specific type. such cells are said to be in G₀ phase.
- ☞ Generation time : Period between 2 successive generation (range 8 hr 100 days).
- *The Mitogens* : Chemicals which enhance or stimulate cell division e.g. lymphokinase (in man)
- Cell cycle duration : 20 minutes in bacteria , 20 hrs in root tip of onion, 2-3 hrs in yeast, 24 hrs in man.
- G_0 phase : Cell only starts dividing when the period is favorable otherwise, it remain viable for months or years as such in G_0 phase.
- ☞ During the mitosis of He-La cells, the longest period is gap I phase or G₁.
- DNA replication occurs in S-phase.
- ☞ In a cell cycle the condensation of chromosome with visible centromere occurs during M-phase.
- Sequence in cell cycle is G_1, S, G_2, M .
- M-phase is of shortest duration of cell cycle.
- \sim In G_2 , the damaged DNA is repaired.
- Histone protein and RNA synthesis occurs in S-phase.
- Duplication of chromosome occurs at S- phase.

Amitosis : (Gk amitos = without thread, osis = state) It is also called as direct cell division. It was discovered by <u>*Remak*</u> (1855) in RBC of chick embryo. In this division there is no differentiation of chromosomes and spindle. The nuclear envelope does not

degenerate. The nucleus elongates and constricts in the middle to form two daughter nuclei. This is followed by a centripetal constriction of the cytoplasm to form two daughter cells. It is primitive type of division occuring in prokaryotes, protozoans, yeasts, foetal membrane of mammals, cartilage of mammals, degenerating cells of the diseased tissues and in the old tissues.

Mitosis : (Gk. Mitos = thread; osis = state)

(1) **Definition :** It is also called indirect cell division or somadtic cell division or equational division. In this, mature somatic cell divides in such a way that chromosomes number is kept constant in daughter cells <u>equal to those in parent cell</u>, so the daughter cells are quantitatively as well as qualitatively similar to the parental cell. So it is called equational division.

(2) **Discovery :** Mitosis was first observed by *Strasburger* (1875) and in animal cell by *W.fleming* (1879) term mitosis was given by *Fleming* (1882).

(3) **Occurrence :** Mitosis is the common method of cell division. It takes place in the somatic cells in the animals. Hence, it is also known as the somatic division. It occurs in the gonads also for the multiplication of undifferentiated germ cells. In plants mitosis occurs in the meristematic cells e.g. root apex and shoot apex.

(4) **Duration :** It ranges from 30 minutes to 3 hours time is species-specific but also depends upon type of tissues, temperature.

(5) Process of mitosis : Mitosis is completed in two steps

Karyokinesis : (Gk. karyon = nucleus; kinesis = movement) <u>Division of nucleus</u>. Term given by *Schneider* (1887).

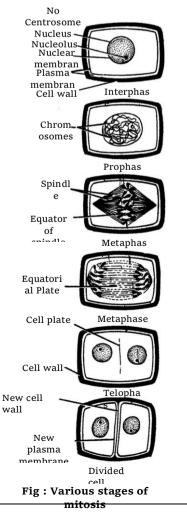
Cytokinesis : (Gk –kitos = cell; kinesis = movement) <u>Division of</u> <u>cytoplasm</u>, Term given by Whitemann (1887).

Karyokinesis : It comprises four phases *i.e.* Prophase, Metaphase, Anaphase, Telophase.

(i) **Prophase :** It is largest phase of karyokinesis.

(a) Chromatin fibres thicken and shorter to form chromosomes which may overlap each other and appears like a ball of wool. *i.e.* Spireme stage.

(b) Each chromosome divides longitudinally into 2 chromatids which remain attached to centromere.


(c) Nuclear membrane starts disintegrating except in dinoflagellates.

(d) Nucleolus starts disintegrating.

(e) Cells become viscous, refractive and oval in outline.

(f) Spindle formation begins.

(g) Cell cytoskeleton, golgi complex, ER, etc. disappear.

(h) In animal cells, centrioles move towards opposite sides.

(i) Lampbrush chromosomes can be studied well.

(j) Small globular structure (beaded) on the chromosome are called chromomeres.

(ii) Metaphase

(a) Chromosomes become maximally distinct *i.e.* size can be measured.

(b) A colourless, fibrous, bipolar spindle appears.

(c) Spindle is formed from centriole (in animal cells) or MTOC (microtubule organising centre) in plant cells successively called astral and anastral spindle.

(d) Spindle has 3 types of fibres.

• Continuous fibre (run from pole to pole).

• Discontinuous fibre (run between pole to centromeres).

• Interzonal fibre (run between 2 centromere).

(e) Spindle fibre are made up of 97% tubulin protein and 3% RNA.

(f) Chromosomes move towards <u>equatorial plane</u> of spindles called congression and become arranged with their arms directed towards pole and centromere towards equator.

(g) Spindle fibres attach to kinetochores.

(h) Metaphase is the best stage for studying chromosome morphology.

(iii) Anaphase

(a) Centromere splits from the middle and two chromatids gets separated.

(b) Both the chromatids move towards opposite poles due to repulsive force called anaphasic movement.

(c) Anaphasic movement is brought about by the repolymerisation of continuous fibres and depolymerisation of chromosomal fibres.

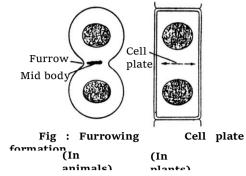
(d) Different shape of chromosomes become evident during chromosome movement viz. metacentric acrocentric etc.

(e) Chromosomes takes V, J, I or L shapes.

(f) The centromere faces towards equator.

(g) The chromatids are moved towards the pole at a speed of 1 $\mu m/minute$. About 30 ATP molecules are used to move one chromosome from equator to pole.

(iv) Telophase


(a) Chromosomes reached on poles by the spindle fibers and form two groups.

(b) Chromosomes begin to uncoil and form chromatin net.

(c) The <u>nuclear membrane and nucleolus reappear</u>.

(d) Two daughter nuclei are formed.

(e) Golgi complex and ER etc., reform.

Cytokinesis : It involves division of cytoplasm in animal cells, the cell membrane develops a constitution which deepens centripetally and is called <u>cell furrow</u> method.

In plant cells, cytokinesis occurs by cell plate formation.

(6) Significance of mitosis

(i) It keeps the chromosome number constant and genetic stability in daughter cells, so the linear heredity of an organism is maintained. All the cells are with similar genetic constituents.

(ii) It helps in growth and development of zygote into adult through embryo formation.

(iii) It provides new cells for repair and regeneration of lost parts and healing of the wounds.

(iv) It helps in asexual reproduction by fragmentation, budding, stem cutting, etc.

(v) It also restores the nucleo-plasmic ratio.

(vi) Somatic variations when maintained by vegetative propagation can play important role in speciation.

(7) Types of Mitosis

(i) Anastral mitosis : It is found in plants in which spindle has no aster.

(ii) **Amphiastral mitosis :** It is found in animals in which spindle has two asters, one at each pole of the spindle. Spindle is barrel-like.

(iii) **Intranuclear or Promitosis :** In this nuclear membrane is not lost and spindle is formed inside the nuclear membrane *e.g.* Protozoans (*Amoeba*) and yeast. It is so as centriole is present within the nucleus.

(iv) **Extranuclear or Eumitosis :** In this nuclear membrane is lost and spindle is formed outside nuclear membrane *e.g.* in plants and animals.

(v) **Endomitosis :** <u>Chromosomes and their DNA duplicate but fail to separate</u> which lead to polyploidy *e.g.* in liver of man, both diploid (2N) and polyploid cells (4N) have been reported. It is also called endoduplication and endopolyploidy.

(vi) **Dinomitosis :** In which nuclear envelope persists and microtubular spindle is not formed. During movement the chromosomes are attached with nuclear membrane.

Important tips

Pericentriolar cloud : A clear cytoplasmic area with no cell organelle between the centriole pair and astral rays.

Root tips of onion are best material for studying mitosis.

- *•* **Kinetochore :** A discoidal area on each chromatid and is the site of attachment of spindle fibres.
- In mitosis, <u>plectonemic coiling</u> takes place, in which sister chromatids are tightly coiled upon each other and are not easily separable. Paranemic coiling found in meiosis.
- Chromosomal fibres are also called tractile fibres, while continuous fibres are also called interpolar fibres.
- Mitogens : The agents which stimulate cell division e.g., cytokinins, auxins, gibberllins, insulin, temperature, steroids.
- *The agents which inhibit cell division.*
 - (a) Azides and Cyanides : Inhibit prophase.
 - (b) Colchicine : Inhibits spindle formation at metaphase.
 - (c) Mustard gas : Agglutinates the chromosomes.

(d) **Chalones :** These were first reported by Laurence and Bullough (1960). They are peptides and glycoproteins secreated by extracellular fluid of healthy cells and inhibit cellular division.

- Karyochoriosis : A type of mitosis in fungi in which is intranuclear nucleus divides by furrow formation.
- **C-mitosis :** Colchicine induced mitosis.
- After undergoing certain divisions, cells die. This is called as "Hayflick limit".
- Actinomycin D and tetracyclin inhibit cell division.
- ☞ 7 mitotic divisions occur to form embryosac in angiosperms.
- Mitosis index is the <u>ratio of dividing and non-dividing cells</u>.

Meiosis : (Gk. meioum = to reduce, osis = state)

(1) **Definition :** It is a special type of division in which the chromosomes duplicate only once, but cell divides twice. So one parental cell produces 4 daughter cells; each having half the chromosome number and DNA amount than normal parental cell. So meiosis is also called reductional division.

(2) **Discovery :** It was first demonstrated by *Van Benden* (1883) but was described by *Winiwarter* (1900). Term "meiosis" was given by *Farmer* and *Moore* (1905).

(3) **Occurrence :** It is found in special types and at specific period. It is reported in diploid germ cells of sex organs (*e.g.* primary spermatocytes of testes to form male gametes called spermotozoa and primary oocytes to form female gametes called ova in animals) and <u>in pollen mother cells</u> (microsporocytes) of anther and megasporocyte of ovule of ovary of flowers in plant to form the haploid spores. The study of meiosis in plants can be done in young flower buds.

(4) Process of meiosis : Meiosis is completed in two steps, meiosis I and meiosis II

Meiosis I : In which the actual chromosome <u>number is reduced to half</u>. Therefore, meiosis I is also known as reductional division or heterotypic division. It results in the formation of two haploid cells from one diploid cell. It is divided into two parts, karyokinesis I and cytokinesis I.

Karyokinesis I: It involves division of nucleus. It is divided into four phases *i.e.* prophase, metaphase, anaphase, telophase.

Prophase I: It is of <u>longest phase</u> of karyokinesis of meiosis. It is again divisible into five subphases *i.e.* leptotene, zygotene, pachytene, diplotene and diakinesis.

(i) Leptotene/Leptonema

(a) Chromosomes are long thread like with chromomeres on it.

(b) Volume of nucleus increases.

(c) Chromatin network has half chromosomes from male and half from female parent.

(d) Chromosome with similar structure are known as homologous chromosomes.

(e) Leptonemal chromosomes have a definite polarization and forms loops whose ends are attached to the nuclear envelope at points near the centrioles, contained within an aster. Such peculiar arrangement is termed as *bouquet stage* (in animals) and *syndet knot* (in plants).

(f) E.M. (electron microscope) reveals that chromosomes are composed of paired chromatids, a dense proteinaceous filament or axial core lies within the groove between the sister chromatids of each chromosome.

(g) Lampbrush chromosome found in oocyte of amphibians is seen in leptotene.

(ii) Zygotene/Zygonema

(a) Pairing or "synapsis" of homologous chromosomes takes place in this stage.

(b) Synapsis may be of following types.

- **Procentric :** Starting at the centromere.
- **Proterminal :** Starting at the end.
- Localised random : Starting at various points.

(c) Paired chromosomes are called bivalents, which by furthur molecular packing and spiralization becomes shorter and thicker.

(d) Pairing of homologous chromosomes in a zipper-fashion. Number of bivalents (paired homologous chromosomes) is half to total number of chromosomes in a diploid cell. Each bivalent is formed of one paternal and one maternal chromosome (*i.e.* one chromosome derived from each parent).

(e) Under EM, a filamentous ladder like nucleoproteinous complex, called synaptinemal. Complex between the homologous chromosomes which is discovered by "*Moses*" (1953).

(iii) Pachytene/Pachynema

(a) In the tetrad, two similar chromatids of the same chromosome are called sister chromatids and those of two homologous chromosomes are termed non-sister chromatids.

(b) <u>Crossing over</u> *i.e.* exchange of segments between non-sister chromatids of homologous chromosome occurs at this stage.

It takes place by breakage and reunion of chromatis segments. Breakage called nicking, is assisted by an enzyme endonuclease and reunion termed annealing is added by an enzyme ligase. Breakage and reunion hypothesis proposed by *Darlington* (1937).

(c) Chromatids of pachytene chromosome are attached with centromere.

(d) <u>A tetrad consists of two sets of homologous chromosomes each with two chromatids</u>. Each tetrad has four kinetochore (two sister and two homologous).

(e) A number of electron dense bodies about 100 *nm* in diameter are seen at irregular intervals within the centre of the synaptonemal complex, known as recombination nodules.

(f) DNA polymerase is responsible for the repair synthesis.

(iv) Diplotene/Diplonema

(a) At this stage the paired chromosomes begin to separate (desynapsis).

(b) Cross is formed at the place of crossing over between non-sister chromatids.

(c) <u>Homologous chromosomes move apart they remain attached to one another at specific points</u> <u>called chiasmata</u>.

(d) At least one chiasma is formed in each bivalent.

(e)Chromosomes are attached only at the place of chiasmata.

(f) Chromatin bridges are formed in place of synaptonemal complex on chiasmata.

(g) This stage remains as such for long time.

(v) Diakinesis

(a) Chiasmata moves towards the ends of chromosomes. This is called *terminalization*.

(b) Chromatids remain attached at the place of chiasma only.

(c) Nuclear membrane and nucleolus degenerates.

(d) Chromosome recondense and tetrad moves to the metaphase plate.

(e) Formation of spindle.

(f) Bivalents are irregularly and freely scattered in the nucleocytoplasmic matrix.

When the diakinesis of prophase-I is completed than cell enters into the metaphase-I.

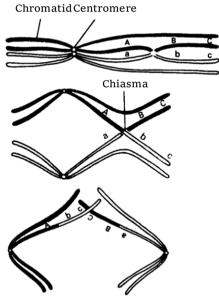


Fig : Showing crossing over during meiosis

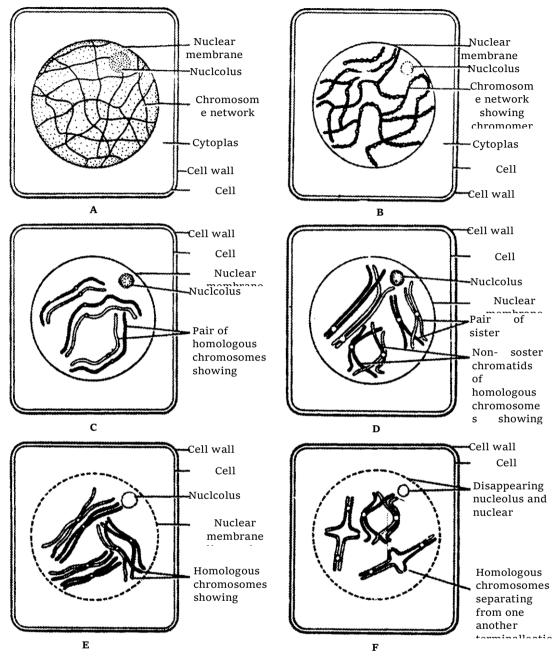


Fig : A-F Meiosis : Prophase I. A. Cell before entering leptotene, B. Leptotene, C. Zygotene, D. Pachytene, E. Diplotene, F. Diakinesis. Metaphase I : It involves;

(i) Chromosome come on the equator.

(ii) Due to repulsive force the chromosome segment get exchanged at the chiasmata.

(iii) Bivalents arrange themselves in two parallel equatorial or metaphase plates. Each equatorial plate has one genome.

(iv) Centromeres of homologous chromosomes lie equisdistant from equator and are directed towards the poles while arms generally lie horizontally on the equator.

(v) Each homologous chromosome has two kinetochores and both the kinetochores of a chromosome are joined to the chromosomal or tractile fibre of same side.

Anaphase-I

(i) It involves separation of homologous chromosomes which start moving opposite poles so each tetrad is divided into two daughter dyads. So anaphase-I involves the reduction of chromosome number, this is called *disjunction*.

(ii) The shape of separating chromosomes may be rod or J or V-shape depending upon the position of centromere.

(iii) Segregation of mendalian factors or independent asortment of chromosomes take place. In which the paternal and maternal chromosomes of each homologous pair segregate during anaphase-I which introduces genetic variability.

Telophase-I

(i) Two daughter nuclei are formed but the chromosome number is half than the chromosome number of mother cell.

(ii) Nuclear membrane reappears.

(iii) After telophase I cytokinesis may or may not occur.

(iv) At the end of Meiosis I either two daughter cells will be formed or a cell may have two daughter nuclei.

(v) Meiosis I is also termed as reduction division.

(vi) After meiosis I, the cells in animals are reformed as secondary spermatocytes or secondary oocytes; with haploid number of chromosomes but diploid amount of DNA.

(vi) Chromosomes undergo decondensation by hydration and despiralization and change into long and thread like chromation fibres.

Interphase : Generally there is no interphase between meiosis-I and meiosis-II. A brief interphase called interkinesis, or intermeiotic interphase. There is no replication chromosomes, during this interphase.

Cytokinesis-I: It may or may not be present. When present, it occurs by cell-furrow formation in animal cells and cell plate formation in plant cells.

Significance of meiosis-I:

(i) It separates the homologous chromosomes to reduce the chromosome number to the haploid state, a necessity for sexual reproduction.

(ii) It introduces variation by forming new gene combinations through crossing over and randon assortment of paternal and maternal chromosomes.

(iii) It may at times cause chromosomal mutation by abnormal disjunction.

(iv) It induces the cells to produce gametes for sexual reproduction or spores for asexual reproduction.

Meiosis-II: It is also called equational or homotypical division because the number of chromosomes remains same as after meiosis-I. It is of shorter duration than even typical mitotic division. It is also divisible into two parts, Karyokinesis-II and Cytokinesis-II.

Karyokinesis-II: It involves the separation of two chromatids of each chromosome and their movement to separate cells. It is divided in four phases *i.e.*, Prophase-II, Metaphase-II. Anaphase-II and Telophase-II.

Almost all the changes of Karyokinesis-II resembles to mitosis which involves.

(i) It starts just after end of telophase I.

(ii) Each daughter cell (nucleus) undergoes mitotic division.

(iii) It is exactly similar to mitosis.

(iv) At the end of process, cytokinesis takes place.

(v) Four daughter cells are formed after completion.

(vi) The sister kinetochores of one chromosome are separated.

(vii) The four daughter cells receive one chromatid each of the tetravalent.

(viii) Centromere divide at anaphase II.

(ix) Spindle fibres contract at prophase II.

Cytokinesis-II: It is always present and occurs by cell furrow formation in animal cell and cell plate formation in plant cell.

So by meiosis, a diploid parental cell divides twice forming four haploid gametes or sex cells, each having half the DNA amount than that of the parental cell and one-fourth of DNA present in the cell at the time of beginning of meiosis.

(5) Significance of meiosis

(i) <u>Constancy of chromosome number in successive generation</u> is brought by process.

(ii) Chromosome number becomes half during meiosis.

(iii) It helps in introducing variations and mutation.

(iv) It brings about gamete formation.

(v) It maintains the amount of genetic informative material.

(vi) Sexual reproduction includes one meiosis and fusion.

(vii) The four daughter cells will have different types of chromatids.

(6) Why the necessity of meiosis-II : The basic aim of meiosis is to reduce the number of chromosomes to half. The chromosomes that separate in the anaphase of meiosis-I are still double. Each consist of two chromatids and has 2n amount of DNA. Thus reduction of DNA content does not occur in meiosis-I. Truely haploid nuclei in terms of DNA contents as well as chromosome number are formed in meiosis-II. When the chromatids of each chromosome are separated into different nuclei. Thus meiosis-II is necessary.

S.No.	Characters	Mitosis	Meiosis	
I. Gen	eral			
(1)	Site of occurrence	Somatic cells and during the multiplicative phase of gametogenesis in germ cells.	Reproductive germ cells of gonads.	
(2)	Period of occurrence	Throughout life.	During sexual reproduction.	
(3)	Nature of cells	Haploid or diploid.	Always diploid.	
(4)	Number of divisions	Parental cell divides once.	Parent cell divides twice.	
(5)	Number of daughter cells	Two.	Four.	
(6)	Nature of daughter cells	Genetically similar to parental cell. Amount of DNA and chromosome number is same as in parental cell.	d parental cell. Amount of DNA	
II. Pro	phase			
(7)	Duration	Shorter (of a few hours) and simple.	d Prophase-I is very long (may be in days or months or years) and complex.	
(8)	Subphases	Formed of 3 subphases : early- prophase, mid-prophase and late-prophase.	- Prophase-I is formed of 5	
(9)	Bouquet stage	Absent.	Present in leptotene stage.	
(10)	Synapsis	Absent.	Pairingofhomologouschromosomes in zygotene stage.	
(11)	Chiasma formation and crossing over.	Absent.	Occurs during pachytene stage of prophase-I.	
(12)	Disappearance of nucleolus and	Comparatively in earlier part.	Comparatively in later part of prophase-I.	

Difference between	Mitosis	and Meiosis
---------------------------	----------------	-------------

	nuclear membrane		
(13)	Nature of coiling	<u>Plectonemic</u> .	Paranemic.
III. M	etaphase		
(14)	Metaphase plates	Only one equatorial plate	Two plates in metaphase-I but one plate in metaphase-II.
(15)	Position of centromeres	Lie at the equator. Arms are generally directed towards the poles.	Lie equidistant from equator and towards poles in metaphase-I while lie at the equator in metaphase-II.
(16)	Number of chromosomal fibres	Two chromosomal fibre join at centromere.	Single in metaphase-I while two in metaphase-II.
IV. A	naphase		
(17)	Nature of separating chromosomes	Daughter chromosomes (chromatids with independent centromeres) separate.	Homologous chromosomes separete in anaphase-I while chromatids separate in anaphase in anaphase-II.
(18)	Splittingofcentromeresanddevelopmentofinter-zonal fibres	Occurs in anaphase.	No splitting of centromeres. Inter-zonal fibres are developed in metaphase-I.
V. Tel	ophase		
(19)	Occurrence	Always occurs	Telophase-I may be absent but telophase-II is always present.
VI. Cy	/tokinesis		
(20)	Occurrence	Always occurs	Cytokinesis-I may be absent but cytokinesis-II is always present.
(21)	Nature of daughter cells	2N amount of DNA than 4N amount of DNA in parental cell.	1 N amount of DNA than 4 N amount of DNA in parental cell.
(22)	Fate of daughter cells	Divide again after interphase.	Do not divide and act as gametes.
VII. S	ignificance		
(23)	Functions	Helps in growth, healing, repair and multiplication of somatic cells. Occurs in both asexually and sexually reproducing	Produces gametes which help in sexual reproduction.

		organisms.	
(24)	Variations	Variations are not produced as it keeps quality and quantity of genes same.	
(25)	In evolution	No role in evolution.	It plays an important role in speciation and evolution.

(7) Types of meiosis : On the basis of time and place, meiosis is of three types

(i) **Gametic/Terminal meiosis :** In many protozoans, all animals and some lower plants, meiosis takes place before fertilization during the formation of gametes. Such a meiosis is described as gametic or terminal.

This type of life cycle with diploid adult and gametic meiosis is known as the diplontic cycle.

(ii) **Zygotic or Initial Meiosis :** In fungi, certain protozoan groups, and some algae fertilization is immediately followed by meiosis in the zygote, and the resulting adult organisms are haploid. Such a meiosis is said to be zygotic or initial. This type of life cycle with haploid adult and zygotic meiosis is termed the haplontic cycle.

(iii) Sporogenetic Meiosis

(a) <u>Diploid sporocytes or spore mother cells of sporophytic plant</u>, undergo meiosis to form the haploid spores in the sporangia.

(b) Haploid spore germinates to form haploid gametophyte which produces the haploid gametes by mitosis.

(c) Haploid gametes fuse to form diploid zygote which develops into diploid sporophyte by mitotic divisions. *e.g.* In higher plants like pteridophytes, gymnosperms and angiosperms.

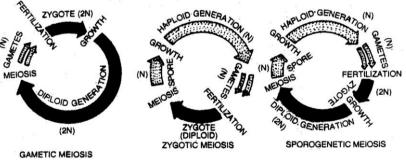


Fig : Three types of Meiosis

Important tips

- *•* Brachymeiosis : Failure of meiosis-II. It is characteristic feature of fungi.
- Meiosis-II is not mitosis as it occurs haploid number of chromosomes and chromatids formed may not be similar to each other.
- **Restitution nucleus :** A colchicine treated cell has the nucleus with double sets of chromosomes.
- In cyperus, one meiosis produce only one pollen instead of four so that meiotic division required to produce fruits will be = number of fruits × 2.
- ☞ Chiasmata first observed by **Janseens** (1909).
- When sister chromatids are loosely arranged and are easily separate. It is found in meiotic chromosomes.
- ☞ Mitosis ends in 1-2 hours while meiosis may take 24 hrs to few years.
- Neuron cells are always in interphase.
- When the chromosome duplicates but karyokinesis does not take place the number of chromosome per cell will increases, it is called endomitosis or endoduplication.
- Process of inducing mitosis into a cell mitogenesis.
- To study mitosis root tips are fixed in 1: 3 acetic acid and methanol.
- *Colchicine inhibits spindle formation and enhance duplication in number of chromosomes.*
- *The time of cell division <u>electrostatic force</u> is responsible for terminalization.*
- Mitotic crossing over takes place in parasexual cycle.

ASSIGNMENT

TOOLS AND TECHNIQUE

Basi	ic Level			
1.	Who invented the "ele	ectron microscope"		
	(a) Knoll and Ruska	(b) Robert Brown	(c) Correns	(d) Janssen and Janssen
2.	Resolving power of light	ght microscope is		
	(a) 0.3 µm	(b) 0.1 µm	(c) 2 µm	(d) 100 µm
3.	Differentiation capacit	ty of compound microscop	be is	
	(a) 0.275 µm	(b) 2.75 µm	(c) 27.5 µm	(d) None of these
4.	Types of lenses in a co	ompound microscope are		
	(a) 3	(b) 4	(c) 2	(d) 1
5. ł	The smallest size of a numan eye is	a cell which can be seen	with unaided eye is or o	lifferentiation capacity of
	(a) 1 micron	(b) 10 micron	(c) 100 micron	(d) 1000 micron
6.	Angstrom is equal to			
	(a) $10^{-10}m$	(b) $10^{-12}m$	(c) $10^{-6}m$	(d) $10^{-3}m$
7.	1 nm is equal to			
	(a) 10 Å	(b) $10^{-3}mm$	(c) $10^{-8}m$	(d) 100 µm
8.	Electron microscope i	s used for		
	(a) Viewing structure	of the cell	(b) Whole mount study	7
	(c) Cell division study	,	(d) Structure of the pol	llen grain
9.	Which of the followin	g statements is false		
	(a) An angstrom is on	e- hundredth of a micron		
		eins can be brought about	• •	
		ed by a compound microso	-	
		ells and tissues studied un	der phase contrast micros	scope
10.	Tracer elements are			
	(a) Vitamins	(b) Radioisotopes	(c) Microelements	(d) Macroelements
11.	The unit of measurem			2 .
	(a) <i>nm</i>	(b) <i>µm</i>	(c) <i>mm</i>	(d) Å
12.	$1 m \mu$ (millimicron) is e	•		
	(a) $10^{-5}mm$	(b) $10^{-6}mm$	(c) $10^{-7}mm$	(d) $10^{-8}mm$
13.	The minimum cell size	e that can be seen by light	microscope is	
	(a) 1 <i>μ</i>	(b) 0.5 <i>µ</i>	(c) 0.25 <i>µ</i>	(d) 0.1 <i>µ</i>
1				

14.	Resolving power of an	electron microscope is		
	(a) 1.0Å	(b) 2.0Å	(c) 5.0Å	(d) 100Å
15.	In which of the follow	ing units the sedimentati	ion constant of a sub	ocellular particle is expressed
	(a) $gm ml^{-1}$	(b) Newton	(c) Svedberg	(d) Dalton
16.	The most important pr	operty of a microscope i	S	
	(a) Its magnification		(b) Its resolution	l
	(c) Its ability to show	in three dimensions	(d) Its ability to	use larger wave lengths
17.	In electron microscope	e higher magnification is	due to the use of	
	(a) Higher wavelenght	s of light	(b)High velocity	electrons
	(c) A chromatic lenses		(d) Magnetic sys	stem
18.	The only microscope	which gives 3D images i	S	
	(a) Compound micros	cope	(b)Electron n	nicroscope
	(c) Scanning electron	microscope	(d)Fluorescen	nt microscope
19.		icroscope means capacit	y to	
	(a) Magnify the image		(b) Distinguish b	between two organelles
	(c) Distinguish betwee	•		between two close points
20.	Magnification of a con	npound microscope does	s not depend upon	
	(a) Focal length of obj	ective	(b) Focal length	of eyepiece
	(c) Tube length of mic	roscope	(d) Numerical ap	perture of objective
21.	Autoradiography techn	-		
	(a) Find out the absorp	ption maximum of chloro	ophyll pigments	
	(b) Study photorespira	-		
	-	arbon in photosynthesis		
			• • •	photolysis of water molescules
22.	_	an be studied by means of		
	(a) Light/Compound r	-	(b)Autoradio	
	(c) Phase contrast mic	x	(d)Electron n	nicroscope
23.		green cells can be isolate	ed with the help of	
	(a) Acetone	(b) Alcohol		
		(d) 0.5 solution of sucr	ose	
24 .	A living cell can not b	e studied under		
	(a) Light microscope		(b) Compound n	nicroscope
	(c) Electron microscop		(d) All of these	
25.	-	than electron microscop	py is used in the fine	e structure of a cell
	(a) Plasmolysis	(b) Chromatography		
	(c) Crystallography	(d) Obleteraturs		
1				

	26.	Interference microsco	py is used				
		(a) To localise a cellular organelle					
		(b) To study cells and their components in a living state using phase difference of light rays					
		(c) For obtaining X-ray diffraction patterns of DNA					
		(d) For increasing reso	olving power of microscop	e			
	27.	Dark field microscopy	v is used to detect bacteria.	It makes use of			
		(a) Invisible far red lig	ght (b)Invisible UV light	t			
		(c) Visible light	(d)Does not use any	light			
	28.	Which of the followin	g isotope is non radioactiv	ve			
		(a) C^{14}	(b) H^3	(c) P^{31}	(d) O^{18}		
	29.	For the study of cell, t	he technique used to other	than microscopy is			
		(a) Plasmolysis	(b) Obliteration	(c) Autoradiography	(d) All the above		
	30.	Which of the followin	g is basic stain				
		(a) Methylene blue	(b) Safranin	(c) Both (a) and (b)	(d) Acid fuchsin		
	31.	Cellulosic cell wall ca	n be specifically stained by	у			
		(a) Methylene blue	(b) Sudan IV	(c) Schultz reagent	(d) Janus green		
	32.	The technique of chro	matography was introduce	ed by			
		(a) Tswett	(b) Zernicke	(c) Wilkins	(d) Svedberg		
	33.	X-ray crystallography	was developed by				
		(a) Bragg	(b)Kirkpatrick				
		(c) Astbury and Frank	lin (d)Astbury and Fran	klin			
	34 .	A scientist wants to st	udy the structure of a prote	ein. What technique wou	ıld be useful		
		(a) Electrophoresis		(b) X-ray crystallograp	phy		
		(c) Density gradient co	entrifugation	(d) Microspectrophoto	metry		
	35.	Ability to distinguish	two closely placed points i	İS			
		(a) Resolving power	(b)Video power				
			wer (d)Magnifying powe	r			
	36.	The unit of measurem	ent of light microscope is				
		(a) Milimetre	(b) Svedberg unit	(c) Micron	(d) Angstrom		
	37.	0	nit of resolution of a light r	-	٥		
		(a) 1Å	(b) 4Å	(c) 200Å	(d) 2000Å		
	38.		n electron microscope is				
		(a) About 10 times of		(b) About 50 times of	•		
			es of light microscope		es of visible microscope		
	39.	-	ion of scanning electron m	-	•		
		(a) 200 times	(b) 2,000 times	(c) 20,000 times	(d) 2,00,000 times		
	40.	-	mon oil immersion lens is				
		(a) 45X	(b) 100 X	(c) 450 X	(d) 1000X		
- 1							

41.	Which of the following	g statements is correct pha	se microscopy is				
	(a) Used for the study	of living cells					
	(b) Based on the scatte	ring of light and uses a da	rk field condenser				
	(c) Related to retardation and to the thickness of the object						
	(d) The best method fo	r studying nonliving ultra	sturcture				
42.	The X-ray crystallogra	phic studies to get diffrac	tion picture of DNA mol	ecule was made by			
	(a) Watson and Crick	(b) Wilkins and Franklir	n (c) Beadle and Tatum	(d) Jacob and Monad			
43.	The limit of resolution	of an instrument is					
	(a) Diractly related to i	its resolving power	(b) Inversely related to	its resolving power			
	(c) Not related to its re	solving power	(d) Same as its resolvin	ng power			
44.	In centrifugation which	n one settles as sediment I					
	(a) Ribosomes	(b) Mitochondria	(c) Nuclei	(d) None of these			
45 .	Living cells cannot be	observed in an electron m	icroscope because				
	(a) They lose water va	pour and disturb the vacu	um of the microscope				
	(b) The heat generated	by electrons injurious to o	cell and its organelles				
		nt and therefore remains in					
	(d) They are killed by						
46.	The technique used to	study the five details of su	urface features of cell and	d organisms, is			
	(a) Transmission electr	-	(b) Scanning electron	-			
	(c) Interference micros	scope	(d) Fluorescence micro	oscope			
47.	To destruct cell bound	ary, the tissues are homog	enized in	_			
	(a) 0.25 M sucrose solution	ution	(b) 1.0 M sucrose solution	tion			
	(c) 1.0 M salt solution		(d) 0.25 M salt solution	n			
48.	Materials are separated	l by density gradient by ce	entrifugation on the basis	s of			
	(a) Size	(b) Density	(c) Size and density	(d) None of these			
49 .	Who among the follow	ving scientists developed c	cytochemical technique f	or the presence of DNA			
	(a) Johannsen	(b) Fuelgen and Rossent	beck (c)Mc clintock	(d) Hammerling			
50.	A cell homogenate is	subjected to ultra centr	rifugation. What fractio	n would be separated at			
]	$0,000g \times 20$ minutes						
	(a) Ribosome and Mic	rosome	(b)Mitochondria an	d Lysosome			
	(c) Nucleus and Nucle	olus	(d) Endoplasmic re	ticulum			
51.		-	croscope in visible light	with oil-immersion and			
V	with out oil immersion is	s respectively					
	(a) 3.0 μm and 30 μm	(b) 0.3 μm and 10 μm	(c) 3.0 μm and 2.0 μm	(d) 0.2 μm and 0.3 μm			
52.	Interference microscop	be was invented by					
	(a) Morten et al.		(b) Knoll and Ruska				
	(c) Leeuwenhoek		(d) Zernike				
53 .	Dark field microscope	was invented by					
	(a) Zsigmondy	(b) Zernicke	(c) Morten et al	(d) Caspersson			

54·	One micrometre (micro	on, μm) is equal to			
	(a) 0.1 <i>mm</i>	(b) 0.01 <i>mm</i>	(c) 0.001 <i>mm</i>	(d) 0.0001 <i>mm</i>	
55.	A nanometre (nm) is				
	(a) $10^{-9}m$	(b) 10^{-7} cm	(c) $10 Å$	(d) All the above	
56.	The term microscope v	was coined by			
I	(a) Janssen and Jansee	n (b) Faber	(c) Robert Hooke	(d) Leeuwenhoek	
5 7•	Which one is the most	important in microscopy			
	(a) Resolving power		(b) Magnification		
	(c) Study of living cell	S	(d) Study of biochemic	als	
58.	Reflector of classroom	microscope is			
	(a) Convex lens		(b) Concave lens		
	(c) Concavo-convex le	ens	(d) Plano concave lens		
59.	Microtome was invent	ed by			
	(a) Abbe	(b) Tolles	(c) His	(d) Malpighi	
60.	Microtomy is				
	(a) Surgery of tissues		(b) Surgery of endocrine glands		
	(c) A new technique of surgery where incision is not visible				
	(d) Fine sectioning by	machine			
61.	Fast green stains				
	(a) Cellulose wall gree	en (b) Cytoplasm green	(c) Mitochondria orang	ge (d)Both (a) and (b)	
62.	Which one is a redox of	lye			
	(a) Janus green	(b) Methylene blue	(c) Neutral red	(d) Aniline blue	
63.	Janus green dye is spec	cific for			
	(a) Mitochondria	(b) Golgi apparatus	(c) Cell walls	(d) Cytoplasm	
64.	Iodine solution is used	for testing the presence of	f		
	(a) Carbohydrates	(b) Proteins	(c) Fats	(d) Starch	
65.	Iodine test was develop	ped by			
	(a) Feulgen and Rosser	nbeck	(b) F.V Raspail		
	(c) Zernike		(d) Flemming and Brow	wn	
66.	Fuelgen test is specific	e for			
	(a) RNA	(b) DNA	(c) Proteins	(d) Lipids	
67.	Dyes that make cellull	ar structures glow under U	JV-radiations are		
	(a) Fluorescent		(b) Fluorochromes		
	(c) Autofluorescent		(d) Phosphorescent		
68.	c^{14} uridine is used to d	etermine			
	(a) Carbohydrate synth	nesis (b)Photosynthesis	(c) RNA synthesis	(d) DNA synthesis	

Advance Level

69.	Electron microscope	has revealed the presence	e of OR which a	among t	he following can be seen
(only under electron mic	roscope			
	(a) Ribosome	(b) Chromosome	(c) Chloroplas	t	(d) Leucoplast
70.	The transmission elect	tron microscope has a rese	olution of		
	(a) 2,000 nanometres	(b) 200 nanometres	(c) 2 nanometr	res	(d) 0.2 nanometre
71.	A magnification of up	to 100 million times is p	ossible		
	(a) Scanning electron microscope (b)Electron transmission microscope				
	(c) Scanning probe mi	croscope	(d)Photon	tunnelin	g microscope
72.	Ultrastructure of cell c	an be best studied by			
	(a) Autoradiography		(b) X-ray diffr	ation me	ethod
	(c)Phase contrast micr	roscope	(d) None of th	ese	
7 3 .	Ultrastructure of a cell	l organelle can best be stu	died through		
	(a) Microdissection		(b) Electron m	icroscop	pe
	(c) Phase –contrast mi	croscope	(d) Autoradiog	graphy	
74.	A living cell can be be	est studied by means of			
	(a) Dark field microsc	ope	(b)Electror	n micros	cope
	(c) Phase contrast mic	roscope	(d)Compound microscope		
75.	A living cell is to be st	tudied without staining a	microscope usefu	l for it	
	(a) Phase contrast mic	roscope	(b) TEM		
	(c) SEM		(d) Fluorescen	t micros	scope
76.	Organelles can be sepa	arated from cell homoger	nate through		
	(a) Chromatography		(b) X-ray diffr	action	
	(c) Differential centrif	ugation	(d) Auto- radio	ography	
77.	Sub-cellular component	nts are separated with the	e help of		
	(a) Electrophoresis	(b) Autoradiography	(c) Chromatog	graphy	(d) Cell fractionation
7 8.	A student wants to st	udy metaphasic behaviou	r of chromosom	es/ chro	mosomes in a living cell.
- -	The technique most suit	able is			
	(a) Phase contrast mic	roscope	(b) X-ray micr	oscope	
	(c) Cell fractionation		(d) Scanning	electron	microscope
7 9 .	-	on used in electron micros	-		
	(a) More than light	(b) Less than light	(c) Like X-ray	S	(d) Equal to light
80.	High wavelength UV	-			
	(a) Fluorescent micros	-	(b)Polarising r		-
	(c) Ultra-violet micros	-	(d) Phase-cont	rast mic	roscope
81.		tron microscope have a w	-		0
	(a) 0.05Å	(b) 0.1Å	(c) 0.15 Å		(d) 0.5Å
1					

82.	Resolving power of electron microscope is					
	(a) 1000 Å (b) 100 Å	(c) 1 Å	(d) 10Å			
83.	. Electron microscope has a high resolution power. This is due to					
	(a) Electromagnetic lenses	(b)Very low wavelengt	h of electron beam			
	(c) Low wavelength of light source used	(d) High numerical ape	rture of glass lenses used			
84.	Electron microscope is more advantageous than li	-				
	(a) Requires no light (b) Has higher magnification (c) Gives depth focus (d) Uses vacuum					
85.	. Highest resolving power is that of					
	(a) Fluorescent microscope (b)Polarising microsco	-				
	(c)Ultraviolet microscope (d)Electron microscop					
86.	Which German phycist invented the electron mic	croscope which one him	the 1986 Nobel Prize in			
p	physics					
		(c) J.A.D Jensen	(d) Eugene P. Wigner			
8 7.	Fluorescence microscope is useful for					
	(a) Localisation of structures having affinity for fl	luorochromes				
	(b) Study of cell components in living state					
	(c) Obtaning X- ray diffraction photographs					
	(d) Its very high resolving power.					
88.	X-ray crystallography is useful in the study of	(b) Three dimensional	structure of protoing			
	(a) Lipid structure	(b) Three dimensional	cleic acids and proteins			
80	(c) Arrangement of proteinsTechnique useful for studying synthesis of molecular	-	-			
89.	(a) Chromatography	(b) Autoradiography	ne patriways is			
	(c) Micro spectrophotometry	(d) Cytochemistry				
90.	Path of carbon assimilation can be traced with the					
90.		(c) Radioisotopes	(d) Fractionation			
91.	Autoradiography is employed for knowing	(c) Rudioisotopes	(d) Tructionation			
91.	(a) Photorespiration					
	(b) Pathway of carbon assimilation					
	(c) Absorption maxima of photosynthetic pigmen	ts				
	(d) Evolution of oxygen during photo-synthesis du		r			
92.	Arrangement of atoms and molecular groups in D	- ·				
			(d) Centrifugation			
93.	The process by which the amount of DNA, RNA	-	vn at a time is			
	(a) Cell fractionation	(b) Autoradiography				
	(c) Phase contrast microscopy	(d) Tissue culture				
94.	Transparent living cells can be properly studied up	nder the microscope cal	led			
	(a) Ordinary optical microscope	(b) Electron microscop	e			
I	(c) X-ray microscope	(d) Phase contrast micr	oscope			

95. The order of sedimentation of subcellular structures during differential centrifugation is

(a) Lysosome, mitochondria, ribosome

- (b) Mitochondria, nucleus, lysosome
- (c) Nucleus, mitochondria, lysosome (d) Ribosome, nucleus, mitochondria

96. If a biochemical analysis of mitochondria is to be done, the best procedure would be

- (a) Grind the cell and filter out the mixture and take the debris
- (b) Subject the cells to cell fractionation
- (c) Select cells which have a large number of mitochondria
- (d) Plasmolyse the cells, filter it and take the debris
- 97. DNA synthesis can be specifically measured by estimating the incorporation of radioactive labelled
 - (a) Uracil(b) Thymidine(c) Adenine(d) Deoxyribose sugar
- **98.** In recent years considerable attention is being given to DNA protein interactions, because expression of genes is regulated thought binding of specific proteins on regulatory DNA sequences. The pattern of protein binding on DNA can be studied by

(a) Light microscope(b) X-ray crystallography (c) Electron microscope(d) Ultracentrifugation99. The fuelgen nuclear reaction includes the following

- (a) Removal of purines at the level of the purine deoxyribose glucosidic bond of DNA by hydrolysis
 - (b) Reaction of the deoxyribose with leucofuchsin to give purple colur to DNA
 - (c) Reaction of the free aldehyde groups with schiff's reagent to stain DNA
 - (d) Both (a) and (c)

100. The resolution of light microscope could be improved to 1.5 times by using

- (a) Red light + immersion oil between the specimen and objective
- (b) Blue light + glycerine between the specimen and objective
- (c) Blue light + immersion oil between specimen and objective
- (d) Day light + air between the specimen and objective
- 101. Separation of proteins on the basis of their being polyelectrolytes can be brought about by

(a) Centrifugation (b) Electrophoresis (c) Chromatography (d) Crystallography

102. Technique by which subcellular components are separated on the basis of their physical properties

- (a) Chromatography (b) Tracer technique
- (c) Microtomy and Centrifugation (d) Microscopy
- **103.** A particular cell from a mixture can be separated by
 - (a) Flow cytometry (b) Chromatography
 - (c) Microscopy (d) Fractionation

104. Scanning electron microscope is important for its images which are

- (a) Very large and sharp (b) Three- dimensional
- (c) Fluorescent (d) Two-dimensional

105.	Taylor (1958) studied chromosome replication by using radioactive							
	(a) Uridine	(b) Thymidine	(c) Histones	(d) Phosphate				
106.	6. Homogenisation is							
	(a) Breaking a tissue into cells							
	(b) Crushing a tissue to separate cells from intercellular substances							
	(c) Breaking of cells and suspending them in 0.25 M sucrose solution							
	(d) Separation of different cellular components							
107.	In homogenisation the suspension is kept at a temperature of							
	(a) $15 - 20^{\circ}$ C	(b) 25 –35° C	(c) -4° to 0° C	(d) $0^{\circ} - 4^{\circ} C$				
108.	Organelle not possible	ganelle not possible to observe without electron microscope is						
	(a) Chloroplast	(b) Ribosome	(c) Mitochondrion	(d) Nucleolus				
109.	Details of mitochondrial structure could be studied only after the discovery of							
	(a) Oil immersion lens		(b) Fluorescent microscope					
(c) Electron microscope (d) All the above)				
110.	Which of the following microscope is best for studying the process of mitosis							
	(a) Dark field microsc	ope	(b)Phase contrast microscope					
	(c) Ultraviolet microso	scope (d)Electron microscope		scope				
111.	Which one is a new structure obtained during Cell fractionation							
	(a) Microsomes	(b) Microbodies						
	(c) Endoplasmic raticulum (d) Ribosome subunits							
112.	Schultze's reagent is							
	(a) Safranin		(b) Fast green					
	(c) Phloroglucinol + H	ICl	(d) Chlor-zinc-iodine					
113.	Sudan III is used for id	an III is used for identification of						
	(a) Glycogen	(b) Protein	(c) DNA	(d) Fat				
114.	What stains are used in	n fluorescent microscopy						
	(a) Orcein	(b) Safranin	(c) Rhodamine	(d) Eosine				
115.		g is used for vital staining	vital staining of the components of a living cell					
	(a) Wrights stain		(b) Malachite green					
	(c) Safranin		(d) Acetocarmine					
116.		nium tetroxide is used in						
	(a) Light microscopy	(a) Light microscopy (b) Electron microscopy						
	(c) Phase contrast mic	roscopy	(d) X-ray diffraction n	nicroscopy				

CELL THEORY AND GENERAL INFORMATION

Basi	ic Level						
117.	Who proposed the "cell theory						
	(a) Schleiden and Schwann (b)Watson and Crick (c) Mendel and Morgan (d) Robert Hooke						
118.	T. Schwann and M. Sc						
	(a) Dutch biologists	(b) English biologists	(c) Austrian biologists	(d) German biologists			
119.	Who proposed the theory that "cells arise only from the pre –existing cells						
	(a) Mohl	(b) Virchow	(c) Haeckel	(d) Brown			
120.	Which of the following	hich of the following is the exception of cell theory					
	(a) Bacteria	(b) Fungi	(c) Lichen	(d) Virus			
121.	The cell theory states that						
	(a) All cells have nucle	ei	(b) All cells are totipotent				
	(c) Cells reproduce by mitosis		(d) Cells are the basic structural units of living				
122. Living cells were seen for the first time by							
	(a) Leeuwenhoek	(b) Robert Hooke	(c) Waksman	(d) Flemming			
123.	Cell was discovered by	y and given the term					
	(a) Grew	(b) Brown	(c) Robert Hooke	(d) Darwin			
124.	What Robert Hooke ha						
	(a) Cellulose	(b) Cell wall	(c) Nuclei	(d) Protoplasm			
125.	Robert Hooke						
		a) Lived in the 17 th century		(b) Observed cork cells			
	(c) Invented lens		(d) constructed a microscope				
126.		Iow many types of cells are known					
	(a) One	(b) Two	(c) Three	(d) Four			
127.		ne branch which deals with the study of cell structure is known as					
	(a) Histology	(b) Ecology	(c) Morphology	(d) Cytology			
128.	The word "Prokaryote"	" means a cell					
	(a) With many nuclei		(b) With one nucleus				
	(c) With diffused nucle		(d) Without chloroplast				
129.	Which one of the follo	• • •	(a) Crosse slass	(d) Destariantes se			
	(a) Agaricus	(b) Salmonella	(c) Green algae	(d) Bacteriophage			
130.	Basic unit of life is	(h) Tigana					
	(a) Cell	(b) Tissue	(c) Organ	(d) Organ system			
131.		is generalisation given by		(d) Vinchow			
	(a) Leeuwenhoek	(b) Dutrochet	(c) Lamarck	(d) Virchow			
132.	Cellular totipotency is	•	(b) All plant calls				
	(a) Only gymnosperm cells		(b) All plant cells(d) Only bacterial cells				
	(c) All eukaryotic cells	(u) Only Dacterial cells					
1							

	133.	Totipotency is evident in						
		(a) Meristem		(b)	(b) Xylem sclerenchyma			
		(c) Phloem sieve tube			(d) Phellum			
	134.	The division of the plant kingdom into Prokaryota and Eukaryota is based on the characters of						
		(a) Nucleus only		(b)	(b) Chromosomes only			
		(c) Cell organelles only		(d) All the above				
	135.	Which of the following	g is absent in prokaryotes					
		(a) Nuclear membrane	Endoplasmic reticul	doplasmic reticulum (d)All the above				
	136.	Difference between the prokaryotic and eukaryotic cells in having						
		(a) Cell wall	(b) Nuclear membrane	(c)	Ribosome	(d) None		
	137.	Which of the following	nich of the following is absent in prokaryotes					
		(a) DNA	(b) RNA	(c)	Plasma membrane	(d) Mitochondria		
138. Intracellular compartments are not found in cells of								
		(a) Lower plants	(b) Prokaryotes	(c)	Higher plants	(d) Eukaryotes		
	139.	39. The inherent capacity of a cell to regenerate a new whole organism is called						
		(a) Ontogeny	(b) Totipotency	(c)	Phycogeny	(d) Differentiation		
	140.	Cell organelles found of	only in plants					
		(a) Golgi complex	(b) Mitochondria	(c)	Plastids	(d) Ribosomes		
	141.	A plant cell usually dif						
		(a) Ribosomes	(b) Centriole	(c)	Mitochondria	(d) E.R		
	142.	2. The main difference between plant and animal cell is						
		(a) Animal cells lack co	(a) Animal cells lack cell wall(b)Plant cell has no cell wall			cell wall		
		(c) Animal cell has a ri	gid cell wall		(d) Plant cells lack cell membrane			
	143.	Smallest known cell is						
		(a) Acetabularia		(b)	Nostoc			
			(c) Chlamydomonas		(d) Pleuropneumonia like organism			
	144.	Smallest cell organelle						
		(a) Lysosome	(b) Dictyosome	(c)	Polysome	(d) Monosome		
	145.	Plant cells lack						
		(a) Spindle fibres	(b) Centrioles	(c)	Asters	(d)Centrioles and asters		
	146.	A mature plant cell has						
		(a) Cell wall	(b) Vacuole	(c)	Protoplasm	(d) All of the above		
	147.		c cell is characterised by					
		(a) Distinct nucleus				ies		
			bsence of nuclear membrane (d) Distinct DNA					
	148.	The smallest living cells with the cell wall are						
		(a) Viroids	(b) Protistans	(c)	Mycoplasma	(d) Bacteria		

149.	A prokaryotic structure is					
	(a) Bacteria and Archaebacteria	(b) Blue green algae a	nd Mycoplasma			
	(c) Ricketts	(d) All of these				
150.	Name the correct order of relative size					
	(a) Nucleus, cell, chromosome oxygen atom a	and water molecule				
	(b) Cell, nucleus, water molecule, oxygen ato	om, chromosome				
	(c) Chromosome, cell, nucleus, water molecu	le and oxygen atom				
	(d) Cell, nucleus, chromosome, water molecu	le and oxygen atom				
151.	Cell recognition is due to					
	(a) Lipid portion of cell membrane (b)Carb	ohydrate portion of glycop	roteins			
	(c) Protein portion of glycoprotein (d) Both	a carbohydrate and protein p	portion of glycoprotein			
152.	Cell is a unit of life and all cells in a tissue re	main united was idea of				
	(a) Steward (b) Schleiden	(c) Schwann	(d) Dutrochet			
153.	Raphides are found in					
	(a) Dahlia (b) Asparagus	(c) Nut	(d) Guava			
154.	Cystolith is made up of					
	(a) Calcium oxalate (b) Calcium carbonat	te (c) Calcium hydroxide	e (d) Calcium oxide			
155.	The main difference between the living and n	-				
	(a) In the growth	(b) In the size				
	(c) In the movement	(d) In the presence of	protoplasm			
156.	Plant cell is differ from animal cell because o					
	(a) The presence of cell wall and absence of c					
	(b) The presence of cell wall and chlorophyll	-				
	(c) The absence of cell wall and presence of c(d) The absence of cell wall and presence of c	-				
157.	The correct order of sedimentation of sub-cel		ential centrifugation is			
13/.	(a) Lysosome \rightarrow Mitochondria \rightarrow Nucleus \rightarrow	-	ential continugation is			
	(b) Mitochondria \rightarrow Nucleus \rightarrow Lysosome \rightarrow					
	(c) Nucleus \rightarrow Mitochondria \rightarrow Lysosome \rightarrow					
	(d) Lysosome \rightarrow Ribosome \rightarrow Mitochondria					
158.	Ephagy refers to					
	(a) Removal of metabolic waste by exocytosi	(b) Removal of metab	olic waste by endocytosis			
	(c) Exudation of secretory products	(d) None of these				
159.	Mesokaryotic condition was distinguised by					
	(a) Whittaker (b) Dodge	(c) Capeland	(d) Haeckel			
160.	Usual size of eukaryotic cell varies from 3 to	30μ . The volume of an eu	karyotic cell			
	(a) $100 - 10000 \mu m^3$ (b) $1000 - 10000 \mu m^3$	(c) 100–4000 μm^3	(d) 3 to $5 \mu m^3$			
1						

16. The size and volume of prokaryotic wall is(a) 0.1 to 5μ ; 0.2 to $10 \mu m^3$ (b) 0.1 to 1μ ; 0.2 to $1 \mu m^3$ (c) 0.1 to 1μ ; 0.2 to $10 \mu m^3$ (d) 0.1 to 0.3μ ; 0.2 to $0.3 \mu m^3$ 162. A typical eukaryotic cell is approximately —times larger than a bacterium(a) 100 times(b) 10 times(a) 100 times(b) 10 times(a) 100 times(c) 1000 times(d) 1000 times(d) 10000 times163. First modification in cell theory was done by(a) Virchow(b) Strasburger(c) Flemming(d) Sachs164. The term cytology (Gr. Kytos = hollow vessel (cell); logos = study of) for the study of structure of cell and its components was coined by(a) Bridges(b) Robert Hooke(c) Schwann(d) Hertwig165. No body can have life if its constituents are not formed of cells. This was remarked by(a) Outrochet(b) Leeuwenhoek(c) Schwann(d) Lamarck166. Haploid plants can be obtained by culturing(a) Amoeba (1 mm), Acetabularia (10 cm)(b) Amoeba (1 mm), vaucheria (40 cm)(c) Paramecium, chara167. The largest unicellular animal and plant are(a) Amoeba (1 mm), Acetabularia (10 cm)(b) Acidic RNA(c) Bases(d) None of the above169. Lignified cells are stained by(a) Saffranin(b) Methyle blue(c) Acetocarmine(d) Saffranin(b) Methyle blue(c) Protista and monera(d) None of the above170. Differentiation on the basis of karyon is done between<	161	The size and volume of	f prokarvotic wall is			
(c) 0.1 to 1, u ; 0.2 to 10, um^3 (d) 0.1 to 0.3 μ ; 0.2 to 0.3 um^3 162. A typical eukaryotic cell is approximately —times larger than a bacterium (a) 100 times(b) 10 times(a) 100 times(b) 10 times(c) 1000 times(a) Virchow(b) Strasburger(c) Flemming(a) Virchow(b) Strasburger(c) Flemming(d) Sachs164. The term cytology (Gr. Kytos = hollow vessel (cell); logos = study of) for the study of structure of cell and its components was coined by (a) Bridges(b) Robert Hooke(c) Schwann(d) Hertwig165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet(b) Leeuwenhoek(c) Endosperms(d) Anthers/pollengrains166. Haploid plants can be obtained by culturing (a) Amoeba (timm), Acetabularia (10 cm)(b) Amoeba (1 mm), vaucheria (40 cm)(c) Paramecium, chara(d) Plasmodium, bacteria168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA(b)Acidic RNA (c) Bases(d) Saffranin(b) Methyle blue(c) Acetocarmine(d) Saffranin(b) Methyle blue(c) Acetocarmine(d) Saffranin(b) Schwann(c) Swanson(d) Schwann(d) None of the above170. Tifferentiation on the basis of karyon is done between (a) Schleiden(d) None of the above170. Differentiation on the basis of karyon is done between (a) Schleiden(d) None of the above171. Father of modern cytology is (a) Schleiden(b) Schwann(c) Swanson1	101.			(b) 0.1 to $1 = 0.2$ to $1 = 3$		
 162. A typical eukaryotic cell is approximately —times larger than a bacterium (a) 100 times (b) 10 times (c) 1000 times (d) 10000 times 163. First modification in cell theory was done by (a) Virchow (b) Strasburger (c) Flemming (d) Sachs 164. The term cytology (Gr. <i>Kytos = hollow vessel</i> (cell); <i>logos =</i> study of) for the study of structure of cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 170. Different						
 (a) 100 times (b) 10 times (c) 1000 times (d) 10000 times (e) 1000 times (f) 10000 times (g) Virchow (h) Strasburger (c) Flemming (d) Sachs (e) The term cytology (Gr. <i>Kytos = hollow vessel</i> (cell); <i>logos =</i> study of) for the study of structure of cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen grains 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges Advance Level						
 163. First modification in cell theory was done by (a) Virchow (b) Strasburger (c) Flemming (d) Sachs 164. The term cytology (Gr. <i>Kytos = hollow vessel</i> (cell); <i>logos =</i> study of) for the study of structure of cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 	162.	• •		-		
 (a) Virchow (b) Strasburger (c) Flemming (d) Sachs 164. The term cytology (Gr. <i>Kytos = hollow vessel</i> (cell); <i>logos = study</i> of) for the study of structure of cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 		< <i>'</i> ,		(c) 1000 times	(d) 10000 times	
 164. The term cytology (Gr. <i>Kytos = hollow vessel</i> (cell); <i>logos</i> = study of) for the study of structure of cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1 mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 	163.		•		(d) Casha	
cell and its components was coined by (a) Bridges (b) Robert Hooke (c) Schwann (d) Hertwig 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen grains (a) Anoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Noure of the above 169. Lignified cells are stained by (d) None of the above (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above (d) None of the above (d) Schleiden 170. Father of modern cytology is (d) None of the above (d) Schleiden (d) Bridges 171. Father of modern cytology is (d) None of the above (d) Schleiden (d) Bridges 172. Father of modern cytology is (d) Schleiden (d			e e	-		
(a) Bridges(b) Robert Hooke(c) Schwann(d) Hertwig165.No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet(b) Leeuwenhoek(c) Schwann(d) Lamarck166.Haploid plants can be obtained by culturing (a) Root tips(b) Young leaves(c) Endosperms(d) Anthers/pollengrainsstarten the starten the start	164.			$en); \ logos = study \ of \) \ logos$	or the study of structure of	
 165. No body can have life if its constituents are not formed of cells. This was remarked by (a) Dutrochet (b) Leeuwenhoek (c) Schwann (d) Lamarck 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 		_	-	(c) Schwann	(d) Hertwig	
(a) Durochet(b) Leeuwenhoek(c) Schwann(d) Lamarck166.Haploid plants can be obtained by culturing (a) Root tips(b) Young leaves(c) Endosperms(d) Anthers/pollengrains167.The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm)(b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara(d) Plasmodium, bacteria168.Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA(b)Acidic RNA (c) Bases(d) None of the above169.Lignified cells are stained by (a) Saffranin(b) Methyle blue(c) Acetocarmine(d) Light green170.Differentiation on the basis of karyon is done between (a) Anaima and Enaima(b) Prokaryota and Eukaryota (c) Protista and monera(d) None of the above171.Father of modern cytology is (a) Schleiden(b) Schwann(c) Swanson(d) Bridges174.Advarce LevelKatvarce Level(c) Swanson(d) Saffranin	165	• • •			C, C	
 166. Haploid plants can be obtained by culturing (a) Root tips (b) Young leaves (c) Endosperms (d) Anthers/pollen 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 	105.	-			•	
(a) Root tips(b) Young leaves(c) Endosperms(d) Anthers/pollengrains167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm)(b) Amoeba (1 mm), vaucheria (40 cm)(c) Paramecium, chara(d) Plasmodium, bacteria168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA(b)Acidic RNA (c) Bases(c) Bases(d) None of the above169. Lignified cells are stained by (a) Saffranin(b) Methyle blue(c) Acetocarmine(a) Anaima and Enaima(b) Prokaryota and Eukaryota (c) Protista and monera(d) None of the above171. Father of modern cytology is (a) Schleiden(b) Schwann(c) Swanson(d) Bridges	166			(c) benwann	(d) Lamarek	
grains 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b)Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges	100.			(c) Endosperms	(d) Anthers/pollen	
 167. The largest unicellular animal and plant are (a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b) Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges 	grain	-	(b) I build leaves	(c) Endospermis	(d) i manero, ponen	
(a) Amoeba (1mm), Acetabularia (10 cm) (b) Amoeba (1 mm), vaucheria (40 cm) (c) Paramecium, chara (d) Plasmodium, bacteria 168. Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity of DNA (b)Acidic RNA (c) Bases (d) None of the above 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (d) None of the above (c) Protista and monera (b) Prokaryota and Eukaryota (c) Protista and monera (b) Schwann (c) Swanson (d) Bridges Advance Level Kateria (c) Swanson (d) Bridges	-		animal and plant are			
(c) Paramecium, chara(d) Plasmodium, bacteria168.Prokaryotes do not have histone but polyamine type of basic protein are present to (a) Neutralize acidity \neg DNA(b)Acidic RNA(c) Bases(d) None of the above169.Lignified cells are stained by (a) Saffranin(b) Methyle blue(c) Acetocarmine(d) Light green170.Differentiation on the basis of karyon is done between (a) Anaima and Enaima(b) Prokaryota and Eukaryota (d) None of the above171.Father of modern cytogy is (a) Schleiden(b) Schwann(c) Swanson(d) Bridges	,					
(a) Neutralize acidity → DNA(b) Acidic RNA(c) Bases(d) None of the above169.Lignified cells are statued by (a) Saffranin(b) Methyle blue(c) Acetocarmine(d) Light green170.Differentiation on the basis of karyon is done between (a) Anaima and Enaima(b) Prokaryota and Euatyota(c) Protista and monera171.Father of modern cytogy is (a) Schleiden(b) Schwann(c) Swanson(d) Bridges						
(c) Bases(d) None of the above169. Lignified cells are stained by (a) Saffranin(b) Methyle blue(c) Acetocarmine(d) Light green170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima(b) Prokaryota and Eukaryota (d) None of the above171. Father of modern cytology is (a) Schleiden(b) Schwann(c) Swanson(d) BridgesAdvance Level	168.	Prokaryotes do not hav	e histone but polyamine t	ype of basic protein are j	present to	
 169. Lignified cells are stained by (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges Advance Level		(a) Neutralize acidity o	f DNA	(b)Acidic RNA		
 (a) Saffranin (b) Methyle blue (c) Acetocarmine (d) Light green 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges Advance Level 		(c) Bases		(d) None of the above		
 170. Differentiation on the basis of karyon is done between (a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges Advance Level 	169.	Lignified cells are stair	ned by			
(a) Anaima and Enaima (b) Prokaryota and Eukaryota (c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) Bridges		(a) Saffranin	(b) Methyle blue	(c) Acetocarmine	(d) Light green	
(c) Protista and monera (d) None of the above 171. Father of modern cytology is (a) Schleiden (b) Schwann (c) Swanson (d) None of the above	170.	Differentiation on the b	basis of karyon is done bet	tween		
171. Father of modern cytology is (a) Schleiden(b) Schwann(c) Swanson(d) BridgesAdvance Level		(a) Anaima and Enaima	a	(b) Prokaryota and Euk	taryota	
(a) Schleiden(b) Schwann(c) Swanson(d) BridgesAdvance Level		(c) Protista and monera	l	(d) None of the above		
Advance Level	171.	Father of modern cytol	ogy is			
		(a) Schleiden	(b) Schwann	(c) Swanson	(d) Bridges	
	Adva	ance Level				
			tic cells have more DNA	than prokaryotic cells		

Reson R : Eukaryotic cells have hole DNA than prokaryotic cells **Reson R :** Eukaryotes are genetically more complex than prokaryotes
(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is not the correct explanation
(c) A is true but R is False
(d) A is false but R is true **173.** From which part of the plant haploid cells can be obtained
(a) Leaf
(b) Stem
(c) Seed
(d) Anther

	General	lly tha	emollo	r col	11				
174.	Generally the smaller cell			(b) Tb	o small	or tha r	malang		
	-				(b) The smaller the nucleus(d) It will be less metabolically active				
					•	(a) It v	viii be i	ess me	adoncarry active
175.	0		DSU OF U		ells is best expressed in				(d) Missions ()
	(a) Å		.1		(b) Milimeters (<i>mm</i>)) (d) Micrometers (μm)
176.		•			ganelles of a living cell,		-	t shoul	
		-			m (b)Chloroplast	(c) Ce	ll wall		(d) Ribosome
177.	The cel	-						11	
	(a) Bact				(b) Cyanobacterial cells	(c) Pro	ocaryoti	c cells	(d) Eucaryotic cells
178.					s not a cell organelle	()	1.	1	(1)) (1)
	(a) Mite				(b) Ribosome		olgi com	-	(d) Microsome
179.				-	chemical characteristics i				
		-			or amino acids				by high phosphate bonds
					ent in the body	(\mathbf{d}) R1	bosome	s are th	ne sites of protein synthesis
180.	-				crystals made up of	(\cdot)	1	1	
					(b) Calcium sulphate	(c) Ca	lcium o	xalate	(d) Calcium pectate
181.	Cytochi					(a) M	tochon	1mio	(d) All of these
100	(a) Chlo	-			(b) Bacteria	(C) MI	tochone	IIIa	(d) All of these
182.	(a) Mite		пуро		s was proposed by (b) Metcalf	(c) Цо	.ns kreb		(d) Calvin
190	· · ·		follow		bairs is correct	(C) 11a	IIS KIEU		(u) Carvin
103.					nembranes	(b)	Polyrih	osome	s – RNA
	(c) Dict	-					•		litochondria
184.		•			ing pairs is correctly mat		Cistern		intoenonaria
104.	(a) Mic				Participate in the process		tosynth	esis	
	(b) Lyse				Involved in synthesizing	_	-	• • • • •	
	•							w nucl	lear membrane during cell
divis									0
	(d) Cen	trosom	e]	Provide enzymes require	d in the	digesti	ve proc	cess
185.	Match I	List I a	nd List		and select the correct ans		-	-	
	List	t I			List II		-	-	
	a. Lyso:	some		1.	Bacteria without cell wa	lls			
	b. Myco	oplasm	a	2.	A virus that infact bacter	rial cell	S		
	c. Thyla	akoid		3.	Flattened sacs in a chlor	oplast			
	d. Bacte	eriopha	ıge	4.	A vesicle in which hydro	olytic e	nzymes	are sto	ored
	Code								
	(a) a	b	c	d		(b) a	b	c	d
	3	1	2	4		4	1	3	2
	(c) a	b	c	d		(d) a	b		d
	2	3	4	1		1	4	2	3

186. The site of EMP pathway in cell is

(a) Peroxisome	(b) Matrix of mitochondria	(c)Cytoplasm	(d) None of these
----------------	----------------------------	--------------	-------------------

CELL WALL

Basi	ic Level			
187.	Cell wall consist of			
	(a) Lignin, hemicellulo	ose, pectin and lipid	(b) Hemicellulose, pect	in, protein and lipid
	(c) Cellulose, hemicell	ulose, pectin and lipid	(d) Cellulose, hemicell	lulose, tubulin and lignin
188.	Cell wall shows			
	(a) Complete permeabi	ility	(b)Semipermeability	
	(c) Differential permea	ıbility	(d) Impermeability	
189.	The wall of cork cell is	s mostly impregnated with		
	(a) Cellulose	(b) Suberin	(c) Cutin	(d) Lignin
190.	Cell wall in higher plan	nts is made up of		
	(a) Cellulose + Lignin	(b) Cellulose + Pectin	(c) Cellulose+ Suberin	(d) Cellulose + Lipid
191.	Cellulose and hemicell	ulose the constituent of ce	ll wall are synthesized b	У
	(a) Lysosome	(b) Microbodies	(c) SER	(d) Golgi bodies
192.	Middle lamella is the p	oart of		
	(a) Cell wall	(b) Nucleoplasm	(c) Cytoplasm	(d) Cell membrane
193.	Middle lamella is made	e up of		
	(a) Cellulose		(b) Suberin	
	(c) Calcium and magne	-	(d) Lignin	
194.		e most abundantly present		
	(a) Pectin	(b) Lignin	(c) Suberin	(d) Cutin
195.	Outermost layer of cell			
	(a) Plasmalemma	(b) Secondary wall	(c) Middle lamella	(d) Primary wall
196.		wing plant cells are devoid		
	(a) Root hair	(b) Stem hair	(c) Epidermal cell	(d) Gamete
197.		•		
	(a) Cellulose	(b) Chitin	(c) Suberin	(d) Pectin
198.		nd cyanobacteria is made u	-	
	(a) Murein or mucoper	otide	(b) Peptidoglycan and a	amino sugars
	(c) Cellulose	11	(d) Chitin	
199.	Cell wall is permeable		(-) II	
	(a) Cellulose	(b) Proteins	(c) Hemicellulose	(d) All correct
200.	The smallest structural		(c) Micelle	(d) Callulosa
	(a) Fibril	(b) Microfibril	(c) Micelle	(d) Cellulose

	. The primary function of cell wall is associated with					
201.			(b) Providing shape			
	(a) Controlling volume			hypertin a		
	(c) Its selective permea	•	(d) Protection against b	ursung		
202.	•	secondary wall is called				
	(a) Intussuception		(c) Apposition (accertio	on) (d)All correct		
203.	Which one forms the m					
	. ,	(b) Hemicellulose	(c) Pectins	(d) Both (b) and (c)		
204.	-	formation is determined by				
	(a) Dictyosomes	(b) ER	(c) Microtubules	(d) Microfilaments		
205.	Cell wall is thin in					
	•	(b) Collenchyma	(c) Cytoplasm	(d) Parenchyma		
206.	A cell lacking cell wall	would also lack				
	(a) Chloroplast	(b) ER	(c) Mitochondria	(d) Biomembrane		
207.	The material in plant co	ell wall impervious to gase	es and water is			
	(a) Pectin	(b) Hemicellulose	(c) Suberin	(d) Chitin		
208.	The chemical substance	e in cork cell wall is				
	(a) Lignin	(b) Chitin	(c) Cutin	(d) Suberin		
209.	What is absent in matri	x of cell wall				
	(a) Protein	(b) Lipid	(c) Cellulose	(d) Pectin		
210.	Glucuronic acid, galact	uronic acids are found as	chief components of			
	(a) Lignin	(b) Pectin	(c) Suberin	(d) Glucose		
211.	Cell wall of the fungus	may contain				
	(a) Pectin and cellulose		(b) Cellulose and chitin			
	(c) Chitin and pectin		(d) Chitin and silica			
212.	The tertiary wall of pla	nt cell is composed of				
	(a) Suberin	(b) Xylan	(c) Cutin	(d) Lignin		
213.	Cell wall is the secretic	on product of				
	(a) Middle Lamella	(b) Plasmalemma	(c) Cytoplasm	(d) Plasmodesmata		
214.	All plant cells normally	/ possess				
	(a) Middle lamella	(b) Primary wall	(c) Lysosomes	(d) Centrioles		
215.	The layer of cellulose	deposited on middle lame	ella by cytoplasm on its	outside during cell wall		
f	ormation is					
	(a) Primary wall	(b) Secondary wall	(c) Tertiary wall	(d) None of these		
216.	Which layer has more of	cellulose				
	(a) Primary wall	(b) Secondary wall	(c) Tertiary wall	(d) Middle lamella		
217.	Animal cells do not have	ve cell wall because				
	(a) They are adapted to	move their body	(b) They have muscles a	and nerves		
	(c) They have to chang	e the size of their body du	ring locomotion	(d) All correct		

218.	Point out the correct sta						
	(a) 100 cellulose chains		(b) 20 microfibrils form a cellulose micelle				
	(c) 250 microfibrils for		(d) 250 micelle form a	macrofibril			
219.	How many glucose mo	lecules make one cellulos	e chain in cell wall				
	(a) 3000 glucose	(b) 6000 glucose	(c) 100 glucose	(d) 20 glucose			
220.	Tonofibrils are related	to					
	(a) Nuclear membrane (b) Chloroplast						
	(c) Mitochondria		(d) Plasmodesmata				
221.	What is absent in plasm	nodesmata					
	(a) Middle lamella	(b) Cell wall	(c) Primary wall	(d) Secondary wall			
222.	The cementing layer of	pectin between adjacent j	plant cells is called				
	(a) Middle lamella	(b) Secondary wall	(c) Ectoplast	(d) Primary wall			
223.	A small thickening four	nd in the middle of pit me	mbrane in a bordered pit	t is called			
	(a) Nucleolous	(b) Torus	(c) Tyloses	(d) Callus			
224.	Torus in bordered pit is	-					
	(a) Pectin	(b) Cellulose	(c) Suberin	(d) Chitin			
225.	Symplast						
	(a) Is living component	of cell	(b) consists of cytoplasm and cell membra				
	(c) Both correct		(d) only (b) is correct				
226.	Apoplast						
	(a) Is nonliving part of	cell	(b) Consists of cell wall and intercellular space				
	(c) Both correct		(d) Both wrong				
227.	A micelle is made up o	f					
	(a) 250 microfibrils	(b) 100 cellulose chains	(c) 20 macrofibils (d)3	3000cellulose chains			
Adva	ince Level						
228.	Ripening fruits soften d	lue to					
	(a) Jelly formation of a	cidic <i>pH</i>	(b)Solubilisation of pectate of middle lamellae				
	(c) Conversion of starc	h into sugar	(d) Incorporation of pe	ctate in middle lamella			
229.	Which organelle of plan	nt cells secretes polysacch	aride and protein to mak	ke cell walls			
	(a) Golgi bodies	(b) Lysosome	(c) Mitochondria	(d) Chloroplast			
230.	The addition of new ce	ll wall particle among tho	se already in position is	known as			
	(a) Intrussusception	(b) Apposition	(c) Deposition	(d) Plasmation			
231.	The plant cell wall is m	ade up of cellulose. This	is believed to be				
	(a) A liquid	(b) A protein	(c) A polysaccharide	(d) An amino acid			
232.	The strength and rigidit	ty of a cell wall is due to t	he substance known as				
	(a) Suberin	(b) Cellulose	(c) Lignin	(d) pectin			
233.		e characteristic feature of	-	-			
	(a) Phloem	(b) Epidermal cells	(c) Cambrial cells	(d) Xylem cells			
				· •			

234.	The possibility of being	g outermost layer of cell i	s highest for which of th	ne following
	(a) Plasmalemma	(b) Cell membrane	(c) Middle lamella	(d) Primary wall
235.	In the middle lamella c	of plant cell walls, one of t	the main elements is	
	(a) Iron	(b) Calcium	(c) Magnesium	(d) Potassium
236.	The internal layer joini	ng the primary walls of th	ne two adjacent cells is l	known as
	(a) Plasmodesmata	(b) Middle lamella	(c) Periderm	(d) Casparian strip
237.	Macromolecule most c	ommon in plant cell walls	s is	
	(a) Glycogen	(b) Starch	(c) Protein	(d) Cellulose
238.	Cytoplasm of one cell	is connected with other th	rough	
	(a) Cytoplasmic strand	s (b) Plasmodesmata	(c) Torus	(d) Pit membrane
239.	The minute protoplasm	nic connections between c	ells are called	
	(a) Chiasmata	(b) Plasmodesmata	(c) Tractile fibres	(d) Ultra-cellular stands
240.	Tertiary wall consists of	of		
	(a) Lignin and cellulos	e	(b) Cellulose and xyla	ns
	(c) Cellulose		(d) Suberin and xylans	S
241.	Cell wall generally pre	sent in water conducing ti	issues are represented by	y swollen nodules is
c	alled			
	(a) Secondary wall	(b) Tertiary wall	(c) Middle lamella	(d) None of the above
			ino sugars arranged alt	ernately. A short chain of
f	our amino acids is attac			
	(a) NAM	(b) NAG	(c) Carbohydrate	(d) Protein
243.		nponent of plant cell wall		
	(a) Pentosan polysacch		(b)Mucopolysacch	aride
	(c) Hexose polysaccha		(d)Disaccharide	
244 .	· ·	nt collenchyma cell wall,	•	
	(a) Glucose	(b) Mannose	(c) Galacturonic acid	(d) Alginic acid
245.		he major constituents of		
	(a) Middle lamella	(b) Primary cell wall	(c) Secondary cell wa	
246.		bstance in matrix of cell w	-	
	(a) Binding microfibils	(b) Strenghtening	(c) Hardness (d)P	Protection from injury
247.	Xylans are present in			
	(a) Middle lamella		(b) Microfibrils of print	•
	(c) Innermost layer of	secondary wall	(d) Absent in all of the	e above
248.	Middle lamella is			
	_	rimary wall (b)Present	-	
		primary wall (d)Present in	n between secondary an	d tertiary walls
249.	*	ea in cell wall, It lacks		
	(a) Primary wall		(b) Middle lamella	
	(c) Secondary wall		(d) Cell wall and cell	membrane

	D'4 in a 11 and 11 and	formation of the second dimension	:	11 - 4				
250.		found in pairs. Some times p	-					
	(a) Blind pit		(c) Simple pit	(d) Bordered pit				
251. Intussusception is shown by primary cell wall. It is(a) Deposition of cell wall materials from inside to cause growth								
	-		-					
	-	all materials from outside as	layers					
	(c) Hardening of ce							
	(d) None of the abo		1.1.4 41 11					
	alled growth by	calation of new wall materia	al in between the old co	omponent of the cell wall is				
U		(h) Approxition	(c) Interseucention	(d) Multinet theory				
	(a) Layering	(b) Apposition	(c) interssuception	(d) Multinet theory				
		<u>PLASMA ME</u>	MBRANE					
Basi	c Level							
253.		nodel that is proposed to exp	-					
	(a) Fluid mosaic mo	odel	(b) Molecular model					
	(c) Unit membrane	model	(d) None of the abov	e				
254.	Who proposed "flui	d mosaic model" for plasma	membrane					
	(a) C. Cramer and C	C. Nageli	(b) Singer and Nicho	lson				
	(c) Denielli and Dav	vson	(d) J.D. Robertson					
255.	Singer and Nicholso	on's model of plasma membr	ane differs from Rober	rtson's model in the				
	(a) Number of lipid	layers (b)Arrangement of li	pid layers					
	(c) Arrangement of	proteins(d)Absence of protein	in in singer and Nichol	son's model				
256.	According to mosai	According to mosaic model, Plasma membrane is made up of						
	(a) Cellulose and he	emicellulose	(b) Phospholipid and	integrate protein				
	(c) Phospholipid, ex	strinsic and intrinsic protein	(d) Phospholipid and	hemicellulose				
257.	According to the 'u	nit membrane model' the thic	ckness of the cell mem	brane is about				
	(a) 200 <i>nm</i>	(b) 7.5 <i>nm</i>	(c) 150 <i>nm</i>	(d) 1.0 <i>nm</i>				
258.	Plasma membrane i	s made up of						
	(a) A protein layer b	between two lipid layers	(b) A lipid layer betw	veen two protein layers				
	(c) A protein, a lipid	(c) A protein, a lipid and a cellulose layer						
	(d) Bimolecular lipi	d layer surrounded by protein	n layers					
259.	Which of the follow	ving is not constituent of unit	membrane					
	(a) Phosphoprotein	(b) Protein and lipids	(c) Phospholipids	(d) Cellulose				
260.	Carbohydrates are p	present in the plasmalemma is	n the form of					
	(a) Starch	_						
	(b) Cellulose							
	(c) Hemicellulose							

261.	-	g organelles is bounded by				
	(a) Golgi complex	. ,	(c) Chloroplast	(d) Lysosome		
262.	-		single layered unit membrane			
	(a) Centrosome		(c) Mesosome	(d) Nucleus		
263.	-	g has a single unit membra				
	(a) Ribosome	(b) Peroxisome	(c) Nucleolus	(d) Centrosome		
264.	Phagocytosis was first	-				
	(a) Huxley	(b) Haeckel	(c) Metchinkoff	(d) Strasburgers		
265.	The process of cell eat	-				
	(a) Pinocytosis		(c) Endocytosis	(d) Exocytosis		
266.	The process of cell drin	nking is called				
	(a) Pinocytosis	(b) Phagocytosis	(c) Endocytosis	(d) Exocytosis		
267.	One of the fundamenta	al characteristic of cell me	mbrane is			
	(a) Amino acid regulat	ion (b)Fat regulation	(c) Glucose regulation	(d) Ion regulation		
268.	Which of the following	g structures controls the tra	ansport of the material in	to and out of living cells		
	(a) Centrosome	(b) Cell membrane	(c) Cell wall	(d) Ribosome		
269.	Every living cell has a					
	(a) Membrane	(b) Food vacuole	(c) Chloroplast	(d) Cell wall		
270.	Plasmalemma is anothe	er term for				
	(a) Cell wall	(b) Middle lamella	(c) Microfibrils	(d) Plasma-membrane		
271.	The protoplasmic stran	nds connecting the two adj	acent plant cells are calle	ed		
	(a) Plasmalemma	(b) Plasmodesmata	(c) Tonofibrils	(d) Spindle fibres		
272.	Who proposed the con-	cept of unit membrane for	tripartite structure of lip	oproteins		
	(a) Seifriz	(b) Buvat	(c) Davson and Daniel	li(d) Robertson		
273.	The mosaic model of p	olasma membrane can bett	er explain permeability b	ру		
	(a) Osmosis	(b) Diffusion				
	(c) Carrier process	(d) Electrochemical grad	lient			
2 74.	Cell membrane is					
	(a) Premeable	(b) Impermeable	(c) Selectively permeal	ble (d)Semi permeable		
275.	The number of the con	nponents present in the bio	omembranes are			
	(a) 3	(b) 4	(c) 5	(d) 8		
276.	Plasmodesmamta help	in				
	(a) Food translocation		(b) Mineral translocation	on		
	(c) Translocation of ph	ytohormones	(d) All above			
277.	The proteins in biomer	nbranes are responsible fo	or			
	(a) Mosaiceness	(b) Antigen specificity	(c) Cell to cell recognit	tion (d) All above		
278.	Correct sequence of pr	otein (P) and lipid (L) in c	cell membrane is			
	(a) $L - P - L - P$	(b) L – P– P– L	(c) $P - L - L - P$	(d) $P - P - L - L$		

			1 . 1			
279.		rticularly in animal cells, is				
	(a) Carbohydrates	(b) Proteins	(c) Lipid		(d) None of these	
280.			resent in a cell membrane, what is true			
	(a) Carbohydrates are			ohydrates are n		
	(c) Lipids are minimu				equal proportion	
281.	-	dhesion occur due to bioch			e named	
	(a) Proteins		(b) Lipid		1 1 1	
	(c) Proteins and lipids		•	oproteins and g	glycollplus	
282.	-	e of an animal cell is compo		la mustaina Dal		
	(a) Lipids, proteins, of	-	_	ls, proteins, Pol	-	
	(c) Lipids, proteins, di		(d) Lipid	ls, proteins, mo	nosaccharides	
283.	The basic unit of plasm		$(\mathbf{h})\mathbf{C}$ all \mathbf{u}	less and some st	and desta	
	(a) Protein and phosph			lose and carboh	•	
- 0 -	(c)Protein and carbohy Protein tubulin is abse		(u) Prote	in and cellulos	e	
284.			(a) Mian	otubulog	(d) Diagma mambrana	
-0-	(a) Flagella Cellular membranes o	(b) Cilia	(c) Micro	Studules	(d) Plasma membrane	
285.			(a) Dro ka	rtuotos	(d) All above	
0.96	Membrane bound orga	obacteria (b)All eukaryotes	(\mathbf{C}) FIOK	irryotes	(d) All above	
200.	(a) Eukaryotes		(c) Akar	votes	(d) All of these	
087	Membranes are found	·		yotes	(d) All of these	
207.		iondria and chloroplasts (b)	Cytoplas	sm_nuclei and s	starch orains	
	• •	clei and mitochondria (d)	• -		-	
288.		nd cell organelles include	, em onnos	omes, emotopi	usts und staren grams	
	e	ulun (b)Lysosomes	(c) Sphe	rosomes	(d) All of these	
280.	-	rrier molecules facilitating	-			
	(a) Starchy	(b) Sugary	-	inaceous	(d) Fatty acidic	
290.	•	can pass through plasma n				
-	(a) 1–15 Å	(b) 8–10 Å	(c) 10–1		(d) 15–75 Å	
291.	. ,	nechanism is against concer	. ,			
	(a) Requires ATP	C C	-	not require AT	TP	
	(c) Requires protein		(d) Does	not require pro	otein	
292.	Active transport invol	ves				
	(a) Use of metabolic e	energy (b)Passive diffusion	(c)Simp	le osmosis	(d) Any of the above	
293.	The entry of mineral i	ons in a plant cell during di	ffusion is	by		
	(a) Passive absorption	(b) Active absorption	(c) Osmo	osis	(d) Endocytosis	
294.	Pinocytosis is					
	(a) Ingestion of solid	particles by plasma membra	ane	(b)Ingestion o	of liquid particles	
	(c) Changed permeability	ility of plasmalemma towar	ds ions	(d)Both (a) and	d (b)	

295.	Term plasmalemma wa	as coined by		
	(a) Nageli and Cramer	(b) J.Q. Plowe	(c) Robertson	(d) Robert Hooke
296.	J. Singer and G.Nicols	on proposed their model in	n	
	(a) 1968	(b) 1972	(c) 1971	(d) 1964
297.	-	model of cell membrane ex		
	(a) Robertson	(b) Danialli	(c) Davson	(d)Singer and Nicholson
	One of the model of c authors. They are	ell membrane was descrit	bed as "Protein iceberg	s in a sea of lipids" by its
	(a) Danielli and Davso	n (b)Robertson	(c) Singer and Nicolso	on (d)Lucy
299.		llar model the correct sequ	C C	•
	(a) Lipid-protein –prot	_	(b) Lipid-protein -lipic	
	(c) Protein -lipid –prot	•	(d) Protein-lipid-protei	-
300.	The model given by W	-	()	
0	(a) Trilaminar model	-	(c) Lattice model	(d) Fluid mosaic
301.				made up of a lipid layer
	vas given by	·		
	(a) Garter and Grendel	(b) Overton	(c) Danielli and Davso	on (d)Lucy
302.	Bimolecular leaflet mo	odel was given by		
	(a) Robertson	(b) Singer and Nicholson	n (c) Wolpers	(d) Garter and Grendel
303.	Who among the follow	ving proposed unit membra	ane model for cell mem	orane
	(a) Davson and Daniel	li (b) Robertson	(c) Singer and Nichols	on (d)Overton
304.	The thickness of phosp	pholipid bilayer of a typica	ll plasma membrane is	
	(a) 75 A^o	(b) $100 A^{o}$	(c) $45 A^{o}$	(d) $35 A^{o}$
305.	Basic structure of all c	ell membranes is provided	l by	
	(a) Lipid	(b) Protein	(c) Oligosaccharide	(d) RNA
306.	Lipid molecules (Phos	pholipids) are amphiatic, l	Each molecule has	
	(a) One nonpolar and 2	2 polar tails	(b)One polar head and	2 nonpolar chains
	(c) One polar head and	l one nonpolar chain	(d) Two heads and one	e chain
307.	Frame work molecules	in biomembranes are		
	(a) Glycolipids	(b) Phospholipids	(c) Glycoproteins	(d) Oligosaccharides
308.	Proteins iceberge in a s	sea of lipids is related with	1	
	(a) Unit membrane mo	del	(b)Fluid mosaic mo	odel
	(c) Lamellar/ sandwich	n model	(d)Micellar model	
309.	Hydrophobic end of pl	nospholipid has		
	(a) Affinity for water		(b) Non affinity for wa	ater
	(c) Affinity for metabo	olites	(d) Non affinity for me	etabolites
		_	protein molecules form	n Glycocalyx (extraneous
c	coat). These carbohydrat	-		
	(a) Monosaccharides	(b) Polysaccharides	(c) Oligosaccharides	(d) Starches
1				

311.	According to Robertso	n's unit membrane, Lame	lar model, the proteins are		
	(a) Extended and fibro		(b) Asymmetric		
	(c) Each protein layer	is of 20Å thickness	(d) All correct		
312.	A membrane is held to	gether primarily by			
	(a) Hydrophobic attractions		(b) Hydrophilic attract	ions	
	(c) Covalent bonds		(d) Ionic bonds		
313.	Lipids and protein con	tents in all membrane are	in ratio of		
	(a) 40:58	(b) 58:40	(c) 60:40	(d) 50:50	
314.	Transmembrane protei	ns are			
	(a) Intrinsic proteins	(b) Extrinsic proteins	(c) Glycocalyx	(d) Tunnel proteins	
315.	An enzyme carries pro	tein associated with cell m	nembrane is		
	(a) Lipase	(b) amylase	(c) Permease	(d) Catalase	
316.	6. The channels and pumps that control molecular traffic in and out of a cell are collectively known				
a	as				
	I I	(b) Permeases	(c) Carriers	(d) Cytochromes	
317.	17. One of the following does not support facilitated diffusion				
	(a) This requires energy input (b) This is passive process		process		
	(c) Solutes are moved by a change in shape in the carrier protein				
	(d) The solute can move in either direction				
318.		g can diffuse easily throug	-		
	(a) CO_2	(b) Proteins	(c) Lipids	(d) Pb^+	
319.	Ions enter the cell thro	ugh plasma membrane by			
	(a) Some carriers prese		(b) Cytochrome pump		
	(c) Phosphatidic acid c	•	(d)All the above		
320.	-	e active transport (<i>i.e.</i> ATI			
	(a) Pinocytosis		(b) Phagocytosis		
	(c) Ephagy		(d) Facilitated transpor	rt	
321.	1 00	needed for a process called			
	(a) Active transport	(b) Diffusion	(c) Osmosis	(d) imbibition	
322.	Secondary active trans	•			
	(a) Co-transport	(b) Symport	(c) antiport	(d) All above	
323.	Active transport involv				
	(a) Production of ATP		(b) Requirement of end	ergy	
	(c) Production of toxin		(d) Release of energy		
324.		ed across the cell membra	•		
	(a) Proteins	(b) Fatty acids	(c) Phosphates	(d) Lipids	
325.		identifies the process of			
	(a) Diffusion	(b) Osmosis	(c) Imbibition	(d) Plasmolysis	

	326.	Which does not pass a	cross membrane by diffus	ion			
		(a) co_2	(b) o_2	(c) H_2O	(d) H^+		
	327.	Cell wall and cell men	nbrane are two distinct lay	vers. It can be proved by			
		(a) Plasmolysis	(b) Osmosis	(c) Imbibition	(d) All of these		
	328.	Land plants grow in so	oil that is relative to their c	cells			
		(a) Hypotonic	(b) Isotonic	(c) Hypertonic	(d) Ultratonic		
	329.	Microvilli are found in	1				
		(a) Call wall		(b) Cell membrane			
		(c) Mitrochondria		(d) Salivary chromoso	me		
	330.	Microvilli are					
		(a) Outfolds of cell me	embrane	(b) Infolds of cell men	nbrane		
		(c) Both (a) and (b)		(d) None of these			
	331.	Microvill are meant fo	r				
		(a) Slowing down of c	ell movements	(b)Helping in cell movements			
		(c) Rapid osmosis		(d) Increasing absorptive area			
	332.	Plasmalemma of two a	adjecent cells are fused in	case of			
		(a) Terminal bars	(b) Tight junctions	(c) Microvilli	(d) Desmosomes		
	333.	The process by which	substances in bulk are tak	en in by the plasmamem	brane is		
		(a) Endocytosis	(b) Exocytosis	(c) Karyokinesis	(d) Cytokinesis		
	334.	The secretion of macro	omolecules by fusing a tra	insport vesicle to the plas	sma membrane is		
		(a) Pinocytosis	(b) Phagocytosis	(c) Endocytosis	(d) Exocytosis		
	335.	Cells send out their wa	astes secretion through				
		(a) Pinocytosis	(b) Exocytosis	(c) Phagocytosis	(d) Lysosomes		
	336.	Pinocytosis was first o	bserved by				
		(a) Metchnikoff	(b) Lewis	(c) Robertson	(d)Holleir and Hoffman		
	337.	*	mbrane in a fungal hyphal				
		(a) Lomasomes	(b) Lysosomes	(c) Mesosomes	(d) Tonofibrils		
	338.		sma membrane with radia		called		
		(a) Terminal bars		(b) Desmosomes			
		(c) Interdigitations	1 6	(d) Tight junctions			
	339.	Biological membranes		(h) 500/ mestains on	d = 500/1		
		(a) 40% proteins and 6	-	(b)50% proteins an	Ĩ		
		(c) 70% proteins and 3 Which one appropriate of	-	(d)60% proteins an	-		
	340.	(a) ATPase	plasma membrane gets in	(b) Alkaline phosphata	-		
		(c) Acid phosphomono	nesterase	(d) RNAase	150		
		(c) reta phosphonion	705101450	(u) IN 17430			
- 1							

341.		wing activator remains atta	-			
	(a) Mg^{++}	(b) <i>Ca</i> ⁺⁺	(c) K^+	(d) <i>Na</i> ⁺		
342.	· .	n, thickness of lipid zone i	_	ges from		
	(a) 10–20 Å	(b) 25–35 Å	(c) 50–60 Å	(d) 35–50Å		
Adve	ance Level					
343.	Fluid mosaic model of	cell membrane proposed t	hat			
I	(a) A lipid bilayer is co	bated by a layer of proteins	s on each surface			
	(b) A lipid bilayer is co	bated by a layer of proteins	s on the outer surface on	ly		
	(c) A lipid bilayer has l	both embedded in itself an	d none on the surface			
I	(d) A lipid bilayer has l	both embedded and outer	protein			
344.	Lipid molecule in plasm	na membrane are arranged	l in			
I	(a) Scattered	(b) Series	(c) Alternate	(d) Head parallel		
345.	Which of the following	g layer is present nearest to	plasma membrane in pl	ant cell		
	(a) Secondary wall	(b) Middle lamella	(c) Primary wall	(d) Tonoplast		
346.	Thickness of plasma m	embrane is				
	(a) 10 Å to 30 Å	(b) 30 Å to 50 Å	(c) 50 Å to 70 Å	(d) 70 Å to 100 Å		
347 .	347. When a cell engulfs or surrounds a particle and forms a vesicle around it, the phenomenon is					
k	mown as					
I	(a) Exocytosis	(b) Phagocytosis	(c) Endocytosis	(d) None of these		
348.	Bulk drinking of fluid	by cells is termed as				
	(a) Phagocytosis	(b) Pinocytosis	(c) Cyclosis	(d) Osmosis		
349.	Which one of the follow	wing is a non-protoplasmi	c cell inclusion			
	(a) Ribosomes	(b) Mitochondria	(c) Lysosomes	(d) Cystoliths		
350.	In fluid mosaic model of	of plasma membrane				
	(a) Polar layer is hydro	phobic	(b)Phospholipids form	bimoleculer layer		
	(c) Proteins form a mid	ldle layer	(d)Upper layer is non –	- polar and hydrophilic		
351.	Fluid mosaic model ex	hibits amphipathic becaus	e of			
	(a) Glycoproteins	(b) Phospholipids	(c) Lipids	(d) Glycolipids		
352.	According to fluid mos	aic model plasmamembra	ne is composed of			
	(a) Phospholipid, extrin	nsic and intrinsic proteins	(b) Phospholipid and he	emicellulose		
	(c) Phospholipid and ol	ligosaccharides	(d) Phospholipid and in	tegral glycoproteins		
		es in the living world are	e transported across the	e membrane through the		
p	bhenomenon of					
	(a) Diffusion	(b) Osmosis	(c) Both (a) and (b)	(d) Active transport		
354.	Active transport of ions					
	(a) High temperature	(b) ATP	(c) Alkaline <i>pH</i>	(d) Salts		
355.	Ion carries are located					
	(a) Nucleus	(b) Cell wall	(c) Cellular space	(d) Plasma membranes		
1						

356.	6. Plasma membrane (plasmalemma) prevents the escape of Na^+ and K^+ to				
	(a) Cause disruption in	neighbouring c	ells throug	h desmosomes	
	(b) Maintain electrostat	tic neutrality of	the cell		
	(c) Maintain cells			(d) All of the above	
357.	Desmosomes are conce	erned with			
	(a) Cell division	(b) Cellular ex	cretion	(c) Cytolysis	(d) Cell adherence
358.	Which one of the follow	wing pairs is no	t correctly	matched	
	(a) Cristae	The "shelves"	' formed by	y the folding of the inr	ner membrane of the
n	mitochondrion				
	(b) Plasmodesmata	The membrane	e surround	ing the vacuole in plar	nts
	(c) Grana	Membrane bo	ound discs	in chloroplasts that	contain chlorophylls and
caro	tenoids				
	(d) Middle lamella Layer between adjacent cell walls in plants derived from cell plate				
359.	59. Beet root if kept in cold water anthocyanin does not come out due to plasma membrane				
	(a) Differentially perme	eable		(b) Impermeable to a	nthocyanins
	(c) Permeable to anthor	cyanins		(d) Lose of fluidity	
	360. Which of the following does not require carrier molecules during transport through cell				
n	nembranes				
	(a) Simple diffusion			(b) Facilitated diffusi	
	(c) $Na^+ - K^+$ transport			-	of sugars and amino acids
361.	Which of the following	g pair lack the un	nit membra		
	(a) Nucleus and E.R			(b) Mitochondria and	-
	(c) Ribosome and nucle			(d) Golgi body and ly	ysosome
362.	Sialic acid is a constitu				
	(a) Cell membrane	(b) Cell wall		(c) Chromosome	(d) Dictyosome
363.	RNA is absent in				
	(a) Plasmalemma	(b) Cytoplasm	l	(c) Chromosomes	(d) Ribosomes
364.	Which is not correct				
	(a) Na^+ ions help retain				
	(b) Na^+ ions help condu				
	(c) Na^+ ions help in tran	-			
	(d) Na^+ ions are important	-	of blood p	olasma	
365.	A dominant intracellula	ar cation is			
	(a) <i>Na</i> ⁺	(b) <i>K</i> ⁺		(c) Ca^{2+}	(d) Chlorine
366.	Carrier proteins take pa	art in			
	(a) Passive transport of			transport of ions	
	(c) Water transport		(d)Water e	evaporation	

367. Active transport occurs

- (a) Against concentration gradient and requires ATP
- (b)Against concentration gradient but does not require ATP
- (c) Along concentration gradient but requires ATP
- (d) Along concentration gradient but does not require ATP

368. In the resting state of the nutral membrane, diffusion due to concentration gradients, If allowed, would drive

- (a) Na^+ in to the cell (b) Na^+ out of the cell
- (c) κ^+ in to the cell (d) κ^+ and Na^+ out of the cell

369. In Singer and Nicholson (1972) fluid mosaic model, extrinsic proteins are

- (a) Superficially arranged and can be separated easily
- (b) Superficially arranged and cannot be separated easily
- (c) Tightly attached to intrinsic proteins and can not be separated easily
- (d) Tightly attached to intrinsic proteins and can be separated easily

370. Plasmodesmata were discovered and named respectively by

- (a) Tangl and Strasburger (b)Strasburger and plowe
- (c)Altman and Benda (d)Strasburger and Golgi

371. Robertson's model of cell membrane is similar to that of Danielli and Davson's in

- (a) Types of proteins (b) Lamellar structure (c) Permeases (d) Carrier Particles
- **372.** Singer and Nicolson's fluid mosaic model of biomembrane differs from Robertson's unit membrane in

(a) Arrangement of lipids (b)Number of lipid layers

(c)Arrangment of proteins (d)Absence of proteins

- **373.** The osmosis is a process in which two weak and strong solutions are separated by the semipermeable membrane' which of the following is not mentioned in the statement
 - (a) DPD(c) Nature of particles

- (b) Exact concentration
- (d) Nature of semipermeable membrane

374. Facilitated diffusion involves

- (a) Carriers but no energy (b)Receptors and energy
- (c)Enzymes and energy (d)Carriers and energy

375. Difference between active and passive modes of membrane transport is

- (a) Active transport is confined to cations while passive is connected to anions
- (b) Active transport is nonselective while passive one is selective

(c) Active transport requires metabolic energy while passive transport requires concentration gradient

(d) Active transport is more rapid

- 376. The difference between permeable and bulk transport across the cell membrane is related to
 - (a) Molecular weight of substance (b)Solvent system
 - (c) Structure of molecules allowed passage (d)Solvent system as well as structure of molecules

3 77•	During symport or cotran	nsport of sugar or amino	acid _{Na} ⁺ moves		
	(a) Opposite its concentr	ation gradient	(b) Along its concentra	tion gradient	
	(c) In both directions		(d) Not involved		
	•	ibit Na^+ efflux and K^+ in	flux. The effect is reve	ersed by injection of ATP	
i	ndicating that				
	(a) $Na^+ - K^+$ pump operate	tes in cells			
	(b) ATP is hydrolysed by	y ATP-ase to release ener	ſġy		
	(c) Energy for $Na^+ - K^+ p$	ump comes from ATP	(d) None of these		
379.	9. The main difference between pinocytosis and phagocytosis is				
	(a) Taking in of fluid substances and engulfing of food material and foreign bodies				
	(b) Taking in of small and large particles respectively				
	•	nount of liquid and large	volume of liquids		
	(d) None of these				
380.	Recycling of plasma men	mbrane is carried out by			
	(a) Golgi apparatus		(b) Cell wall		
	(c) Lysosomes		(d) Endoplasmic reticu	lm	
381.	Kavanau's lipid pillar me	odel can not explain			
	(a) Passive transport	(b) Active transport	(c) Phagocytosis	(d) None of these	
382.	Of about 30 different enz	zymes isolated from plas	ma membrane which on	e occurs in more quantity	
	(a) ATPase		(b) Alkaline phosphata	se	
	(c) Acid phosphomonoes	sterase	(d) RNAase		
383.	Which one statement reg	arding plasma membrane	e is correct		
	-	er are electron dense whi	•	-	
		ayer are transparent while	•		
	(c) It outer and inner lay	er are electron transparen	t while middle one is el	ectron dense	
	(d) All layers are electron	n dense			
384.	For the transport of ions	-	(Phosphatidic cycle) wa	s given by	
	(a) Lundegardh	(b) Bennet Clarke	(c) Davson and Daniel	li(d) Robertson	
	-	model of plasma memb	brane suggested that n	nolecules show globular	
a	rrangement				
		(b) Fluid mosaic	(c) Bimolecular leaflat	(d) Micellar model	
386.	The first micellar model	was proposed by			
	(a) Robertson		(b) Danielli and Davso		
	(c) Singer and Nicolson		(d) Helleir and Hoffma	nn	

		1' 11 1			
	Which of the following statement is incorrect reg	-			
	(a) In general smaller molecules pass through cellular membranes more readily than larger				
	nolecules	membranes more readily as someoned to linid			
	oluble substances	membranes more readily as compared to lipid			
6	(c) Membranes are selectively permeable				
	(d) Membranes permeability depends upon physi	cal nature and electrical charge of solute			
288		brane transport during 'symport' or 'co-transport'			
300.	of sugar or amino-acids through cell membrane is				
	(a) <i>Na</i> ions move in both directions irrespective of				
	(b) <i>Na</i> ions move in the directions of it's con-cen	-			
	(c) <i>Na</i> ions move against the direction of it's con	-			
	(d) No movement of Na ions is involved	e			
389.	The major driving force for formation of membra	ane lipid bilayer is			
	(a) Vander Waal forces	(b) Electrostatic forces			
	(c) Hydrophobic interactions (d) Hydrogen bonding				
390.	A phospholipid molecule is amphipathic and pro	oduces 2 layers coming in contact with H_2O . The			
h	nead of phospholipid molecule is				
	(a) At the outer surface	(b) Between the surfaces			
	(c) At an angle of 40°	(d) Embedded in protein molecules			
391.	Lipid bilayers in biomembranes are barrier to				
	(a) Polar molecules	(b) Non polar molecules			
	(c) Both polar and non polar molecules	(d) None			
392.	Plasma membrane helps in cell movements throu	gh			
	(a) Undulation	(b) Extensions			
	(c) Formation of pseudopodia	(d) All correct			
	-	of slime moulds, mycoplasmas or Amoeba is			
F	blasmalemma which is also called as				
	(a) Cell wall (b) Micro- fibrils	(c) Plasma membrane (d) Middle lamella			
394.	The fluid mosaic model explains	(b) Eurotional aspects of call membrane			
	(a) Structural aspects of cell membrane(a) Structural and functional aspects both	(b) Functional aspects of cell membrane			
	(c) Structural and functional aspects both Biomembranes are	(d) None of these			
395.	(a) Asymmetric (b) Symmetric	(c) Asymmetric fluid (d) symmetric fluid			
206	In trilaminar arrangement of biomembrane, which				
390.	(a) Inner layer is transparent	(b)Outer layer is transparent			
	(c) Middle layer is opaque	(d)Middle layer is transparent			
	· · · · · · · · · · · · · · · · · · ·	(),			
1					

- (8	a) Dynamism	(b) Polarity	(c)	Active transport	(d) Permeability	
398. Ia	on channels in cell me	mbranes were discovere	ed by]	Nobel prize winner	s of 1991 who are	
(8	a) Singer and Nicolsor	1	(b)	Nehar and Sakma	nn	
(0	c) Garter and Grendel		(d)	Metchniknoff		
399. G	lycocalyx is found					
(8	a) In the cytoplasmic r	natrix	(b)	On cell surface		
(0	c) Around nucleus		(d)	On the periphery	of nucleoplasm	
400. C	cell coat consists of					
(8	a) Glycocalyx		(b)	Cellulose		
(0	c) Cellulose+Hemicell	ulose+ Pectin	(d)	Protein		
401. A	mphipathy means					
(8	a) Presence of hydropl	nillic and hydrophobic e	ends	(b)Presence of hy	drophobic end	
(0	c) Presence of hydropl	nillic end		(d)None of above		
402. Cell membrane has proteins, lipids and carbohydrates. With respect to their mutual proportions,						
	ich statement is correc					
		equal proportion		Lipids are in least		
	c) Carbohydrates are i			Proteins are in lea	st amount	
		ayers of cell membrane		-		
```	a) 20: 35: 20	(b) 35: 20: 35	(c)	20: 40: 20	(d) 15: 45: 15	
	Tain function of plasm					
	a) Prevent water from	entering/ leaving		(b) Control what goes into and out of the cell		
```	c) Act as sieve	1 (1 (1 )		(d) Help the cell to move plour in cold water but do so in the boiling water		
	ne purple cabbage lea	ives do not loose their (coloui	in cold water but	do so in the boiling wate	
	a) Boiling water enters	the call easily	(h)	Dlasmalamma kill	ed in boiling water	
	c) Pigment is not solul	•			lated in boiling water	
	-	ls and Glycoproteins) is		C C	C C	
	a) Recognition centre	• •		Protective coat	(d) All correct	
					on, the specificity of th	
rec	ognition is largely pro	vided by	.111 101	e in cen recogniu	on, the specificity of th	
(8	a) Lipid portion of gly	coproteins				
(ł	b) Protein portion of g	lycoproteins				
(0	c) Carbohydrate portio	on of glycoproteins				
((d) Both carbohydrate a	and protein components	of gly	coproteins		

408.	8. One of the following methods for transporting substances across a membrane does not involve a change in extrinsic and intrinsic proteins					
	(a) <i>Na-K</i> pump		(b) Active transport			
	(c) Simple diffusion		(d) facilitated diffusio	n		
	The movement of sub he utilisation of energy		nembrane from lower to	higher concentration with		
	(a) Osmosis		(b) Passive transport			
	(c) Active transport		(d) Facilitated transpo	ort		
410.	•	t involve a change in sh	ape of the transport prote			
	-	C C	(c) Simple diffusion	(d) Na^+K^+		
411.		l) permeable membrane	-			
	(a) Solutes only		(b) Solvents only			
	(c) Some solvents and	all solutes	(d) Some solutes and	all solvents		
412.	When the fluid outside	e a cell has a greater con	centration of a given mo	lecule than the fluid inside		
	he cell, the external flui		C			
	(a) Isotonic	(b) Hypertonic	(c) Hypotonic	(d) Ultratonic		
413.	13. 'Ultraphagocytosis' is intake by cell of					
	(a) Solid particles		(b) Colloid particles			
	(c) Water		(d) It is very quick ph	agocytosis		
414.	Emelocytosis is anothe	er term for				
	(a) Pinocytosis	(b) Phagocytosis	(c) Reverse endocytos	sis (d) All above		
415.	Which of the following	ng cell surface differen	tiation is not likely to p	lay a role in iner cellular		
С	communication					
	(a) Desmosome	(b) Gap junction	(c) Tight junction	(d) None above		
416.	Phagosome is					
	(a) Carrier vesicle carr	ying solid food particle				
	(b) Carrier vesicle carr	ying fluid matter				
	(c) A carrier vesicle fo	rmed by evagination of	plasma membrane around	l the food particle		
	(d) Both (a) and (c) con	rrect				
		PROTOPLASM A	ND CYTOPLASM			
Basi	ic Level					
417.	Which of the following	g is the "physical basis o	of life"			
	(a) DNA	(b) Protoplasm	(c) Nucleus	(d) Sex chromosome		
418.		ed as the "physical basis	•			
	(a) Huxley (1868)	(b) Corti (1772)	(c) Hardy (1899)	(d) Malphighi (1903)		
1						

419.	The name 'Protoplasm	n" was given by		
	(a) Purkinje	(b) Hooke	(c) A.K Sharma	(d) Schwann
420.	The amount of which	of the element is greatest	in protoplasm	
	(a) Hydrogen	(b) Oxygen	(c) Nitrogen	(d) Carbon
421.	Normal <i>pH</i> of Protopl	asm is		
	(a) 7.8	(b) 6.8	(c) 5	(d) 6.5
422.	Protoplasm is a			
	(a) True solution		(b) Suspension	
	(c) Emulsion		(d) Polyphasic collo	idal system
423 .	Protoplasm found insi	de the nucleus is known a	IS	
	(a) Nucleoplasm	(b) Amyloplast	(c) Elaioplast	(d) Cytoplasm
424.	Protoplasm is			
	(a) Non living matter		(b) Bearer of heredit	ary characters
	(c) Living matter with	out function	(d) Physical basis of	life
425.	Both plants and anima	ls are provided with		
	(a) Cell wall	(b) Golgi body	(c) Chloroplast	(d) Protoplasm
426.	Cyclosis is			
			-	movement of protoplasm
	(c) To and fro movement of nucleoplasm (d) None of the above			
427.		y was established in plant	cell by	
	(a) Strasburger	(b) Robert Brown	(c) De Bary	(d) Max Schultze
428.		anic constituents of proto	-	
	•	rates, fats and nucleic aci		
		ids, fats and carbohydrate		
	•	oteins, vitamins and horm		
	-	s, nucleic acids and horm	ones	
429.	Term protoplast was g	•		
	(a) Hanstein	(b) Dodge	(c) Fischer	(d) Strasburger
430.	Which best explains p	-		(D + 1)
	(a) Colloidal theory of		(b)Alveolar theor	•
	(c) Fibriller theory of		(d)Granular theo	•
431.		llowing states the constitut	(c) Insoluble	
	(a) Dissolved	(b) Colloidal		(d)Dissolved and colloidal
432.		owing sets of elements is a	• • •	piasin
		oxygen, phosphorus, nitr		
		nitrogen, oxygen, phosph		
		nitrogen, oxygen, iron ar nitrogen, oxygen, calcium	-	
400		toplasm are functionally i		
433 ∙	(a) Enzymes	(b) Coenzymes	(c) Antibodies	(d) Cofactors
	(u) Liilyines	(0) Countymes	(c) minoures	

434 .	The substances of prote	oplasm present in the least	t quantity are		
	(a) Non-metals	(b) Proteins	(c) Trace elements	(d) Lipids	
435 ∙		ted to higher temperature	-		
	(a) Lipid	(b) Protein	(c) Carbohydrate	(d) Water	
436.	•	s passed through a colloid			
	(a) Brownian movement	•	(c) Tyndall effect	(d) None of these	
43 7•	-	of protoplasm in a regular	-		
	(a) Amoeboid	(b) Brownian	(c) Tyndall	(d) Streaming	
438.		t of particles within protop			
	-	(b) Brownian movement	-	•	
439.	• •	o-colloidal polyphasic sol	•	•	
	(a) Protoplasm	11	(b) Protoplasm – Nucle		
	(c)Hyaloplasm – Organelle (d) Protoplasm – Organelle				
440.	•	s around a central vacuole		(1) D '	
	(a) Rotaion	(b) Cyclosis	(c) Circulation	(d) Pinocytosis	
441.		n cytoplasm is shown by	(-) C -11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(1) 9	
	(a) Proteins	(b) Lipids	(c) Colloidal solution	(d) Suspension	
442.	Which is true for cytop		(h) Endenland dia	·	
	(a) Ectoplasm shows b		(b) Endoplasm shows t	brownian movement	
	(c) Both show brownia		(d) None of the above		
443.		as cytoplasm minus all in	-		
	(a) Hyaloplasm	(b) Cytoplasm	(c) Cytosol	(d) Matrix	
444.	The ground substance	• -			
		(b) Endoplasm	(c) Karyoplasm	(d) Ergastoplasm	
445.	The ground substance	e e			
	(a) Cytoplasm	(b) Protoplasm	(c) Nucleoplasm	(d) Endoplasm	
446.	<i>pH</i> of cytoplasm is		/ \ 		
	(a) Acidic	(b) Slightly acidic	(c) Alkaline	(d) Extremely acidic	
447•	Sol \rightleftharpoons gel nature of cyt	-			
	(a) Water in cytoplasm		(b) Salts in cytoplasm		
	(c) Proteins and organe		(d) Colloidal nature of	cytoplasm	
448.	"Plasma gel" is the nar				
	(a) Ectoplasm	(b) Endoplasm	(c) Protoplasm	(d) None of these	
449 .	Non-living substance in				
	(a) Carbohydrate	(b) Ribosome	(c) Mitochondria	(d) Plastids	
450.	•	nplex of cytoplasm is call			
	(a) Endoplast	(b) Cytosol	(c) Cytoplasmic matrix	(d) Both (b) and (c)	
451.	•	•			
	(a) Microtubules	(b) Microfilaments	(c) Intermediate filame	ent (d)All the above	

452.	The term cytoplasm wa	as coined by				
	(a) Sachs	(b) Strasburger	(c) Hanstein	(d) Flemming		
453 ∙	Viscocity of cytoplasm					
	(a) 2 centipoise	-	(c) 10 centipoise	(d) 20 centipoise		
454 .	The conversion of plas					
	(a) Physical phenomen		(b)Chemical pheno			
	(c) Physio-chemical ph		(d)Biochemical phe			
455 ∙		sm in which centriole form	-			
	(a) Centromere	(b) Centrosome	(c) Desmosome	(d) Microsome		
456.	Hyloplasm contains					
	(a) Cytoplasm and wate		(b) Protoplasm and war	ter		
	(c) Minerals and water		(d) None of the above			
Adve	ance Level					
45 7•	The movement of cytop	plasm is termed as				
	(a) Brownian movemen	nt (b)Endocytosis	(c) Cyclosis	(d) Cytokinesis		
458.	Contribution of protop	lasm to the total weight of	the body is			
	(a) 10%	(b) 45%	(c) 7%	(d) 95%		
4 5 9.	The substance which m	nakes up about 80% of cyt	oplasm and has unique s	structure		
	(a) Proteins	(b) Fats	(c) Minerals	(d) Water		
460.	Number of amino acids	s present in protoplasm is				
	(a) 20	(b) 12	(c) 10	(d) 8		
461.	Content of nucleic acid	l in protoplasm is				
	(a) 35%	(b) 29%	(c) 10%	(d) 2%		
462.	Non-living substances	of the protoplasm are colle	ectively known as			
	(a) Deutoplasm	(b) Plasma gel	(c) Mesoplasm	(d) Cytoplasm		
463.	The best material for de	emonstrating streaming m	ovement of protoplasm	within living cells is		
	(a) Onion peel		(b) Staminal hairs of T	radescantia		
	(c) Pith cells		(d) Cortical cells			
464.	Protoplasm undergoes	coagulation which result i	n total stoppage of physi	iological activities at		
	(a) 60°C	(b) 50°C	(c) 70°C	(d) 75°C		
465.	Crystallo-colloidel natu	are of protoplasm was sug	gested by			
	(a) Altman	(b) Butschilli	(c) Fischer	(d) Kolliker		
466.	Protoplasm is called n	nixture of mixtures. The	Alveolar theory about r	nature of protoplasm was		
g	given by					
	(a) Fischer	(b) Altman	(c) Butschli	(d) Velton		
467.	Who among the follow	ing proposed the colloidal	theory of protoplasm			
	(a) Bowman	(b) Boveri	(c) Fischer	(d) Sutton		

468.	58. All cells contain a living substance which is called protoplasm It was first observed by				
400.	(a) Purkinge	(b) Von Mohl	(c) Max Schultze	(d) Corti	
469.	Circulation cyclosis is		(•)	(0) 0010	
	(a) Hydrilla leaves	,	(b) Cell of staminal hai	r of Tradescantia	
	(c) Lotus leaf		(d) All of above		
470.	Cyclosis is not required	l in			
	(a) Undulation of cell membrane		(b) Formation of pseud	lopodia	
	(c) Movement of chlore	oplast	(d) All of the above	-	
471.	Reduction of oxygen co	ontest from the environme	nt of protoplasm will		
	(a) Increase energy out put (b)Decrease energy output		tput		
	(c) Increase endosmosis (d) Decrease endosmosis		sis		
472.	2. The water contains in protoplasm are				
	(a) Upto a quarter of it		(b) Upto a half of it		
	(c) Upto three quarters	of it	(d) More than three qua	arter of it	
473.	Which of the following	g properties is attributed to	the respones to change	es in external and internal	
e	nvironment by protopla	sm			
	(a) Irritability		(b) Mutability		
	(c) Reproducibility		(d) Adaptability		
474 •	-	s take place when the sol s		to gel	
		become converted in to n	-		
		become converted in to p			
		gative charges become neu			
		converted in to charged st			
475 ∙	• • • •	vocating the morphologica	· ·	S	
	(a) Granular theory of A		· ·	1 1 1	
	(c) Nuclear theory of A		ory of Wilson Fischer a	nd Hardy	
476.	Amici studied cyclosis				
	(a) Hydrilla	(b) Amoeba	(c) <i>Chara</i>	(d) Acetabularia	
4 77•		osis, the cytoplasmic matr		ong (d)Sida waya	
0	(a) One direction	(b) Two opposite direction	(c)Different direction	ons (u)side ways	
478.	In circulation streaming (a) One direction	g protoprasm moves m	(b) Two opposite direc	tion around a vacuale	
	. ,	around different vacuole			
47 9 .	~				
4/9•	(a) Robert Brown	(b) Dalton and Felix	(c) Amici	(d) Sachs	

MACRO ORGANELLES OF CELL

1					
Basi	c Level				
480.	Who first introduced th	ne term "mitochondrion"			
	(a) Kolliker	(b) Robert Brown	(c) Benda	(d) Altman	
481.	The size of mitochondu	rion is			
	(a) $5 - 10 \mu$	(b) $50 - 100 \mu$	(c) $0.5 - 1.0 \mu$	(d) $150 - 300 \mu$	
482.	Single mitochondrion i	s found in			
	(a) Microsteria	(b) Rhizopus	(c) Nostoc	(d) Ulothrix	
483.	Mitochondria are non-	existent in			
	(a) Red algae	(b) Some bacteria	(c) Green algae	(d) Brown algae	
484.	4. The number of mitochondria increases in cells of				
	(a) Dormant seeds		(b) Germinating seeds		
	(c) Dry seeds		(d) Dead seeds		
485.	Which of the following	g is present in mitochondri	a		
	(a) Polysome	(b) Monosome	(c) Quantasome	(d) Oxysome	
486.	6. Elementary particles (Oxysomes) are present in				
	(a) Chloroplasts	(b) Mitochondria			
	(c) Golgi bodies	(d) Endoplasmic reticulu	m		
487.	87. F_1 particles are also called				
	(a) Electron transport p	particles	(b) Elementary particle	S	
	(c) Cytochromes		(d) Cristae		
488.	Oxysomes are located	inside			
	(a) Mitochondria	(b) Plastids	(c) Lysosomes	(d) Golgi body	
489.	Electron transport syste	em in mitochondria is loca	ited in		
	(a) Outer membrane		(b) Inter-cristae space		
	(c) Inner membrane		(d) Inner membrane sp	ace	
490.	Cytochrome is found in				
	(a) Cytoplasm	(b) Golgi body	(c) Nucleus	(d) Plasmalemma	
491.	DNA is present in				
	(a) Carboxysomes	(b) Ribosomes	(c) Lysosomes	(d) Mitochondria	
492.	Cytochromes are				
	(a) Oxygen acceptors	(b) Electron acceptors	(c) Carbon acceptors	(d) Both (a) and (b)	
493 .	Mitochondria are the si				
	(a) Photophosphorylati	on	(b) Oxidative phosphor	rylation	
	(c) Transpiration		(d) Carboxylation		
494.	The reaction of ATP for				
	(a) Exergonic	(b) Endergonic	(c) Spontaneous	(d) None of these	
1					

495. Function of mitochondria is

(a) To provide CoA

(b) To synthesize PGA

(d) All the above

(c) To release energy during respiration

496. The fine network of single membrane distributed extensively throughout the cytoplasm in a cell is referred to as

- (a) Golgi bodies (b) Peroxisome
- (c) Lysosome (d) Endoplasmic reticulum

497 •	Respiratory enzymes an	•			
	(a) Mitochondria	(b) Chloroplasts	(c)	Golgi bodies	(d) Lysosomes
498.	Oxidative enzymes occ	•			
	(a) Lysosomes	(b) Golgi bodies	(c)	Mitochondria	(d) Ribosomes
499 •	Glycogen occurs in				
	(a) Mitochondria	•	(c)	Cytoplasm	(d) None of these
500.	What is the energy coir				
	(a) DNA	(b) RNA	(c)	ATP	(d) Minerals
501.	Which of the following				
	(a) Mitochondria	(b) Lysosomes	(c)	Golgi bodies	(d) Ribosomes
502.	Chondrisome was disco	overed by			
	(a) Tatum	(b) Palade	• •	Sutton	(d) Benda
503.	Foldings of inner mitoc	chondrial membrane are ca	alled		
	(a) Grana	(b) Thylakoids	(c)	Cristae	(d) $F_0 - F_1$ Structures
504.	Cristae control				
	(a) Photo-oxidation	(b) Photosynthesis		(c)Absorption	(d) Dark respiration
505.	Mitochondrial cristae a	re sites of			
	(a) Breakdown of macr	romolecules	(b)	Protein synthesis	
	(c) Phosphorylation of flavoproteins			Oxidation - reduction	on reactions
506.	Inner membrane of mit	ochondria have			
	(a) TCA enzyme	(b) $F_1 - F_0$ particle	(c)	ATPase	(d) All above
507.	ATP is formed in				
	(a) Mitochondria	(b) Nucleus	(c)	Nucleoius	(d) Ribosomes
508.	One of the following o	organelle is concerned with	n pho	otorespiration	
	(a) Glyoxisomes	(b) Ribosomes	(c)	Mitochondria	(d) Lysosomes
509.	If the contents of a lea	f tissue are carefully fract	iona	ted, which of the fr	actionate could be called
a	live				
	(a) Mitochondrion	(b) Endoplasmic reticulu	m	(c)Cell wall	(d) Ribosome
510.	-	e mitochondrial core from	out	side	
	(a) Outer membrane	(b) Inner membrane			pace (d)All the above
511.	The enzymes for Kreb'	s cycle in mitochondria ar	e lo	cated	
	(a) On the outer membr	rane		(b)On inner membra	ane
	(c) In the mitochondria	1 matrix		(d)Both (b) and (c)	
512.	Cell organelle which ha	as electron transport system	m is		
	(a) Nucleus	(b) Mitochondria	(c)	Endoplasmic reticul	um (d) Centriole
513.	ETS is component of				
	(a) Golgi apparatus	(b) Mitochondrion	(c)	Nucleus	(d) Microtubule

514.	Membrane bound Kre	b's cycle enzyme is				
	(a) Fumarase		(b) Cis-aconita			
	(c) Succinic dehydrog	enase	(d)Malate ochy	drogen	ase	
515.	Centre of phosphoryla	tion is				
	(a) Oxysome	(b) Peroxisome	(c) Ribosome		(d) Mitochondria	
516.	Which of the follow	ving developments was r	most instrument	al in e	enabling us to determine	
n	nitochondria					
	(a) Technique of cultu	ring bacteria	(b)The elec	tron mi	croscope	
	(c) The phase constrast	st microscope	(d)All abov	e		
517.	Presence of DNA in c	hloroplasts and mitochond	ria indicates that			
	• •	in them (b)They origina	-	ent free	living organisms	
	(c) They undergo mei	osis and mitosis independe	ent of nucleus			
	(d) They take part in A	-				
518.	Transformation of che	emical energy into utilisable	e form occurs in			
	(a) Mitochondria	(b) Lysosomes		ic reticu	ulum (d)Microsomes	
519.	First plant cell in which	ch mitochondria were obser				
	(a) Lily	(b) Nymphea	(c) Nelumbiun	1	(d) Nerium	
520.	20. Mitochondria are usually found in					
	(a) Reproductive cells			(b) Vegetative cells		
	(c) Both reproductive	-	(d) None of these			
521.	Mesosomes were take					
	(a) Golgi bodies	(b) Plastids				
		(d) Endoplasmic reticulu				
522.		its outer membrane is calle				
	(a) Chondriome	(b) Chondriole	(c) Mitoplast		(d) Chondrioide	
523.	•	ondrial DNA in the cells is				
	(a) 10% of total cellul		(b) 1% of total cellular DNA			
	(c) 2.5% of total cellu		(d) None of the			
524.		A differs from the nuclear			~ ~	
	(a) Being linear		(b) Having A =			
	(c) Lacking binding h		(d) Being highly twisted			
525.	Which is absent in Mi				(1) A 11	
		eins (b)Acidic proteins	(c) Protamines		(d) All correct	
526.	Mitochondrial matrix				(1) A 11 (1 1	
	(a) Enzymes	(b) DNA and RNA	(c) Ribosomes		(d) All the above	
527.	Mitochondrial membr					
	(a) Laminate membran		(b)Bilaminate		anes	
	(c) Trilaminate memb	ranes	(d) None of the above			
1						

528.	Number of Mitochondi	ria in Trypanosoma chlore	ella is				
	(a) 1	(b) 2	(c) 4	(d) Many			
529.	Mitochondria are yello	wish due to					
	(a) β – carotene	(b) Riboflavin	(c) Xanthophyll	(d) Proplastid			
530.	The term thylakoid wa	s coined by					
	(a) Arnon	(b) Park and Biggins	(c) Menke	(d) Willstatter			
531.	The term plastid was c	oined by					
	(a) Haeckel	(b) Strasburger	(c) Virchon	(d) Flemming			
532.	In which plastids are no	ot found					
	(a) Blue green algae	(b) Bacteria	(c) Fungi	(d) All of the above			
5 3 3.	Plastids present in unil	luminated cells are					
	(a) Chloroplasts	(b) Chromoplasts	(c) Leucoplasts	(d) Proplastids			
534 .	Plastids possess						
	(a) Cristae	(b) Thylakoids	(c) Microtubules	(d) Porous membranes			
535 .	All plastids have simila	ar structure because they c	can				
	(a) Store starch, lipids	l form one type to another					
	(c) Perform same funct	ther					
536.	Cup shaped chloroplas	t is found in					
	(a) Spirogyra	(b) Chlamydomonas	(c) Ulothrix	(d) All above			
537.	Solar energy is convert	ted into ATP by					
	(a) Mitochondrion	(b) Peroxisome	(c) Ribosome	(d) Chloroplast			
538.	Factory for synthesis o	f sugars in autotrophic eu	caryotes in				
	(a) Chloroplast	(b) Mitochondrion	(c) Endoplasmic retice	ulum (d)Ribosome			
539 .	The chloroplasts of alg	ae usually lack					
	(a) Grana	(b) Pigments	(c) Quantasomes	(d) Lamellae			
540.	Which one of the follo	wing pigments does not of	ccur in the chloroplast				
	(a) Carotene	(b) Chlorophyll 'b'	(c) Xanthophyll	(d) Anthocyanin			
541.	Green pigment present	s in plants is					
	(a) Chromoplast	(b) Chloroplast	(c) Ribosome	(d) Lysosome			
542.	A flattened disc-like sa	ic in a chloroplast is called	l a				
	(a) Loculus	(b) Thylakoid	(c) Stroma	(d) Margin			
543 .	Thylakoids are constitu	uents of					
	(a) Chloroplasts	(b) Mitochondria	(c) ER	(d) Ribosomes			
544.	Thylakoids are found c	commonly in the plastids of	of				
	(a) Bacteria	(b) Blue green algae	(c) Higher plants	(d) All of these			
545.	Stroma is the ground m	naterial of which of the fol	llowing				
	(a) Lysosomes	(b) Ribosomes	(c) Chloroplasts	(d) Mitochondria			
546.	Chromoplast may be o	f					
	(a) Orange colour	(b) Red colour	(c) Yellow colour	(d) All the above			

F	547.	. The amyloplasts look like						
•	J - 7.	(a) Proplastids	(b) Elioplast	(c) Aleuroplast	(d) Chloroplast			
F	548.	Agranal chloroplast are	-	(c) meanoprase	(u) emerophase			
	,	(a) Succulents	(b) Hydrophytes	(c) C_4 plants	(d) C_3 plants			
F	540.	Where do you find cyto	() - 41					
•	J - J·	(a) Chloroplast	(b) Lysosomes	(c) Ribosomes	(d) Mitochondria			
		The cell within cell org	· · ·	(c) Ribbsonies	(d) Wittoenondria			
ė)]0.	(a) Amyloplast	(b) Aleuroplast	(c) Elalioplast	(d) Chloroplast			
F	551.	• •	nembranes, outer inner an	-	(u) emerophase			
•	JJ	(a) Middle layer	(b)Periplastidial space					
		(c) Thylakoid membrar						
5	552.							
		(a) Assimilatory starch	(b) Reserve starch	(c) Storage starch	(d) Structural			
Ę	553.	Chloroplasts are presen	t in	-				
		(a) Companion cell	(b) Latex cell	(c) Complementary cell	l (d) Guard cell			
Ę	554.	Star shaped chloroplast	s are present in cells of					
		(a) Zygnema	(b) Cladophora	(c) Vaucheria	(d) Chara			
Ę	555.	Pigment free plastids an	e					
		(a) Chloroplasts	(b) Chromoplasts	(c) Lysosomes	(d) Leucoplasts			
Ę	556.	Starch grains in potato	tuber are located					
		(a) Ribosomes	(b) Nucleus	(c) Leucoplasts	(d) Golgi bodies			
Ę	557.	-	or the storage of fats are k					
		(a) Amyloplasts	(b) Elaioplasts	-	(d) Aleuroplasts			
Ę	558.		for few days. The cells of i	_				
		(a) Amyloplast	(b) Chromoplast	(c) Anthocyanin	(d) Etioplast			
Ę	559.	•						
	-	(a) Chloroplasts	(b) Amyloplasts	(c) Chromoplast	(d) Leucoplast			
5	560.		erts the light energy into c (b) Biomembrane		(d) Errot			
	-61	(a) Thylakoid For the synthesis of glu	cose, source of H atoms is		(u) Het			
é	501.	(a) <i>NADPH</i> ₂	(b) H_2O	(c) H_2S	(d) $FADH_2$			
	-60		ts are located in the chlor		(u) $TADII_2$			
é	5 02.	(a) Membrane part	(b) Grana region	(c) Stroma region	(d) Intergrana part			
	-62	The role of chlorophyll	C Z	(c) Strollia region	(u) mergrana part			
í	J UJ.	(a) Dark assimilation	in photosynthesis is	(b) Photolysis of water				
		(c) To absorb light		(d) Photochemical conv	version			
ļ	564.	Pigment absent in chron	moplast	(-)				
	- r.	(a) Chlorophyll	(b) Carotene	(c) Xanthophyll	(d) Anthocyanin			
				· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

565	. Carotenes and chloro	phyll pigment types can be	e traced in			
	(a) Matrix	(b) Lamellae	(c) Stron	na	(d) Grana	
566	5. P_{700} is pigment molec	ule of				
	(a) Chlororphyll <i>a</i>	(b) Chlorophyll b	(c) Caro	tenoid	(d) None of these	
567	7. The pigment which c	omes out to leaf on boiling	g in H_2O is			
	(a) Xanthophyll	(b) Carotene	(c) Anth	ocyanin	(d) Chlorophyll	
568	3. "Endoplasmic reticul	um" was discovered by				
	(a) Porter	(b) Altmann	(c) Golg	i	(d) Benda	
569	. The endoplasmic reti	culum often bears				
	(a) Lysosomes	(b) Centrioles	(c) Peroz	xisome	(d) Ribosomes	
570	. In rapidly dividing ce	ells, endoplasmic reticulun	n is			
	(a) Poorly developed	(b) Highly developed	(c) Abse	nt	(d) Non- functional	
571	. In endoplasmic reticu	ulum the following process	es take plac	ce		
	(a) Lipid synthesis		(b) Chan	(b) Channeling of biosynthetic processes		
	(c) Steroid synthesis		(d) All o	f the above		
5 72	. In plants cells, the di	ctysomes are derived from	1			
	(a) ER	(b) Plasma membrane	(c) Mito	chondria	(d) Tonoplast	
573	. The transfer vesicle f	from RER fuse with which	region of C	Golgi complex	K	
	(a) Cis	(b) Medial	(c) Trans	S	(d) Protein arms	
574	-	ed in cells engaged in synt				
	(a) Nucleotides		(c) Lipid	ls	(d) Secretory products	
575		-				
	(a) Ribosome	(b) Ergastic substances		eus	(d) DNA	
576		to lamellae of ER was give	•	_	/ h ==	
	(a) Porter	(b) Claude	(c) Sjost	rand	(d) Kurosumi	
577		e network of ER was given	•			
	(a) Sjostrand	(b) Porter	(c) Kuro	sumi	(d) Claude	
578	. The word 'ergastopla	•	(a) C a m	•	(d) C : t 1	
	(a) Porter	(b) Claude	(c) Garn	ler	(d) Sjostrand	
579	•	ini is related with	(b)U	ormono gunth		
	(a) Protein synthesis(b)Hormone synthesis(c) Release of ca^{++} ions and contraction of muscles(d)None of these					
-04		matrix having granular ER				
580	(a) Sarcoplasm	(b) Ergastoplasm	(c) Phrag	monlast	(d) Polysome	
-Q4		ng property of RER is due	•	Smophast	(u) i orysonic	
201	(a) Proteins	(b) Ribosomes		L system	(d) DNA	
	(u) 1 10tomb	(0) 1000000000		- 5,500m		

582.	SER mainly consists of	f				
	(a) Cisternae and tubul	es	(b)Cisternae and vesicles		es	
	(c) Vesicles only		(d) Tubules and vesicles		S	
583.	SER is concerned with					
	(a) Wall synthesis	(b) Protein synthesis	(c)]	Detoxification	(d) All of these	
584.	Endoplasmic reticulum	arises form				
	(a) Nuclear membrane	(b) Golgi system	(c)	Cell membrane	(d) ER itself	
585.	ER increases surface and	rea and give mechanical su	uppor	rt to cell by acting a	s cytoskeleton. It forms	
	(a) $> 25\%$ of total mem	branes in cell	(b) :	> 50% of total mem	branes in cell	
	(c) > 10% of total mem	branes in cell	(d)]	Hardly 1% of total 1	nembranes	
586.	The proteins synthesize	ed on RER are packaged i	into t	ransport vesicles by	SER. These vesicles are	
	modified and packaged	l into secretory vesicles by	y			
	(a) Golgi complex	(b) Lysosomes	(c)]	Ribosomes	(d) Cell membrane	
58 7.		ns) that are to be used outs	side tl	he cell are synthesiz	red	
	(a) In mitochondria	(b) On SER	(c)	On RER	(d) On free ribosomes	
588.	Golgi body originated	from				
	(a) Lysosome			(b) Endoplasmic reticulum		
	(c) Mitochondria		(d) Cell membrane			
589.	Main function of which	n organelle is secretory				
	(a) Lysosomes	(b) Mesosomes	(c)	Golgi apparatus	(d) Microtubules	
590.	The major role of Golg					
	(a) Fermentation		(c)	Glycosidation	(d) Translocation	
591.	Golgi bodies are absen	t in				
	(a) Plants	(b) Bacteria	(c) .	Animals	(d) Eukaryotic cells	
592.	e	num in				
	(a) Calyptrogen	(b) Root cap	(c)]	Root tip	(d) None of these	
593 .	The golgi apparatus co	ntains				
	(a) DNA			(b)RNA		
	(c) Phospholipids, prot	iens enzymes and vitamin	C	(d)Protein-lipid-pro	tein	
594 .	Dictyosomes are					
	(a) Class of ribosomes		(b)]	Place of flagellar or	ganelles	
	(c) Respiratory particle	es	(d)	Golgi bodies (of pla	nt cells)	
595 .	GERL is associated wi	th				
	(a) Lysosomes	(b) Golgi body	(c)]	Mitochordria	(d) Lomasomes	
596.	The functional unit of g	golgi apparatus is				
	(a) Thylakoid	(b) Oxysomes	(c)	Cristae	(d) Cisternae	

597 •	Other than acrosomal	synthesis golgi bodies are	concerned with synthesi	s of		
	(a) Photosynthetic pig	ments				
	(b) Hydrolytic enzyme	s as hyaluronidase				
	(c) Cell plate		(d) All above			
598.	The cell organelle co	ontaining the flattened m	embrane bounded cister	mae are located near the		
n	ucleus are					
	(a) Mitochondrion	(b) Golgi	(c) Centrioles	(d) Nucleolus		
599 .	Golgi apparatus serves	as the centre of				
	(a) Protein production		(b) Enzyme production			
	(c) Fat production		(d) Carbohydrate meta	bolism		
600.	Golgi bodies are conne					
	(a) Grana	(b) Cell plate	(c) Plastids	(d) Lomosomes		
601.	Golgi complex is spec					
		pids and proteins (b)Conve				
	(c) Energy transductio		stion of carbohydrates an	-		
602.	o2. Cellulose and hemicellulose the constituents of cell wall are synthesized by					
	(a) Lysosomes		(b) Microbodies			
	(c) Smooth endoplasm		(d) Golgi apparatus			
603.	Golgi appratus was fir	-				
	(a) George	(b) Golgi	(c) Cajal	(d)Robinson and Brown		
604.	Who studied golgi app	aratus for the first time				
	(a) Golgi	(b) George	(c) Cajal	(d) Koltzoff		
605.	Golgi complex is not f	ound in				
	(a) Nerve cells	(b) RBCs	(c) Germ cells	(d) All the above		
606.	Golgi apparatus is four	nd in				
	(a) Cryptogams only		(b) Phanerogams only			
	(c) Procaryotic only		(d) Eucaryotic cells			
607.	Cell organelle speciali	sed in forming acrosome p	part of sperm is			
	(a) Mitochondrion	(b) Centriole	(c) Peroxisome	(d) Golgi apparatus		
608.	Golgi apparatus receiv	es biochemicals with the h	nelp of transition vesicles	s formed by		
	(a) E.R	(b) Plasmalemma	(c) Lysosomes	(d) Nuclear blebs		
609.	A cell organelle with a	definite polarity is				
	(a) Ribosome	(b) Mitochondrion	(c) Golgi apparatus	(d) Chloroplast		
610.	Isolated units of Golgi	apparatus found in plant c	cells are called			
	(a) Golgisomes	(b) Dictyosomes	(c) Lipochondria	(d) Cisternae		
611.	Which one is the funct	ion of Golgi apparatus				
	(a) Cell plate formation	n	(b) Matrix formation o	f connective tissue		
	(c) Secretion of tears		(d) All the above			

612.	The term 'dictyosome	' was coined for golgi be	cause it means			
	(a) Globular body	(b) Spherical bodies	(c) Stack like bodies	(d) Flattened bodies		
613.	One of the organelle s	howing polarity is				
	(a) Ribosomes	(b) DNA	(c) Golgi bodies	(d) Lysosomes		
614.	The main enzyme in d	ictyosomes is				
	(a) Raphides		(b) Nucleoside diphos	phatase		
	(c) Glucose 6-phospha	itase	(d) None of the above			
615.	An organel rich in fat	is				
	(a) ER	(b) Golgi complex	(c) Lysosome	(d) Centriole		
616.	Dictyosomes are scatte	ered and unconnected in				
	(a) Plant cells	(b) Animal cells	(c) Bacteria	(d) Blue green algae		
517.	The Golgi apparatus is	s mainly concerned with	the synthesis of			
	(a) Cellulose	(b) Hemicellulose	(c) Pectin	(d) All above		
518.	. Cell organelle connected with cell plate formation/ phragmoplast is					
	(a) ER	(b) GERL	(c) Lomasomes	(d) Dictyosomes		
619.	Golgi apparatus is con	nected with				
	(a) Photosynthesis	(b) Protein synthesis	(c) Egg synthesis	(d) Cellular synthesis		
620.	. Besides giving out secretory vesicles, Golgi apparatus has important role in formation of					
	(a) Grana of chloropla	a) Grana of chloroplasts (b) Lysosomes				
	(c) Plastids		(d) Cell plate formation during cell division			
621.	The golgi apparatus is	bounded by				
	(a) Cellulose	(b) Hemicellulose	(c) Pectin	(d) None of the above		
622.	The secretory material	is discharged the golgi v	vesicles, from the surface	of cell membrane by		
	(a) Pinocytosis		(b) Endocytosis			
	(c) Reverse pinocytosi	S	(d) Dissolving the cell membrane			
A <i>dva</i>	ance Level					
623.	Prokaryotic origin of r	nitochondria was propose	ed by			
	(a) Rabinowitch	(b) Altmann and schim	per (c)Salton	(d) Morrison		
624.	Importance of mitocho	ondria in respiration was	first discovered by			
	(a) S. Madani	(b) Meves	(c) Michaelis	(d) Barbergan		
625.	Mitochondria are the s	store- houses of or power	house of			
	(a) Fats	(b) ATP	(c) Glucose	(d) Glycogen		
626.	In which part of mitoc	hondria, ATP is generate	d			
	(a) Matrix	(b) Cristae				
	c) Outer membrane (d) F_1 particles (oxysomes)					

627.	ATP is						
	(a) Adenosine D-ribose	e three phosphate	(b) Adenosine L- ribose three phosphate				
	(c) Adenine D- ribose t	hree phosphate	(d) Adenine L-ribose three phosphate				
628.	The site for cellular res	piration is					
	(a) Nucleus	(b) Ribosome	(c) Mitochondria	(d) ER			
629.	In prokaryotes, the mit	ochondria are absent even	then Kreb's cycle takes	s place. What is the site of			
k	Kreb's cycle in bacteria						
	(a) Ribosomes	(b) Nucleoid	(c) Cytoplasm	(d) Plasma membrane			
630.	. In which of the following parts of mitochondria succinic dehydrogenase enzymes is located						
	(a) Outer membrane		(b) Inner membrane				
	(c) Perimitochondrial s	pace	(d) Matrix				
631.	. Mitochondria are similar to						
	(a) Prokaryotes	(b) Plasmids	(c) Plastids	(d) Viruses			
632.	e. If living cells similar to those found on earth, were found on another planet, where there was no						
	oxygen. Which cell organelle would most probably be absent						
	(a) Cell membrane	(b) Ribosomes	(c) Mitochondria	(d) Chromosomes			
633.		nost of the necessary biolo					
	(a) Breaking down of s	ugar	(b)Oxidizing substrate	-			
	(c) Reducing NADP		(d) Breaking down of	•			
634.	-	in mitochondria and chlore					
		hloroplast both originated	-	ing organisms			
		n mitochondria and chloro	-				
		mitochondria and chlorop					
		loroplast undergo meiosis	and mitosis independer	nt of nucleus			
635.	Autonomic genome sys	Ĩ					
	(a) Ribosomes and chlo	-	(b)Mitochondria an				
	(c) Mitochondria and c	•	(d) Golgi bodies an				
636.	•	is of mitochondria is to be	-	re would be			
		ilter out the mixture and ta					
	-	cell differentiation (centri	•	ondria			
	(c) Select cells which have a large number of mitochondria						
	•	l, filter it and take the debr					
637.		wing is attached to the sur					
	(a) Ribosomes	(b) Oxysomes	(c) Peroxysomes	(d) Mesosomes			
638.	DNA is present in						
	(a) Nucleus only	(b) Mitochondrion only	(c) Chloroplast only	(d) All the above			

 639. Which of the cell organelles are devoid of deoxy ribonulcic acid (a) Mitochondria and nucleus (b)Chloroplast and mitochondria (c) Nucleus and chloroplast (d)Lysosome and dictyosome 640. Which of the following cell organelle is considered to be rich in catabolic enzymes (a) Endoplasmic reticulum (b)Lysosome (c) Golgi body (d) Mitochondria 644. An organelle shows a highly folded inner wall ultrasonic disruption of the organelle yeild fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 2µm (c) 500 - 1000 µm (d) 150 - 300 µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally similar (c) Structurally different but functionally different (d) AtP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenase, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 645. Reduced coenzymes are regenered in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d) Angiosperms 647. Besides nucleus, DNA is also present in (a) Mitochondria are absent in (a) Fungi <li< th=""><th></th><th></th><th></th><th></th><th></th><th></th></li<>							
 (c) Nucleus and chloroplast (d)Lysosome and dictyosome 640. Which of the following cell organelle is considered to be rich in catabolic enzymes (a) Endoplasmic reticulum (b)Lysosome (c) Golgi body (d) Mitochondria 641. An organelle shows a highly folded inner wall ultrasonic disruption of the organelle yeild fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 2µm (b) 5 - 0µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally similar but functionally similar (b) Structurally and functionally different (d) Atenylate than see and nucleoside diphosphokinase 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Structurally silo present in (a) Mitochondria are absent in (a) Mitochondria are absent in (a) Mitochondria are absent in (b) From non- mitochondrial space (c) In perimitochondrial space (d) Angiosperms 643. Mitochondria are absent in (a) Fungi (b) Methanobacteria	639.	Which of the cell organelles are	devoid of deoxy	y ribonuleic acid			
 640. Which of the following cell organelle is considered to be rich in catabolic enzymes (a) Endoplasmic reticulum (b)Lysosome (c) Golgi body (d) Mitochondria 641. An organelle shows a highly folded inner wall ultrasonic disruption of the organelle yeild fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria is (a) 0.5 - 2µm (b) 5 - 20µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally dissimilar (c) Structurally different but functionally similar 643. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Mitochondria are absent in (a) Mitochondria are absent in (a) Mitochondria areses (b) Golgi apparatus (c) In perimitochondrial space (d) Angiosperms 648. Mitochondria areses (a) From non- mitochondrial membranes (c) Previodophytes (d) Angiosperms 649. Mitochondria areses (e) Prom		(a) Mitochondria and nucleus		(b)Chloroplast	t and mitochondria		
 (a) Endoplasmic reticulum (b)Lysosome (c) Golgi body (d) Mitochondria 641. An organelle shows a highly folded inner wall ultrasonic disruption of the organelle yeild fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 2µm (b) 5 - 20µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b)Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally dissimilar (c) Structurally different but functionally different (d) Xtructurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Diso sof hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Fungi (b) Rethanobacteria (c) Preriodophytes (d) Angiosperms 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Preriodophytes (d) Angiosperms 649. Mitochondria areabsent in (a) From non-mitochondrial membranes (c) From non-mitoch		(c) Nucleus and chloroplast		(d)Lysosome and dictyosome			
 641. An organelle shows a highly folded inner wall ultrasonic disruption of the organelle yeild fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 2µm (b) 5 - 20µm (c) 500 - 1000 µm (d) 150 - 300 µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally similar (c) Structurally different but functionally different (d) Structurally and functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 645. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Preriodophytes (d) Angiosperms 649. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Preriodophytes (d) Angiosperms 649. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Preriodophyte	640.	Which of the following cell orga	nelle is consider	red to be rich in cata	abolic enzymes		
fragments which are capable of synthesising ATP the organelle must be (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 2µm (b) 5 - 20µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b)Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally similar (c) Structurally different but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenases, fumarate, aconitase and citrate synthetase (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrial are absent in (a) Mitochondrial space (d)In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Preriodophytes (d) Angiosperms 649. Mitochondria areases (a) By growth and division of pre-existing mitochondria (b) From non-mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in		(a) Endoplasmic reticulum (b)Ly	vsosome	(c) Golgi body	(d) Mitochondria	a	
 (a) Mitochondrion (b) Chloroplast (c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 20µm (b) 5 - 20µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Previodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (d) None of these 650. Mitochondria are numerous and densely packed in 	641.	An organelle shows a highly	folded inner w	all ultrasonic disru	uption of the organell	le yeild	
(c) Ribosome (d) Mitochondria and chloroplast 642. The diameter of mitochondria is (a) 0.5 - 20µm (c) 500 - 1000µm (d) 150 - 300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b)Increase surface area (a) Increase the thickness of wall (b)Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally different (b) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) In perimitochondrial space (d) In mitochondrial mat		fragments which are capable of s	ynthesising AT	P the organelle mus	st be		
642. The diameter of mitochondria is (a) 0.5 - 2,m (b) 5 - 20,m (c) 500 - 1000 ,m (d) 150 - 300, pm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally similar (b) Structurally and functionally different (d) Structurally different but functionally similar (e) Malte and isocitrate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) An mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria ((b) Chloroplast			
 (a) 0.5-2µm (b) 5-20µm (c) 500-1000µm (d) 150-300µm 643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally similar (c) Structurally ainferent (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria arises (c) From precursors of the cytoplasm (d) None of these 		(c) Ribosome		(d) Mitochondria	and chloroplast		
643. The inner membrane of mitochondria bears foldings/finger like projections called cristae. These cristae (a) Increase the thickness of wall (b)Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally different (d) Structurally different but functionally similar (e) Structurally different but functionally similar (f) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenases and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d)In mitochondrial matrix 647. Besides nucleus, DNA is also present in (a) Mitochondria are absent in (a) Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises 	642.	The diameter of mitochondria is					
cristae (a) Increase the thickness of wall (b)Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally similar (c) Structurally similar but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrial space (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in		(a) $0.5 - 2\mu m$ (b) $5 - 20$	um	(c) $500 - 1000 \mu m$	(d) $150 - 300 \mu m$		
 (a) Increase the thickness of wall (b) Increase surface area (c) Increase ATP Supply (d) Keep external substance away 644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (c) Structurally similar but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrial reabsent in (a) Mitochondrial space (b) Methanobacteria (c) In perimitochondrial space (d) Angiosperms 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in	643.	The inner membrane of mitocho	ondria bears fol	dings/finger like pr	ojections called cristae	e. These	
(c) Increase ATP Supply(d) Keep external substance away644. Outer and inner membranes of mitochondria are(a) Structurally and functionally similar(a) Structurally and functionally similar(b) Structurally and functionally dissimilar(c) Structurally different but functionally similar(b) Structurally and functionally dissimilar645. Inner mitochondrial membrane possesses enzymes(a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes(b) NADH-cytochrome reductase and monomeric oxidase(c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase(d) Adenylate kinase and nucleoside diphosphokinase(d) Gain of electrons646. Reduced coenzymes are regenerted in electron transport system by(a) Loss of hydrogen(b) Addition of hydrogen(c) Loss of electrons(d) Gain of electrons647. Besides nucleus, DNA is also present in(a) Mitochondria are absent in(a) Fungi(b) Methanobacteria(c) Pteriodophytes(d) Angiosperms648. Mitochondria are absent in(a) Fungi(b) Methanobacteria(c) Pteriodophytes(d) Angiosperms649. Mitochondria arises(a) By growth and division of pre-existing mitochondria(b) From non- mitochondrial membranes(c) From precursors of the cytoplasm(d) None of these650. Mitochondria are numerous and densely packed in	c						
644. Outer and inner membranes of mitochondria are (a) Structurally and functionally similar (b) Structurally and functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) In perimitochondrial space (d)In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 				. ,			
 (a) Structurally and functionally similar (b) Structurally and functionally dissimilar (c) Structurally similar but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 				(d) Keep exter	mal substance away		
 (c) Structurally similar but functionally different (d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrian outer surface (b)Golgi apparatus (c) In perimitochondrial space (d)In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 	644. Outer and inner membranes of mitochondria are						
(d) Structurally different but functionally similar 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d)In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria areases (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these	(a) Structurally and functionally similar (b) Structurally and functionally dissim					ar	
 645. Inner mitochondrial membrane possesses enzymes (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 		·	•				
 (a) ATP-synthetase, succinate dehydrogenase and respiratory chain enzymes (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 		·	-				
 (b) NADH-cytochrome reductase and monomeric oxidase (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b) Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 	645.	-	-				
 (c) Malate and isocitrate dehydrogenases, fumarate, aconitase and citrate synthetase (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b) Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 		•			enzymes		
 (d) Adenylate kinase and nucleoside diphosphokinase 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 		•					
 646. Reduced coenzymes are regenerted in electron transport system by (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 		•	-		itrate synthetase		
 (a) Loss of hydrogen (b) Addition of hydrogen (c) Loss of electrons (d) Gain of electrons 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 		• •					
 647. Besides nucleus, DNA is also present in (a) Mitochondrion outer surface (b)Golgi apparatus (c) In perimitochondrial space (d)In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 	646.						
 (a) Mitochondrion outer surface (b) Golgi apparatus (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in		••••	• •	n (c) Loss of electro	ons (d) Gain of elect	rons	
 (c) In perimitochondrial space (d) In mitochondrial matrix 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 	647.	-	esent in				
 648. Mitochondria are absent in (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in							
 (a) Fungi (b) Methanobacteria (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in		· · ·		(d)In mitochor	ndrial matrix		
 (c) Pteriodophytes (d) Angiosperms 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 	648.						
 649. Mitochondria arises (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in 					ria		
 (a) By growth and division of pre-existing mitochondria (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in				(d) Angiosperms			
 (b) From non- mitochondrial membranes (c) From precursors of the cytoplasm (d) None of these 650. Mitochondria are numerous and densely packed in	649.		• ,• •,	1 1 •			
(c) From precursors of the cytoplasm(d) None of these650. Mitochondria are numerous and densely packed in			-	hondria			
650. Mitochondria are numerous and densely packed in							
(a) inactive tissues (b) Less active tissues (c) Very active tissues (d) Damaged tissues	650.		• -				
		(a) inactive tissues (b) Less	active tissues	(c) very active tis	ssues (a) Damaged fiss	sues	

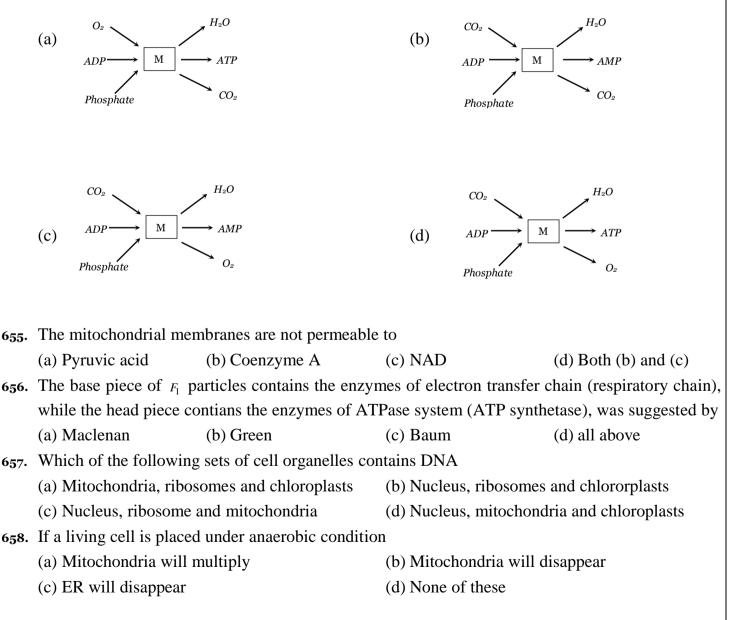
651. Mitochondria in the living cell can readily be identified from other organelles of the cell through light microscope by using

(a) Cotton blue
(b) Osmic acid
(c) Janus green
(d) Lead citrate
652. Which of the following observations most strongly support the view that mitochondria contain electron transfer enzymes aggregated into compact association

(a) Mitochondria have a highly folded inner wall

(b) Disruption of mitochondria yields membrane fragments which are able to synthesize ATP

(c) Mitochondria in animal embryos have a tendency to concentrate in cells which are to become a part of locomotory structure


(d) A contractile protien capable of utilising ATP has been obtained from mitochondria

653. Chondriospheres are formed due to

(a) Fusion of mitochondria (b)Division of mitochondria

(c) DNA replication (d)Transcription

654. Which of the following representation correctly explain the function of mitochondrion

659.	From recent studies it	has been found that pre-ex	sisting plastids arise fron	1		
	(a) Bodies called prop	lastids	(b) The nucleus			
	(c) The vacuole		(d) The cell wall			
660.	All plastids have essen	tially same structure beca	use			
	(a) They have to perfo	rm same function				
	(b) They are localized	in aerial parts of plant				
	(c) All plastids store st	arch, lipid and proteins				
(d) One type of plast	ids can be differentiated	into another type of p	lastid depending on cell		
r	equirements					
661.	The thylakoid in chlore	oplast are arranged as				
	(a) Interconnected disc	(b) Interconnected sacs	(c) Stacked discs	(d) None of these		
662.	If the leaf tissue are ca	refully fractionated what p	parts should we get alive			
	(a) Endoplasmic reticulum (b)Chloroplasts (c) Cell wall (d) Ribosomes					
663.	. The main difference between chlorophyll 'a' and 'b' is					
	(a) Chlorophyll ' <i>a</i> ' is l	inear chain compound and	1 'b' is branched chain			
	(b) Chlorphyll ' <i>a</i> ' has	no Mg^+ ion in centre of mo	olecule			
	(c) In chlorophyll 'a' t	here is CH ₃ group whereas	in 'b' it is – <i>CHO</i> group			
	(d) All of the abve					
664.	The presumed size of	chlorophyll molecules is				
	(a) Head– 15×15 Å, T	ail –20 Å	(b)Head– 10×12 Å,	, Tail –15 Å		
	(c) Head– 20×20 Å, T	ail –25 Å	(d)Head– 15×15 Å,	, Tail –25 Å		
665.	The term chromatopho	ore was coined by				
	(a) Schmitz	(b) Comparethi				
	(c) W. Pfeffer	(d) Singer and Nicolsan				
666.	The colour of chromat	oplast can be				
	(a) Yellow	(b) Red	(c) Orange	(d) All of these		
667.	Anthocyanins are grou	ped under				
	(a) Phenols	(b) Tannins	(c) Carbohydrates	(d) Alkaloids		
668.	When green tomatoes	fruits turn to red, then				
	(a) Chloroplasts are di	sintegrated and get conver	ted into chromoplasts			
	(b) New chromoplasts					
		changed to chloroplasts				
	(d) None of these					
669.	The bright colours of r	-				
	(a) Leucoplasts	(b) Chloroplasts	(c) Amyloplasts	(d) Chromoplasts		
670.	A typical parenchyma					
	(a) Nucleus	(b) Chloroplast	(c) Central vacuole	(d) Cell wall		

671.	Extranuclear DNA is fo					
	(a) Chloroplast	(b) Ribosome	-	lum (d)Golgi apparatus		
672.		of flowers and fruits are c				
	(a) Chloroplasts	(b) Leucoplasts	(c) Aleuroplasts	(d) Chromoplasts		
673.	Chloroplast fix					
	(a) N_2	(b) H_2	(c) o_2	(d) co_2		
674.	In chloroplast, chloropl	hyll is present in the				
	(a) Thylakoids	(b) Stroma	(c) Outer membrane	(d) Inter membrane		
675.	Quantasome discovered	d by Park and Biggins (19	64) has			
	(a) 100 chl molecules		(b) 300 chl molecules			
	(c) 230 chl molecules		(d) 230 chl and 50 caro	tenoid molecules		
676.	Solar energy is trapped	in				
	(a) Stroma	(b) Lamellae	(c) DNA	(d) Oxysomes		
677.		nucleus of porphyrin ring	of chlorophyll			
	(a) Fe^{++}	(b) <i>Fe</i> ⁺⁺⁺	(c) <i>N</i>	(d) Mg^{++}		
678.	Pyrenoids are centre of					
	(a) Fat storage	(b) Starch storage	(c) Protein formation	(d) Enzyme formation		
679.	Chlorophyll 'b' is char	orophyll 'b' is characterised by the side group				
	(a) Methyl	(b) aldehyde	(c) Phytol	(d) Formyl		
680.	Chlorophyll 'a' is char	acterised by the side group	•			
	(a) Methyl	(b) Aldehyde	(c) Phytol	(d) Ketone		
681.	-	an flower is put in water rless in flower case. It is l		ecomes purple in case of		
	(a) In carrot, Anthocya	nin pigments are found in	cell sap which are water	soluble		
		oid pigments are fat solub	le and found in chromop	plast and not come out in		
	water					
		s are found in cytoplasm v	while in carrot, pigments	are localized in vaculoes		
	(d) Both (a) and (b)	C (1 1 1)	1 (771 11	11 11		
682.	*		oroplasts. These cell org	ganelle provide energy to		
	plants by absorbing fro (a) Green and blue colo	—	(b)Violet and blue colo			
	(c) Violet and green co		(d) Green and red color			
680	-	d is found in Bacteria and		u15		
003.	(a) Fucoxanthin	(b) Lycopene	(c) Capsanthin	(d) Xanthophyll		
684	A granum has a stack of	•	(c) Cupsultilli	(a) minimpinyii		
004.	(a) 40–100	(b) 20–40	(c) 4–30	(d) 40–60		
69-	The amount of DNA pe		(c) T 50			
005.	(a) $100-200 g$	(b) $100^{-15} g$	(c) $10^{-15} g$	(d) 10% of dry weight		
	(a) 100–200 g	(U) 100 g	(\mathbf{v}) 10 g	(a) 1070 of ary weight		
1						

686.	Chloroplast is semiaute	onomous body. It has na	ked prokaryotic type of	double stranded circular	
Γ	ONA, which was observe	ed by			
	(a) Nass and Nass	(b) Ris and Plaut	(c) Watson and Crick	(d) Meyer	
687.	Structural and function	al part of chloroplast is re	spectively		
	(a) Stroma and grana		(b) Grana and thylakoi	ds	
	(c) Thylakoids and qua	ntasomes	(d) Grana and quantas	omes	
688.	The parallel layering of	f membranes in chloroplas	st is suited for		
	(a) Maximum light abs	orption			
	(b) Maximum exposure	e of enzymes			
	(c) Minimum light absorption so that the cells can maintain their temperture				
	(d) All the above				
689.	Anthocyanins are pigm	ents which are			
	(a) Water soluble and le	ocated in chromoplasts	(b) Water insoluble and	d located in chromoplasts	
	(c) Water insoluble and	l located in cell sap	(d) Water soluble and	located in cell sap	
690.	Some metallic ions pres	sent in chloroplast are			
	(a) Fe, Br, I and k	(b) <i>F</i> , <i>K</i> , <i>I</i> and <i>Fe</i>	(c) Fe, Cu, Mn, and Zn	(d) <i>Cu</i> , <i>K</i> , <i>I</i> and <i>P</i>	
691.	The chloroplast of poly	ploid cells are comparativ	vely		
	(a) Larger than the chlo	proplast of diploid cells	(b) Smaller than the normal diploid cells		
	(c) Do not show any ch	ange	(d) Chloroplast is deleted		
692.	Fret channels are assoc	iated with			
	(a) Two grana of a chlo	proplast	(b)Two lamellae of a g	ranum	
	(c) Two plastids of a ce	ell	(d)Two quantasomes		
693.	Pigment anthocyanin is	s located in			
	(a) Chloroplast	(b) Chromoplast	(c) Cytoplasm	(d) Vacuole	
694.	Number of thylakoids p	per granum is one in			
	(a) Red algae	(b) Green algae	(c) Leaf of pea plant	(d) Leaf of gram	
695.	Which of the following	s is related to glycosylation	n of protein		
	(a) ER	(b) Peroxisome	(c) Lysosome	(d) Mitochondria	
696.	Endoplasmic reticulum	is more developed in			
	(a) Green cells	(b) Young cells	(c) Mature cells	(d) Bacteriophage	
697.	RER endoplasmic retic	ulum is mainly concerned	l with		
	(a) Proteolysis (b) Fatty acids synthesis				
	(c) Peptide bond forma	tion	(d) Chloesterol synthe	sis	
698.	SER produces				
	(a) Protein	(b) Carbohydrate	(c) Lipid	(d) Nucleic acid	

699. When the region of endoplasmic reticulum are studded by ribosome on their outer surface of the cisternae. It is called (a) Sarcoplasmic reticulum (b)Smooth endoplasmic reticulum (c) Granular endoplasmic reticulum (d)None of these 700. One of the following serves as a temporary storage place for proteins and other compounds synthesized by endoplasmic reticulum (a) Lysosomes (b) Sphaerosomes (c) Microsomes (d) Dictyosomes **701.** The most important function of endoplasmic reticulum is (a) Protein synthesis (b)Nourishing the nucleus (c)Secretion of materials (d)To give shape to the cell 702. Disulphide bonds which acts as atomic staples to reinforce the conformation of proteins are found in (a) Endoplasmic reticulum (b)Lysosome (c) Golgi apparatus (d) Cytosol 703. In plant cells the number of golgi bodies increases during (c) Translocation (a) Cell division (b) Food synthesis (d) Respiration **704.** The enzyme present in golgi bodies is (a) PEP carboxylase (b) Peptidyl transferase (c) Thymine ligase (d) Glycosyl transferase 705. Which is not function of golgibody (a) Secretion (b) Formation of plasmamembrane (d) Cell wall formation (c) Fat synthesis 706. Secretory and membrane proteins are processed (a) Peroxysomes (b) Glyoxysomes (c) Golgi complex (d) Sphaerosomes 707. Zone of exclusion is associated with (a) Golgi complex (b) Endoplasmic reticulum (c)Mitochondria (d) Chloroplast 708. Which of the following is responsible for mechanical support enzyme transport and protein synthesis (a) Dictyosomes (b) Cell membrane (c) Mitochondria (d) Endoplasmic reticulum 709. Golgi apparatus is commonly present in (a) Near mitochondria (b) Near chloroplast (c) Perinuclear area (d) Germ cells 710. Export house of cell is (a) E.R (b) Golgi body (c) Nucleus (d) lysosome 711. Golgi was able to differntiate Golgi apparatus through (b)Metallic impregnation technique (a) Phase contrast microscopy (c) Electron microscopy (d) Special redox dye

712.	Metallic stain used by	Golgi was			
	(a) Lead acetate		(b) Osmium chloride and silver salts		
	(c) Phosphotungstate		(d) Palladium	ladium	
713.	Golgi apparatus was fin	rst seen under electron m	icroscope by		
	(a) Novikoff	(b) Dalton and Felix	(c) Rhodin	(d)De Robertis and Franchi	
714.	On which side of Golg	i apparatus are the memb	oranes thin		
	(a) Concave distal side		(b) Concave prop	ximal side	
	(c) Convex distal side		(d) Convex prox	imal side	
715.	Golgian vacuoles deve	lop from			
	(a) Tubules		(b) Convex prox	imal cisterna	
	(c) Concave distal ciste	erna	(d) Transition vesicles		
716.	16. Amongst plants, golgi apparatus is absent in				
	(a) Sieve tube cells		(b) Sperms of br	yophytes	
	(c) Sperms of pteridop	hytes	(d)All of these		
717.	The term 'trophospong	ium' for golgi complex w	was given by		
	(a) Dalton	(b) Camillo	(c) Holmgren	(d) Sjostrand	
718.	Golgi bodies were disc	overed by Golgi from ne	erve cells of born ov	wl and cats by a technique of	
	(a) Cell fractination		(b) Metal silver	impragnation	
	(c) Janus green		(d) Osmium tetra	aoxide	
719.	Secrotory vesicles are	pinched off as zymogen	granules from ——	- side of dictyosomes	
	(a) Convex	(b) Concave	(c) Plain	(d) All sides	
720.	The number of cisterna	e in each stack of Golgi	apparatus of anima	ls cells is	
	(a) 1	(b) 4-8	(c) 1-50	(d) 10-30	
721.	The maximum number	of cisternae in plant cell	s can be		
	(a) 20	(b) 5	(c) 2	(d) 10	
722.	Chemicals of Golgi co	mplex comprises			
	(a) Proteins		(b) Phospholipid	ls	
	(c) Cephaline		(d) Protiens and	Phospholipids	
723.	-	are separated from each		0	
	(a) 13Å	(b) 130 Å	(c) 115 Å	(d) 300 Å	
7 2 4.	The number of Golgi b	odies during cell division	n of plants and anim	nals	
	(a) Increases	(b) Decreases			
	(c) Remains constant	(d) Increases many fold	ls		

MICRO CELLORGANELLES

Basic Level

Dusi	Dusic Level				
7 25 .	Lysosomes as known a	s suicidal bags because of	2		
	(a) Phagocytic activity	(b) Hydrolytic enzymes	(c) Parasitic on nucleu	us (d) Proteolytic enzymes	
726.	Which of the following	g cell organelle lacks DNA	and bounding membra	ane	
	(a) Ribosome	(b) Plastid	(c) Nucleolus	(d) Plasmid	
727.	Lysosome along with t	he food content is called			
	(a) Primary lysosome	(b) Secondary lysosome	(c) Residual bodies	(d) Cytosome	
728.	Secondary lysosomes a	re also called			
		es (b)Lipofuscin granule	es (c)Residual body	(d) Heterophagosomes	
729.	•	d because these contain			
	(a) Carboxylating enzy		(b) Respiratory enzyn		
	(c) Oxidizing enzymes		(d) Digestive enzymes	5	
730.	Which is concerned wi	-			
	(a) Ribosome		-	(d) Oxysome	
731.	-	ded by how many membr			
	(a) One	(b) Two	(c) Three	(d) Four	
732.	The main function of ly				
	(a) Digestion				
733.		lysosomes get ruptured in		- –	
	(a) Cells will swell			(d)Nothing would happen	
	•	•	ntly. Who gave the teri	n lysosome and examined	
u	nder election microscop (a) Fitz James	(b) Novikoff	(c) Palade	(d) Robertson	
70.5		educes the number of other		(u) Robertson	
735.	(a) Oxysome	(b) Lysosome		(d) None of these	
726	Lysosomes contain	(<i>b</i>) Lysosonie	(c) Mitoenonaria	(d) None of these	
/30.	(a) Acid phosphatase	(b) Hormones	(c) Various enzymes	(d) Both (a) and (c)	
737.		ymes of lysosomes function	•	(0) 2001 (0) 0110 (0)	
/0/*	(a) Acidic <i>pH</i>	(b) Basic <i>pH</i>	(c) Neutral <i>pH</i>	(d) Any <i>pH</i>	
738.	. / 1	-	• •	ed intracellular digestion	
	nolecules is a			C	
	(a) Phagosome	(b) Nucleosome			
	(c) Lysosome	(d) Endoplasmic reticulu	ım		
739.	Which lysosomes are s	cavenging in function			
	(a) Primary	(b) Secondary	(c) Tertiary lysosome	s (d) Autolysosomes	
740.	The size of lysosome v	aries from			
	(a) 1.2–1.8 µm	(b) 2.5 – 3.5 µm	(c) $0.1 - 0.5 \mu m$	(d) $0.2 - 0.8 \mu m$	

741.	Cathepsins are a type of	of enzymes in lysosomes,	that help in digestion of	
	(a) Proteins	(b) Fats	(c) glycosides	(d) Sulphates
742.	Which organel convert	s cellular polymers into m	nonomers	
	(a) Lysosomes	(b) Golgi bodies	(c) SER	(d) Plastide
7 4 3•	Lysosomes arise throu	gh the		
	(a) Golgi complex	(b) SER	(c) RER	(d) GERL system
744.	Lysosomes containing	inactive enzymes are call	ed	
	(a) Primary lysosomes	(b) Secondary lysosome	s (c) Autophagosomes	(d) Residual bodies
745.	Sphaerosomes are com	amonly present in		
	(a) Prokaryotic cells		(b) All eukaryotic cells	
	(c) Lipid secreting and	storing cells	(d) Fast respiring cells	
746.	Sphaerosomes found in	n lipid storing cells origina	ate form	
	(a) Mitochondria	(b) SER	(c) RER	(d) Golgi complex
747•	Spherosome have affin	ity for		
	(a) Suden III	(b) Eosin stains	(c) Leishman's stain	(d) Giemso's stains
748.	Which one of the follo	wing is present outside the	e plasma membrane but i	inside the cell wall
	(a) Sphaerosome	(b) Peroxisome	(c) Lomasome	(d) Golgi body
749 •	Who discovered "ribos	somes" in animal cells		
	(a) Watson	(b) Talvim	(c) Cowdry	(d) Palade
750.	All are membrane bound	nd cell organelles except		
		Or		
	Which of the following	g cell organelles lacks a ur	nit membrane	
	(a) Mitochondria	(b) Lysosomes	(c) Sphaerosomes	(d) Ribosomes
751.	The functional unit in	the synthesis of protein is		
	(a) Peroxisome	(b) Dictyosome	(c) Lysosome	(d) Polysome
752.	The site of protein syn	thesis in plants is the		
	(a) Chloroplast	(b) Ribosome	(c) Pyrenoids	(d) Mitochondria
7 5 3.	Ribosomes are the site			
	(a) Photosynthesis	(b) Protein synthesis	(c) Respiration	(d) Fat synthesis
7 5 4.	The proteins are synthe			
	(a) Ribosomes	(b) Mitochondria	(c) Centrosomes	(d) Golgi bodies
755.		g statements is wrong for i	ribosome	
	(a) Formed by two sub			
	(b) Formed by ribo-pro			
	(c) Formed in chain		e bounded by a membran	e
756.	ç			
	(a) Nuclei	(b) Ribosome	(c) Microsomes	(d) Vacuole
757.	Ribosomes are made u	•		
	(a) DNA and protein	(b) DNA alone	(c) RNA and protein	(d) RNA and DNA
1				

	T 1 000 1	<i>,</i> •				
758.	The 80S ribosomes are	•				
	•	(b) Procaryotic cells	(c) Bacterial cells	(d) Cyanobacterial cells		
759.	The larger sub-unit in 8		() 100			
	(a) 50S	(b) 60S	(c) 40S	(d) 0 S		
760.	Eukaryotic 80S breaks					
		(b) 60S and 40S				
761.	• -	hows two units whose sec				
	(a) 40S and 30S	(b) 50S and 20S	(c) 50S and 30S	(d) 60 S and 20S		
762.	• -	es are found in Nostoc ce				
	(a) 50S	(b) 60S	(c) 70S	(d) Eukaryotic		
763.	The bacterial ribosome	s are of				
	(a) 50S type	(b) 70S type	(c) 30S type	(d) 80S type		
764.	Ribosomes are produce	ed in				
	(a) Nucleolus	(b) Mitochondria	(c) Cytoplasm	(d) Golgibody		
765.	The most abundant ribe	osomes amongst the follow	wing will be in plan	it cells		
	(a) Meristematic	(b) Dead	(c) Parenchymatous	(d) Lignified		
766.	Delimiting membrane i	is absent in				
	(a) Mitochondria	(b) Chloroplast	(c) Nucleus	(d) Ribosome		
767.	Ribosomes form associ	Ribosomes form association with mRNA to form				
	(a) Polyribosomes	(b) Protein ribosome con	nplex			
	(c) Ribosomal complex	x (d) All of these				
768.	The site of protein synt	thesis in an animal cell is				
	(a) Ribosomes attached	l to mRNA	(b)Ribosomes attached	to RER		
	(c) Ribosomes attached	l to nuclear envelope	(d) Both (a) and (b)			
769.	Ribosomes in nucleopl	asm were discovered by				
	(a) Tsao and Sato	(b) Brown and Strasburg	ger (c)Palade and Robi	nson(d)Meyer		
77 0.	The cytoplasm of bacte	ria is granular due to				
	(a) Glycogen granules	(b) Volutin particles	(c) Ribosomes	(d) Chromatin network		
771.	The size of ribosomes	varies from				
	(a) 100–150 Å	(b) 60 –100Å	(c) 150–250Å	(d) 200–300Å		
772.	The ribosome are					
	(a) Positively charged	(b) Negatively charged	(c) Amphipathied	(d) None of these		
77 3 .	Ribosomes are synthesi	ized in				
	(a) Nucleus	(b) Nucleolus	(c) Cytoplasm	(d) Nucleoplasm		
774.	Which of the following	statement is correct with	respect to ribosomes			
	(a) They remain united	in absence of protein syn	thesis			
	(b) Mg concentration at	ffects the binding of two s	subunits			
	(c) More important for	protein synthesis is larger	subunit	(d) None of these		

775.	Ribosomes are attache	d to ER through		
	(a) rRNA	(b) Hydrophobic attracti	on (c)Ribophori	ns (d) tRNA
776.	Ribosomes differ from	cell to cell/species to spe	cies in	
	(a) Types of proteins	(b) Types of rRNA	(c) Mg^{++} concent	ration (d) All of these
777•	On the basis of sedime	entation value, how many	types of RNA are	present in 70 S ribosome
	(a) Two types	(b) One type	(c) Three types	(d) Four types
778.	rRNA protein ratio of	80 S ribosome is		
	(a) 40–44: 56–60	(b) 45–50 : 50-55	(c) 50 – 55 : 45 -	-50 (d) $60 - 65 : 35 - 40$
77 9 .	rRNA present in 40S s	ubunit of ribosome is		
	(a) 5S	(b) 5.8S	(c) 16S	(d) 18S
780.	rRNA present in 40S	subunit of ribosome is		
	(a) 5S	(b) 5.8S	(c) 28 S	(d) None of these
781.	rRNA present in 50S s	ubunit of ribosome is		
	(a) 23S	(b) 5S	(c) Both (a) and	(b) (d) 23S, 5.8S and 5.8
782.	Sedimentation unit of	ribosome is		
	(a) μ (micron)	(b) $_{m\mu}$ (mili micron)	(c) Å (Angstrom	a) (d) S (Svedberg)
783.	The only organelle for	and in PPLO is		
	(a) Nucleus	(b) Ribosomes	(c) Plastids	(d) Vacuoles
784.	Which one of the follo	wing pairs is membranele	SS	
(a) Lysosomes and Ribosomes (b)Ribosom				s and Microtubules
	(c) Ribosomes and Flagella		(d)Ribosome	s and Dictyosomes
785.	Plants can convert fatt	y acids into sugar by		
	(a) Glycolysis	(b) Glyoxylate cycle	(c) Photorespirat	tion (d) Kreb's cycle
786.	'Glyoxysome' term wa	s coined by		
	(a) Kreb	(b) Breiden back and Be	evers (c)Rhodin	(d) Both (b) and (c)
7 8 7.		ich convert fatty acids to s	•	
	(a) Krebs cycle	(b) Glyoxylate cycle	(c) Ornithine cyc	cle (d) Glycolysis
7 88.		rring in glyoxysomes is a		
	(a) Kreb's cycle	(b) Calvin cycle	(c) Glycolysis	(d) Glycolate cycle
789.	Glyoxysome occur in	1 11 (1) D1 1 11 1	/ \ \ 1	
	• • •		y (c)Animal ce	ells only(d) All types of cells
790.	Fat storing microbodie			
	(a) Peroxisomes	(b) Glyoxysomes	(c) Lysosomes	(d) Residual bodies
791.	Glyoxysomes are seat		(a) Drotain	(d) All of these
	(a) Fat	(b) Carbohydrate	(c) Protein	(d) All of these
792.	-	cids in liver cells is mainly	-	voor ales (d) Denerisserres
	(a) Lysosomes	•••		vacuoles (d)Peroxisomes
793.		idant in germinating seeds		(d) Wheat
	(a) Pea	(b) Castor	(c) Maize	(d) Wheat

794 .	Urate oxidase occurs in	1		
	(a) Lomasomes	(b) Peroxisomes	(c) Mitochondria	(d) Glyoxysomes
795.	Peroxisomes, in plant c	ells, are involved in		
	(a) Photooxidation		(b) Photorespiration	
	(c) Photophosphorylati	on	(d) Photolysis of water	
796.	What is degraded by pe			
		(b) Hydrogen peroxide	(c) Hydrogen	(d) Carbon monoxide
7 9 7•	Peroxisomes are rich in			
	(a) DNA	(b) RNA	(c) Catalytic enzymes	(d) Oxidative enzymes
798.	Glycolate metabolism of			
	(a) Lysosome	(b) Ribosomes	(c) Glyoxysomes	(d) Peroxisome
799 •	Peroxisomes contain			
	(a) Hydrolysing enzym	es (hydrolases)	(b) Oxidising enzymes	(oxidases)
	(c) Transferases		(d) Isomerases	
	• •	n, hydrogen peroxide is bi	roken down with the hel	p of three organalles into
Ň	vater and oxygen with th	•	(a) Catalagaa	(d) None of these
0 - 1	(a) Peroxidases	(b) Oxidases	(c) Catalases	(d) None of these
801.	(a) Tolbert	ing discovered role of per- (b) Porter	(c) Palade	(d) Lutz
900				(d) Lutz
802.	(a) Lysosomes	ts the cell from the effect (b) Peroxisomes	(c) Glyoxysomes	(d) Sphaerosomes
802	The organelle involved	. ,	(c) Oryoxysonics	(d) Sphaerosonies
803.	•	coplast and peroxisomes	(b) Mitochondria, nucle	ous and ribosomes
		ysomes and peroxisomes	(d) Mitochondria, chlor	
804.	Rhodin in 1995 discove	· ·	(a) millionnana, emer	opiai and grjongsomos
	(a) Germinating seeds	•	(c) Kidney tissue	(d) Brain cells of mouse
805.	Č,	$v_2 o_2$ metabolism are presen	· · · · · ·	
	(a) Golgi bodies	(b) rRNA	(c) Peroxisomes	(d) Chloroplasts
806.	Peroxisome do not have	. ,		(a) enteropristo
		se (b) <i>B</i> -hydroxy acid ox	idase(c)Urate oxidase	(d) Amylase
807.		parts of a cell is non-livir		
/ •	(a) Centriole	(b) Vacuole	(c) Ribosomes	(d) Mitochondria
808.	Hyaloplasm of vacuole		()	() · · · · · · · · · · · · · · · · · ·
250.	(a) Air	(b) Water	(c) Water and Minerals	(d) Nothing
800.	In plant cells the site of		(-)	
~~	(a) Golgi body	(b) Mitochondria	(c) Peroxisomes	(d) Vacuole
810.		rgid plant cells occurs chie		
0101	(a) In the nucleus	(b) In the vacuole	(c) In the cell wall	(d) In the cytoplasm
	(a) in the interests			(a) in the of toplashi

811.	Cell vacuole contains				
	(a)Water		(b) Metabolic gasses		
	(c) Water and dissolve	d substances	(d) Cytoplasm		
812.	Water soluble pigment	present is cell sap of rose	se petal is		
	(a) Anthocyanin	(b) Carotene	(c) Xanthophyll	(d) Chlorophyll	
813.	Colour of rose petal is	due to water soluble pigm	ent present in		
	(a) Cytoplasm	(b) Intracellular spaces	(c) Nucleus	(d) Vacuoles	
814.	The pigment in flower	petals equal to melannin of	of animals can be traced	in	
	(a) Cell sap of epiderm	nal cells	(b) Vacuoles		
	(c) Intercellular spaces	5	(d) Both (a) and (b)		
815.	315. Anthocyanin occurs in				
	(a) Cell sap	(b) Vacuoles	(c) Chloroplasts	(d) Both (a) and (b)	
816.	Vacuole is surrounded	by			
	(a) Plasmalemma	(b) Cell wall	(c) Tonoplast	(d) Plasmodesmata	
817.	Vacuoles help in				
	(a) Storing wastes and	food particles	(b) Separating water from cytoplasm		
	(c) Making cell light		(d) None of these		
818.	A large and mature pla	int cell has			
	(a) Many vacuole		(b) No vacuole		
	(c) A large vacuole		(d) Many small vacuoles and a large vacuole		
819.	pH of vacuolar cell sap	o is			
	(a) Acidic and hyperto	nic	(b) Alkaline and hypotonic		
	(c) Neutral and isotoni	c	(d) Equal to cytoplasm and isotonic		
820.	The contents of food v	acuoles in Amoeba are			
	(a) Acidic		(b) Alkaline		
	(c) First acidic and the	n alkaline	(d) First alkaline and then acidic		
821.	Most common element	t and organic acid in sap v	acuole		
	(a) K^+ , acetic acid	(b) Ca^{++} , citric acid	(c) K^+ , oxaloacetic	(d) Ca^{++} , acetic acid	
822.	The main structure of o	centriole is			
	(a) $9 + 3$ fibrils	(b) $9 + 2$ fibrils	(c) Nine triplets	(d) 13 globular subunits	
823.	Centrosome is found in	1			
	(a) Nucleus	(b) Nucleolus	(c) Cytoplasm	(d) Chromosomes	
824.	Centrioles and centros	omes are present in cells o	of		
	(a) Bacteria	(b) Cyanobacteria	(c) Green plants	(d) Animals	
1					

	W 71 * 1 C /1 C 11 *	1 . • 1		
825.	Which of the following			
	(a) Chromosomes		(c) Centrosomes	(d) Centromeres
826.		anes that surround centric		
	(a) 3	(b) 0	(c) 1	(d) 2
827.	Which one is without a	-	() 	
	(a) Lysosome	(b) Golgi apparatus	(c) Centrosome	(d) Centriole
828.	The organelle has no D	•		
	(a) Flaellum	(b) Cilia	(c) Centrosome	(d) All of these
829.		ccurs in epidermal cells of	_	
	(a) Centriole	(b) Mitochondria	(c) Cell membrane	(d) Glyoxisomes
830.	Centrioles are found			
	(a) Singly	(b) Pairs	(c) Triplets	(d) Quadruplets
831.	Cell organelle multiply	ving through sort of replica	ation is	
	(a) DNA	(b) RNA	(c) Centriole	(d) Mitochondrion
832.	Centrosome is rich in			
	(a) ATP	(b) RNA	(c) DNA	(d) Enzymes
833.	The principal protein o	f cilia and flagella is		
	(a) Tubulin	(b) Albumin	(c) Globulin	(d) Gliadin
834.	Basal bodies are associ	iated with the developmen	t of	
	(a) Cilia and flagella	(b) Cell plate	(c) Phragmoplast	(d) Kinetochore
835.	Basal bodies of cilia ar	nd flagella are derived from	n	
	(a) Plasma membrane	(b) Genes	(c) Centrioles	(d) Lysosomes
836.	Pattern of organisation	of cilia and flagella is		
	(a) $9 + 0$	(b) 9 + 1	(c) $9 + 2$	(d) 9 + 3
837.	The arrangement of cer	ntral and outer microtubul	es in a cilium is called th	ne
	(a) $9 + 2$ pattern	(b) $2 + 9$ pattern	(c) $9 + 0$ pattern	(d) $0 + 9$ pattern
838.	Cilia are formed by			
	(a) Peroxisomes	(b) Centrioles	(c) Dictyosomes	(d) Microfilaments
839.	Microtubules were disc	covered by		
	(a) De Roberties and F	ranchi		(b) Robert Brown
	(c) Koliker		(d) Palade	
840.	Microtubule is involve	d in the		
	(a) Cell division		(b) DNA recognition	
	(c) Muscle contraction		(d) Membrane architec	ture
841.	The protein not associa	ated with the flagella is		
	(a) Tubulin	(b) Dyenin	(c) Flagellin	(d) Pilin
842.	When two flagella in a	cell are dissimilar it is cal	lled	

	(a) Isokont	(b) Heterokont	(c)	Akont	(d) Anisog	gamy
843.	The basal bodies at the	base of Flagella and cillia	are	;		
	(a) Ribosome	(b) Kinetoplast	(c)	Kinetosome	(d) Dictyo	some
844.	The side arms of a subt	fibril 'A' in cilium are mad	e of			
	(a) Tubulin	(b) Actin	(c)	Myosin	(d) Dyneii	1
845.	9+2 arrangement is at	osent in				
	(a) Flagellum of <i>Chlan</i>	nydomonas		(b)Flagellum of Eug	glena	
	(c) Flagellum of Param	necium		(d)Flagellum of bac	terium	
846.	Sweeping type of rhyth	mic movements are show	n by	/		
	(a) Flagella	(b) Cilia	(c)	Both (a) and (b)	(d) Centro	some
847.	7. Which of the following show $9 + 0$ arrangement					
	(a) Centriole and basal	bodies			(b) Cilia	
	(c) Centriole		(d)) Cilia and flagella		
848.	The term microtubule v	was introduced by				
	(a) Watson	(b) Porter	(c)	Franchi	(d) Slautte	erback
849.	The cellular role for m	icrotubule is				
	(a) Portein synthesis (b) Intracellular communication					
	(c) Digestion of aged o	rganelles	(d) Cell destruction during development			oment
850.	Tubulin protein occurs	in				
	(a) Rough endoplasmic	e reticulum	h (b) Microtubules			
	(c) Thylakoids		(d) Digestive enzymes			
851.	Arrangement of microt	ubules in basal bodies is				
	(a) 9 pairs in circle		(b)	9 triplets in circle		
	(c) 9 pairs in circle $+ 2$		(d) 2 in circle and 9 in periphery			
852.		ed largely of a protein call				
	(a) Tubulin	(b) Actin	. ,	Flagellin	(d) Myosi	n
853.		up of tubulin and microfil				
	(a) Actin	(b) Myosin	(c)	Both (a) and (b)	(d) None of	of these
854.	The plane of cell wall i	-				
	(a) Microfilaments	(b) Microsomes	(c)	Microbodies	(d)	Microtubules
855.	B-subfibres of flagella					
	(a) 13	(b) 9	(c)) 2	(d) 9–10	
Adve	ance Level					
856.	"Lysosomes" were disc	covered by				
	(a) Haekel	(b) De Duve	(c)	De Vries	(d) Purkin	je
857.	The "marker" enzyme	of lysosome is				
	(a) Lysozyme (murami	dase)	(b)) Acid protease		

		(c) Acid phosphatase		(d)	Beta-galactosidase	
	858.	Which of the following	statements is incorrect with	ith re	eference to lysosome	S
		(a) They are filled acid	hydrolase and other enzy	mes		
		(b) They are monomorp	phic and uniform in structu	ure a	and function	
		(c) They may be autopl	hagic			
		(d) They can digest pro	teins, nuclei acids, lipids a	and J	polysaccharides	
	859.	Which of the following	g organ has single membra	ne		
		(a) Nucleus	(b) Cell wall	(c)	Mitochondria	(d) Spherosomes
	860.	Lysosomes are rich in				
		(a) Polyribosome	(b) Lipoproteins	(c)	DNA ligase	(d) Hydrolytic enzymes
	861.	Lysosomes are general	ly found in			
		(a) Animal cells only		(b)	Animal cell and in s	ome plant cells
		(c) Plant cells only		(d)	Bacterial cells	
	862.	Which of the function i	is performed by lysosome			
	(a) Breakdown of cell substances			(b) Photosynthesis		
		(c) Breakdown of wate	r	(d) Synthesis of protein		
863. At which <i>pH</i> enzymes of Lysosomes are usually ac			activ	ve		
		(a) <i>pH</i> 5	(b) <i>pH</i> 7	(c)	<i>pH</i> 8	(d) In any pH
	864.	The organelles whose r	najor function is storage o	of hy	drolytic enzymes are)
		(a)Centrioles	(b) Chromoplasts	(c)	Lysosomes	(d) Chloroplasts
	865.	A lysosome in which in	ntracellular organells is ge	tting	digested is called	
		(a) Primary lysosome	(b) Secondary lysosome	(c)	Autophagosome	(d) None of these
	866.	Release of lysosomal e	nzymes may be brought al	bout	by	
		(a) Extremes of pH	(b) Ag^+	(c)	Hg^{++} and Cu^{++}	(d) All of these
	867.	When are lysosomes ex	xtra active			
		(a) Seed maturalion	(b) Seed germination	(c)	Flowering	(d) Fruiting
	868.	Heterophagy means				
		(a) Digestion of fat by	glyoxysomes	(b)Activity of catalase of peroxisome		
		(c) Photorespiration by	peroxisome	(d)	Lysosomal digestion	of endocylosed material
	869.	De Duve discovered ly	sosomes from			
		(a) Orchid root cells	(b) Rat liver cells	(c)	Rat kidney cells	(d) Leaf cells
	870.	Electron microscopy ha	as revealed that the golgi c	comp	olex is involved in th	e
		(a) Formation of prima	ry lysosomes		(b)Development of a	ribosomes
		(c) Accumulation of lip	ooproteins		(d)Accumulation of	proteins
	871.	Labilizers are the eleme	ents responsible for			
ļ		(a) Causing instability	to membrane of lysosome	(b)	Causing stability to	membrane of lysosome
		(c) Strengthen the mem	brane of lysosome	(d)	None of these	
1						

872.	Ribosomes are attach	ed to E.R. through			
	(a) Riboplasm	(b) rRNA			
	(c) tRNA	(d) Hydrophobic interac	tion		
873.	Ribosomes, similar to	those of bacteria, are foun			
	(a) Plant nuclei		(b) Pancreatic mitoch	ondria	
	(c)Liver endoplasmic	reticulum	(d) Cardiac muscle cy	ytoplasm	
874.	-	ng affects the association ar	-	-	
	(a) <i>Mg</i>	(b) <i>Ca</i>	(c) <i>Fe</i>	(d) <i>K</i>	
875.	Polyribosomes are ag	gregation of	、 /	× /	
	(a) Ribosomes and rR				
	(b) Only rRNA				
	(c) Peroxisomes				
		s held together by a stearing	g of mRNA		
876.	If all the ribosomes o	• • •			
	(a) Respiration will not take place		(b)Photosynthesis	will not occur	
	(c) Fat will not be stored		(d)Protein will not be formed		
877.	Ribosomes of bacteri	a, mitochondria, prokaryote	tes and chloroplast are of		
	(a) 50 S type	(b) 80 S type	(c) 70 S type	(d) 30 S type	
878.	Below a certain level	of Mg^{++} the two sub units of	of the ribosome		
	(a) Separates	(b) Fuses	(c) Divides	(d) None of these	
879.	Two molecules of RN	NA occur in each ribosome	having molecular weig	ht respectively	
	(a) 0.7×10^6 and 0.7×10^{6}	0^{6} (b) 1.6×10^{6} and 0.6×10^{6}	(c) 1.6×10^5 and 0.6×10^{-5}	10^3 (d) 1.6×10^6 and 0.7×10^6	
880.	Number of proteins a	ssociated with 60 S ribosor	ne sub-unit is		
	(a) 40	(b) 34	(c) 30	(d) 21	
881.	Ergasomes are				
	(a) ER	(b) Golgi bodies	(c) Polyribosomes	(d) Microbodies	
882.	Polysomes are formed	d by			
	(a) More than 4 ribos	omes on ER	(b)More than > 5 ribosomes		
	(c) More than > 5 rib	osomes on mRNA	(d) mRNA + ribosom	es + microsomes	
883.	'P' site (Peptidyl site)	containing peptidyl transfe	rase is present on		
	(a) Smaller unit of rib	oosome	(b) Larger unit of ribo	osome	
	(c) Entire ribosome		(d) mRNA		
884.	During protein synthe	esis, mRNA is attached to			
	(a) Smaller unit of rib	oosome	(b) Larger unit of ribo	osome	
	(c) ER		(d) RER		
885.	Ribosomal 'dimer' is	formed by			
1					

		(a) Increasing Mg cond	centration	(b) Decreasing Mg concentration		
		(c) Increasing NaCl co	oncentration	(d) Both (a) and (b)		
	886.	The types of amino act	ids in highest quantity in a	ribosomes are		
		(a) Glycine and tryptop	phan	(b)Leusine and argi	nine	
		(c) Histidine and three	nine	(d)Lysine only		
	887.	DNA remains absent in	n			
		(a) Chloroplast	(b) Nucleus	(c) Peroxisomes	(d) Chromosomes	
	888.	The organelle associate	ed with photorespiration	is called as		
		(a) Lysosome	(b) Peroxisome	(c) Glyoxysome	(d) Mesosome	
	889.	Some of the enzymes,	which are associated in c	onverting fats into carboh	ydrates, are present in	
		(a) Liposomes	(b) Golgi bodies	(c) Microsome	(d) Glyoxysomes	
	890.	Peroxisomes are involved	ved in the synthesis of			
		(a) Glucose	(b) Fatty acids	(c) Glycine and serine	(d) Nucleotides	
	891.	One of the most comm	on enzyme found in pero	proxisome is		
		(a) Hydrolase	(b) Catalase	(c) Dehydrogenase	(d) Reductase	
	892.	Tonoplast is a				
(a) Covering layer of golgi c(c) Covering layer of microb		(a) Covering layer of g	golgi complex	(b)Covering layer of vacuoles		
		(c) Covering layer of r	nicrobodies	(d)Non-living cytop	plasmic content	
	893.	The fluid part of cell c	alled <i>cell sap</i> is the			
		(a) Non-living contents of a cell				
(b) Living contents of a cell			a cell			
		(c) Non-living content	s of the vacuole of cell	(d) Living contents of t	(d) Living contents of the vacuole of cell	
	894.	Young plant cells poss	ess sap vacuoles			
		(a) One, large and cent	tral	(b) Many, large and dis	spersed	
		(c) Many and small		(d) None of these		
	895.	A vacuole without a re	gular covering membrane	e is		
		(a) Contractile vacuole	e (b) Food vacuole	(c) Sap vacuole	(d) Gas vacuole	
	896.	Which one passes only	a protein membrane			
		(a) Feeding canals of c	contractile vacuole	(b) Vesicle of gas vacu	ole	
		(c) Contractile vacuole	2	(d) Gas vacuole		
	897.	Residual vacuole throw	w their undigested materia	al by		
		(a) Pinocytosis	(b) Phagocytosis	(c) Ephagy	(d) Diffusion	
	898.	Centriole/centrosome t	takes part in			
		(a) Nucleolus formation	on	(b) Start of cell division		
		(c) Cell plate formation	n	(d) Spindle formation		
	899.	Centrioles replicate du	ring			
		(a) Interphase	(b) Early prophase	(c) Late prophase	(d) Late telophase	
					16	

900.		omes can be traced in the				
	(a) Green plants		(b) Animals			
		•	cteria (d) Both (a) and (b)			
901.	Basal body could be another name of centriole in view of internal structures when					
	(a) It gives rise to spine		(b)It divides durir	-		
	(c) It gives rise to cilia	or flagella	(d)It gives basic r	eactions		
902.	A centrosome is					
		inelle present in plant cells				
	(b) A cytoplasmic organelle present in animal cells					
	(c) A cytoplasmic organelle present in plant and animal cells					
		present in animal cells				
903.	The function of centros					
	(a) Inhibition of cell di	vision	(b)Initiates cell di	vision		
	(c) To increase protein	•	(d)None of these			
904.	In ultra structure bleph	aroplasts resemble				
	(a) Centrioles	(b) Flagella	(c) Cilia	(d) None of these		
905.	Each peripheral fibril of	on the centriole is made up	p of			
	(a) 1 microtubule	(b) 2 microtubule	(c) 3 microtubule	(d) 4 microtubule		
906.	The diameter of centric	ole is				
	(a) 25 <i>nm</i>	(b) 0.15 <i>µ</i>	(c) 15 <i>µ</i>	(d) 25 Å		
907.	Flagella with single str	and and composed of flag	gellin is found in			
	(a) Prokaryotes	(b) Eukaryotes	(c) Both (a) and (b)	(d) None of these		
908.		ed with cilia and flagella a	-			
	(a) Microtubules	(b) Microfilaments	(c) Microfibrils	(d) Microvilli		
909.	Prokaryotic flagella po	ossess				
	(a) Helically arranged	protein molecule	(b) Protein membrane enclosed fibre			
	(c) Unit membrane enc					
	(d) Microtubular $9 + 2$	membrane enclosed struc	ture			
910.	Microtubule is involve	d in the				
	(a) Cell division		(b) DNA recognition			
	(c) Muscle contraction		(d) Membrane archite			
911.		I and select the correct and	swer using the code give	ven below the lists		
	List I	List II				
	1. Microtubules	Structural components of				
	2. Centrioles	Store hydrolytic enzyme	es			
	3. Peroxisomes	Store oil protein and star	rch in plants			
	(a) 1, 2 and 3 are corre		(b)1 and 2 are con			
	(c) 1 is correct, 2 and 3	3 are false	(d)1 and 3 are con	rect, 2 is false		

912.	12. Flagella of prokaryotic and eukaryotic cells differ in					
	(a) Microtubular organ	ization and type of mover	nent (b)Microtu	ubular org	ganisation and function	
	(c) Type of movement	and placement in cell	(d) Location i	n cell and	l mode of functioning	
913.				•	o that subfibril A is close	
	to centre. In centriole,	microtubular fibrils are of	triplet nature a	nd are till	ed by	
(a) 10° (b) 30° (c) 40° (d)				(d) 45°		
914.	Stereocilia are					
	(a) Mobile without blep	pharoplast	(b)Immob	ile with b	leharoplast	
	(c) Immobile without b	basal body	(d)Mobile	with basa	al body	
915.	The 11-stranded flagel	um of eucaryote possesse	S			
	(a) Nine triplet and two	o doublet fibrils	(b) Eleven do	ublet fibri	ils	
	(c) Nine doublet and tw	vo singlet fibrils	(d) Nine singl	et and tw	o doublet fibrils	
916.	Peripheral duplet fibri	ls in a flagella are interc	onnected by A	– B linl	ker which is made up of	
	protein					
	(a) Tubulin	(b) Dyenin	(c) Nexin		(d) Myelin	
917.	Flagella is present in fo					
	(a) Pinus	(b) Funaria	(c) Dryopteris		(d) All correct	
918.	18. Microfilaments were discovered by Paleviz <i>et al</i> , 1974. These are formed of					
	(a) Actin and myosin	sin (b) Actinogen (c) Myoglobin (d) Myosin			•	
919.		g, thin, contractile rods (se			er. These help in	
		nembrane during mobility	-			
		cles, functioning of micro				
	(c) Cytoplasmic stream	ing, cleavage of animal co	ell, formation o	f pseudop	oodia	
	(d) All of these					
920.		n protein complex in mici				
	(a) Cell differentiation	•	(c) Breakdow	n of ATP	(d) Cell motility	
921.	Diameter of microtubu		٥		٥	
	(a) 250 Å	(b) 100 Å	(c) 50 Å		(d) 10 Å	
922.	÷	not a cellular role of mic				
	(a) Intracellular commu	unication	(b)Digesti	on of age	d organelles	
	(c) Destruction during	-	(d)Protein	•	5	
923.	The mesh of fibres of r	nicrotubulets and microfil	aments is called	d		
	(a) Cytoskeleton	(b) Sclerenchyma	(c) Centroson	nes	(d) None of these	
924.	Microbodies differ from	-				
		rrounded by a single unit i		•		
		rrounded by double memb	-	osomes m	embrane is single unit	
	(c) Microbodies contai	n lytic enzymes while lyse	osomes do not			

(d) Lysosome contain lytic enzymes while microbodies do not

925. Eukaryotic cells possess a cytoskeleton of

Basic Level

- (a) Microtubules, microfilaments and cytoplasm
- (b) Microtubules, microfilaments and protoplasm
- (c) Microtubules, microfilaments and proteins (d) None of these

NUCLEUS

926.	Nucleus was discovered	d by				
	(a) Purkinje	(b) Nageli	(c) Brown	(d) Hofmeister		
927.	Controlling centre of ce	ell is				
	(a) Nucleus	(b) Nucleolus	(c) Mitochondria	(d) Ribosome		
928.	The nucleus has					
	(a) One membrane with	n pores				
	(b) Two membranes with pores					
	(c) Two membranes with pores through which substances do not pass					
	(d) Two membranes wi	th pores through which m	acromolecules may pass			
929.	True nucleus is absent	in				
	(a) Green algae	(b) Fungi	(c) Lichens	(d) Bacteria		
930.	Karyolymph is a					
	(a) Nuclear sap	(b) SPM membrane	(c) Nuclear pore	(d) None of these		
931.	Karyokinesis differ from	m cytokinesis because it in	nvolves			
	(a) Division of cytoplas	sm	(b)Division of the r	ucleus and cytoplasm		
	(c) Division of the nucl	eus	(d)Division of the cell			
932.	Which of the following	regulates and governs the	e physiological processe	s of the cell		
	(a) Protoplast	(b) Nucleolus	(c) Mitochondria	(d) Nucleus		
933.	Nucleus is enclosed in					
	(a) Double and non-point	rous layer	(b)Double and porous layer(d)Single and porous layer			
	(c) Single and non-pore	ous layer				
934.	Nucleolus is found in					
	(a) Protoplasm	(b) Nucleus	(c) Cytoplasm	(d) None of these		
935 .	Nucleosome consists of	f				
	(a) Nucleolus	(b) Genes	(c) Microfilaments	(d) Histones + DNA		
936.	The nucleoplasm is con	ntinuous with the cytoplast	m of a cell through			
	(a) Centriole	(b) Endoplasmic reticulu	m (c)Nuclear pores	(d) Golgi apparatus		

937.	Nuclear material without nuclear membrane is ob	oserved in			
	(a) Bacteria and green algae	(b)Cyanobacter	ria and red algae		
	(c) Bacteria and cyanobacteria	(d)Mycoplasma	as and green algae		
938.	Nucleoproteins of a cell are synthesized in				
530.	(a) Nucleolus (b) Nucleoplasm (c)Nuc	clear membrane (d	Outside the nucleolus		
939.	DNA is mainly found in	(0)			
555	(a) Nucleus only	(b) Nucleus and cy	vtoplasm		
	(c) Cytoplasm only	(d) All of these	I m		
940.	Cytoplasm and nucleus are separated by a membra				
	(a) Single layered (b) Double layered		(d) Multi layered		
941.	The continuation of endoplasmic reticulum is with		× / •		
	(a) Ribosome (b) Golgi body	(c) Mitochondria	(d) Nuclear membrane		
942. Fibrillar nucleus without clear boundaries is unique to					
(a) Bacteria and cyanobacteria (b) Eukaryotes					
	(c) Plant cells	(d) Animal cells			
943.	Nucleocytoplasmic traffic through nuclear pore is	s facilitated by			
	(a) Protein nucleoplasmin	(b)Protein rhodopsin			
	(c) Nuclear lamina	(d) Lipid bilayer of cell membrane			
944.	Role of nucleus in morphological differentiation	was discovered in			
	(a) Acetabularia by Hammerling	(b)Drosophila	by Morgan		
	(c) Neurospora by Bedle and Tatum	(d)Garden Pea	by Mendel		
945.	Experiments on Acetabularia by Hammerling pro	oved the role of			
	(a) Cytoplasm in controlling differentiation	(b) Nucleus in here	edity		
	(c) Chromosomes in heredity	(d) Nucleo-cytopla	smic ratio		
946.	Genophore is				
	(a) Single molecule of double stranded naked DN	VA (b)A single stra	anded DNA		
	(c) RNA + histone	(d)DNA + histo	one		
947.	Study of nuclear cytology is called				
	(a) Neurology (b) Karyology	(c) Mycology	(d) Rhinology		
948.	The structure of the nuclear membrane facilities				
	(a) Organisation of the spindle (b)	Synapsis of homolo	ogous chromsomes		
	(c) Nucleo-cytoplasmic exchange of materials (d)Anaphasic separati	on of daughter chromosomes		
949.	Interphase nucleus is enclosed by				
	(a) Nonporous nuclear membrane	(b)Porous doub	ble nuclear membrane		
	(c) Nonporous double discontinuous nuclear mer	nbrane			
	(d) A single porous unit membrane				
			165		

950.	Who showed that the n	uclear membrane has man		ctures or annuli		
	(a) Fawcell	(b) Strasburger	(c) Butchen	(d) Callan and Tomlin		
951.		importance of nucleus in	heriditary characters on	the basis of the following		
	alga					
		(b) Peziza	(c) Drosophila	(d) Acetabularia		
952.	The term 'nucleoplasm					
	(a) Strasburger	(b) Flamming	(c) Harris and James	(d) Bowman		
953·	Nucleolus contains					
	(a) No membrane cove	•	(b) Amorphous matrix	and granular zone		
	(c) Fibrillar zone and c		(d) All of these			
95 4 .	Nucleolus is formed fro					
	(a) Nucleus	(b) Nuclear sap	(c) Sat chromosomose	s (d) Giant chromosomes		
955 ∙	Granulas of nucleolus	are precursors of				
	(a) Chromosomes	(b) Ribosomes	(c) RNA	(d) All of these		
956.	The first satisfactory ad	ccount of the structure of r		••••		
	(a) Robert Brown	(b) Watson and Crick	(c) Schleiden and Schv	wann (d)Strasburger		
9 57•	Which protein of nucle	coplasm activates DNA to	replicate and transcribe			
	(a) Histone	(b) Nonhistone	(c) Phosphoprotoeins	(d) Nucleoproteins		
958.	Fibrillar region of nucl	eolus which contains fibri	ls of ribonucleoprotein i	is called		
	(a) NOR	(b) Fibronema	(c) Nucleonema	(d) Pars amorpha		
959·	Nucleus of bacteria is o	called				
	(a) Mesosome	(b) Genophore		(d) Gonophore		
960.	Nuclear envelope is po	rous. These pores control	the passages of			
	(a) mRNA	(b) Nucleoproteins	(c) mRNA + proteins	(d) All correct		
961.	Number of nucleoli in	the nucleus is equal to				
	(a) Only one		(b) One or more than o	one		
	(c) Depends upon num	ber of genomes	(d) Equal to pairs of sa	t. chromosomes		
962.	Which part of the cell	is important for growth and	d synthesis of protoplas	m		
	(a) Chloroplast	(b) Chromosomes	(c) Mitochondria	(d) Nucleus		
963.	An undefined or undiff	erentiated fibrillar nucleus	s is seen in			
	(a) Eukaryotic cells		(b) Prokaryotic cells			
	(c) Cells of higher orga	anisms	(d) Cells of higher plants			
Adva	ince Level					
964.	Pars amorpha is associ	ated with				
	(a) Nucleus	(b) Chloroplast	(c) Mitochondria	(d) Nucleolus		
965.	"Nu body" was shown	by				
	(a) Darlington	(b) Johansen	(c) Woodcock	(d)Temin and Baltimore		

966.	The term 'nucleolus' w	as coined by			
	(a) R. Brown	(b) H. Hooks	(c) Bowman	(d) Hanstein	
967.	The function of nucleo	lus is the synthesis of			
	(a) DNA	(b) m-RNA	(c) r-RNA	(d) t-RNA	
968.		spicuous body of spherica	l shape attached to a par	ticular chromosome on a	
	definite position is call				
	(a) Plasmid	(b) Karyolymph		(d) Nuclear reticulum	
969.	-	l in nuclei of eukaryotes ar			
	(a) Acidic	(b) Basic	(c) Neutral	(d) Amphoteric	
970.	The core of nucleosom	-			
		(b) H_1, H_2A, H_2B, H_4	(c) $H_1, H_2A, H_2B, H_3, H_4$	(d) H_2A, H_2B, H_3, H_4	
971.	Chromatin consist of				
	(a) DNA	(b) RNA	(c) RNA and Histones	(d) DNA and Histones	
972.	Nucleosomes are				
	(a) Units of DNA	(b) Units of RNA	(c) Units of protein	(d) Units of chromatin	
973.	Nucleoli are rich in				
	(a) DNA and RNA	(b) DNA, RNA and prote	eins (c)DNA	(d) RNA	
974.	974. Nucleoid is(a) A single inactive nucleus having double stranded DNA and proteins				
	-	-	-		
		somes associated with pro nuclear membrane and nuc		al of prokaryotas	
	(d) A chromosome ass		cieolus of genetic materia	ai of prokaryotes	
075		animal cell, takes place			
975.	(a) Only in the cytopla		(b)In the nucleolus as y	vell as in the cytonlasm	
		well as in mitochondria	(b)In the nucleolus as well as in the cytoplasm(d) Only on ribose attached to nucleon		
976.	• •	s large size in proportion t	•		
5700	(a) Cell is dying		(b) The nucleus is in resting phase		
		tered S-phase of interphase		01	
977.		g is the best explanation fo		nucleus	
		portant than cytoplasm			
	(b) The nucleus is a vis	sible body while cell theor	y was absolute generaliz	ation	
	(c) Nuclei are stained of	darker than other cell organ	nelles		
	(d) The english scientis	sts had better microscopes	than other		
978.	What will happen if nu	cleus is removed			
	(a) The metabolism wi	ll increase	(b)The cell will die		
	(c) The metabolism wi	ll decrease	(d)None of these		
979.	Histone proteins found	l in the nuclei of eukaryote	es are rich in		
				160	

- (a) Glycine and phenylalanine
- (c) Glycine and arginine

(b)Lysine and arginine(d)Phenylalanine and lysine

980. Which of the following functions would stop first when the nucleus remove from the mesophyll cell of a leaf

- (a) Phosphorylation
- (c) Photosynthesis

(b) Osmosis

(d) Synthesis of cytoplasmic protein

MICRO AND MACRO MOLECULES

Basic Level

	981.	. Which one of the following is the sweetest sugar					
		(a) Fructose	(b) Glucose	(c) Galactose	(d) Sucrose		
	982.	Which of the following	Which of the following is a disaccharide				
		(a) Ribose	(b) Maltose	(c) Glucose	(d) Cellulose		
	983.	Lipids are insoluble in	water, because lipids mole	ecules are			
		(a) Neutral	(b) Zwitter ions	(c) Hydrophobic	(d) Hydrophillic		
	984.	Proteins consist of					
		(a) Carbon, hydrogen, o	chlorine, sulphure	(b) Carbon, hydrogen, o	oxygen, nitrogen		
		(c) Carbon, manganese, phosphorus, nitrogen					
		(d) Carbon, iodine, oxy	gen and inorganic phosph	ate			
	985.	Largest physical and ch	nemical molecules are				
		(a) Carbohydrates	(b) Lipids	(c) Proteins	(d) Nucleic acids		
986. No cell could live without							
		(a) Phytochrome	(b) Enzyme	(c) Chloroplasts	(d) Protein		
	987. Which of the following is the characteristics of plants						
		(a) Glucose and cellulo	ose (b)Pyruvic acid and g	lucose			
		(c) Cellulose and starch	n (d)Starch and pyruvic	e acid			
	988.	Starch and cellulose are	e the compounds made of	many units of			
		(a) Simple sugar	(b) Fatty acid	(c) Glycerol	(d) Amino acid		
	989.	Oval shaped and eccntr	ric starch particles are four	nd in			
		(a) Wheat	(b) Maize	(c) Potato	(d) Rice		
	990.		rsed molecules in the cell				
		(a) Lipids	(b) Proteins	(c) Carbohydrates	(d) Mineral salts		
	991.	e e	ar is present in sugarcane				
		(a) Maltose	(b) Sucrose	(c) Fructose	(d) Glucose		
	992.	Cane sugar hydrolyses					
		(a) Glucose + Fructose	(b) Glucose + Glucose	(c) Glucose + Galactos	e(d) Glucose + Maltose		

	993. A trisaccharide is					
993.	(a) Galactose	(b) Maltose	(c) Raffinose	(d) Mannose		
004	Two fatty acid monome		(c) Rammose	(d) Mannose		
994.	(a) Hydrogen bond	(b) Peptide bond	(c) Phosphodiester bond	d (d)Ester bond		
005	The most essential of th		(c) I nosphotnester bolk	u (u)Ester boliu		
995.	(a) Arachidonic acid	•	(c) Linoleic acid	(d) Oleic acid		
006	Which one is phosphop	· · ·		(d) Olele deld		
990.	(a) Ferritin	(b) Casein	(c) Mucin	(d) Albumin		
007	. ,	between two amino acids				
997.	-	(b) Loss of water	(c) Decarboxylation	(d) Deamination		
998.	A basic amino acid is					
550.	(a) Leucine	(b) Methionine	(c) Aspartic acid	(d) Lysine		
999.	Most abundant organic		(1)	(-) _]		
	(a) Cellulose	(b) Protein	(c) Lipids	(d) Steriods		
1000		ccharides found in nucleus	· · · •			
	(a) Trioses	(b) Tetroses	(c) Pentoses	(d) Hexoses		
1001	. Hydrolysis of nucleic a					
	(a) Only sugar	(b) Phosphoric acid only	(c) NItrogenous base or	nly (d)All of the above		
1002	Nucleic acids were disc			•		
	(a) Watson and Crick	(b) Khorana	(c) Wilkins	(d) Miescher		
1003	A nucleoside differs fro	om a nucleotide in not hav	ing			
	(a) Phosphate	(b) Sugar	(c) Phosphate and sugar	r (d) Nitrogen base		
1004	.DNA was first discover	red by				
	(a) Beadle and Tatum	(b) Watson and Crick	(c) Friedrich Miescher	(d) Kornberg		
1005	.DNA is a polymer of					
	(a) Nucleotide	(b) Nucleoside	(c) Amino acids	(d) All of the above		
1006	Purines (bases) of DNA	A are represented by				
	(a) Uracil and guanine	(b) Guanine and adenine	(c) Adenine and cytosir	ne (d)None of these		
1007	. In DNA guanine pairs v	with				
	(a) Cytosine	(b) Thymine	(c) Uracil	(d) Adenine		
1008	.The number of hydroge	en that bound guanine and	cytosine			
	(a) 1	(b) 2	(c) 3	(d) 4		
1009	Strands of DNA are bo	nded by				
	(a) Hydrogen	(b) Carbon	(c) Oxygen	(d) Nitrogen		
1010	DNA is concentrated in					
	(a) Chromatin as DNA-	-protein complex	(b) Ribosomes			
	(c) Golgi bodies		(d) Plastids			
1						

1011.	-	e similarity between DNA and RNA is that both are				
	(a) Double stranded		(b) Having similar sugars			
	(c) Polymers of nucleotides		(d) Having similar pyri	imidines		
1012.	DNA differs from RNA	A				
	(a) In the nature of sugar alone		(b) In the nature of pur	ine alone		
	(c) In the nature of sugar and pyrimidines		(d) None of these			
1013.	DNA differs from RNA	A				
	(a) In having cytosine b	out no guanine	(b) In having thymine	but no cytosine		
	(c) In having uracil but	no thymine	(d) In having thymine	but no uracil		
1014.	Which one of the follow	wing is widely distributed	in a cell			
	(a) DNA	(b) RNA	(c) Chloroplast	(d) Chromoplast		
1015.	Which of the following	g bases is present in RNA	in place of thymine			
	(a) Uracil	(b) Adenine	(c) Guanine	(d) Water		
1016.	t-RNA is also called					
	(a) Microsomal RNA	(b) Messenger RNA	(c) Soluble RNA	(d) <i>r</i> RNA		
1017.	The function of <i>t</i> RNA	is				
	(a) Production of <i>m</i> RNA		(b)Production of ribose	omes		
	(c) Production of micro	osomes	(d) Selection of amino acids			
1018.	Number of nitrogen bas	ses found in RNA				
	(a) Two	(b) Eight	(c) Six	(d) Four		
1019.	A nucleotide is formed	of				
	(a) Purine, pyrimidine	and phosphate	(b) Purine, sugar and p	hosphate		
	(c) Nitrogen base, suga	r and phosphate	(d) Pyrimidine, sugar and phosphate			
Adva	ince Level					
1020	Which of the following	g forms more than 1/2 of c	ell			
	(a) Water	(b) Mineral	(c) Protein	(d) Carbohydrate		
1021.	Corn is immersed in the	e boiling water. It is then	cooled, the solution beco	omes sweet. It is due to		
	(a) Enzymes are inactiv	vated in boiling water				
	(b) Disaccharides are c	onverted to monosacchari	des			
	(c) Monosaccharides an	re converted to disacchari	des (d)None of these			
1022	Pentoses and hexoses a	re the most common				
	(a) Disaccharides	(b) Monosaccharides	(c) Oligosaccharides	(d) Polysaccharides		
1023	Phospholipids are					
I	(a) Amphipathic	(b) Amphibolic	(c) Hydrophobic	(d) None of these		
1024	Inulin found in plant ce	ell is a				

(a) Lipid	(b) Protein	(c) Polysaccharide	(d) Vitamin
1025. Which one of the	following is a conjugate prot	tein	
(a) Globulin	(b) Albumin	(c) Histone	(d) Flavoprotein
1026. Glycoproteins con	tain		
(a) Protein and fat	(b) Protein and salt		
(c) Protein and vit	amin (d) Protein and carboh	ydrates	
1027. Aleurone grains an	e		
(a) Enzymes	(b) Carbohydrates	(c) Protein	(d) Fat
1028. Cellulose, the mos	t important constituent of pl	ant cell wall is made up of	f
(a) Branched chain	n of glucose molecules linke	d by α 1, 6 glycosidic bor	nd at the site of branching
(b) Unbranched ch	ain of glucose molecules lin	hked by α 1, 4 glycosidic b	oond
	n of glucose molecules linke bond at the site of branching		nd in straight chain and $lpha$
(d) Unbranched ch	ain of glucose molecules lin	iked by β 1, 4 glycosidic b	oond
1029. Most of water four	nd in young cell occurs in		
(a) Cell wall	(b) Nucleus	(c) Cytoplasm	(d) Vacuoles
1030. Glycosidic linkage	e in maltose is		
(a) $\alpha 4 \rightarrow 1$	(b) $\beta 4 \rightarrow 1$	(c) $\alpha 1 \rightarrow 4$	(d) $\beta 1 \rightarrow 4$
1031. Mucilage present i	n 'Bhindi' (Okra, Lady's Fin	ger) contains	
(a) Mannose	(b) Galactose	(c) Lactose	(d) Both (a) and (b)
1032. Macromolecule ch	itin is		
(a) Sulphur contai	ning polysaccharide	(b) Phosphorus contain	ning polysaccharide
(c) Nitrogen conta	ining polysaccharide	(d) Simple polysaccha	ride
1033. Highest content of	linoleic acid is found in		
(a) Sunflower oil	(b) Coconut oil	(c) Groundnut oil	(d) Cotton oil
1034. Number of fatty ac	cid residues present in one m	nolecule of fat is	
(a) 4	(b) 3	(c) 2	(d) 1
1035. Unsaturated fats as	re made saturated by		
(a) Polymerisation	(b) Hydrogenation	(c) Dehydrogenation	(d) Hybridisation
1036. Calmodulin is			
(a) Carotene bindi	ng protein	(b) Cadmium binding	protein
(c) Calcium bindir	ng protein	(d) Chlorophyll bindir	ng protein
1037. Cellulose is homo	polymer of		
(a) Fructose	(b) Mannose	(c) Galactose	(d) Glucose
1038. Glucose is			

	e sugar (b)Furanose pentos		
	ugar (d)Aldose hexose s	-	
	are compounds consisting	-	
(a) Amino acids	(b) Fatty acids	(c) Glycerol	(d) Simple sugars
1040. The chemical formu	la of starch is		
(a) $(C_6H_{10}O_5)_n$	(b) $(C_6 H_{12} O_6)_n$	(c) $C_{12}H_{22}O_{11}$	(d) <i>СH</i> ₃ <i>СООН</i>
1041. Final product of star	ch digestion is		
(a) Maltose	(b) Sucrose	(c) Lactose	(d) Glucose
1042. Which of the follow	ing is capable of self replie	cation	
(a) An enzyme	(b) A carbohydrate mo	olecule	
(c)A water molecule	e (d) A nucleic acid		
1043. A ribose (but not de	oxyribose) nucleotide is		
(a) Cytosine – pento	ose sugar – phosphate	(b) Guanine – pento	ose sugar – phosphate
(c) Thymine – pento	ose sugar – phosphate	(d) Uracil – pentose	e sugar – phosphate
1044. Artificial synthesis of	of DNA was first accompli	shed by	
(a) Khorana	(b) Watson and Crick	(c) Nirenberg	(d) Kornberg
1045. Structure of DNA he	elix was given by		
(a) Watson and Korr	nberg	(b)Watson and G	Crick
(c) Nirenberg and K	horana	(d)Halley and N	irenberg
1046. How many nucleotic	des are present in one turn	of DNA helix	
(a) 4	(b) 8	(c) 10	(d) 9
1047. In DNA molecule, v	which of the following base	e pair is present	
(a) Cytosine and ade	enine (b)Adenine and thy	ymine	
(c)Adenine and guar	nine(d)Cytosine and thymi	ine	
1048. The base pairs of DI	NA are correctly shown as		
(a) $A \equiv T$ and $C = G$	(b) $A = T$ and $C = G$	(c) $A = T$ and $C \equiv G$	(d) $A \equiv T$ and $C \equiv G$
1049. DNA synthesis can	be specifically measured in	n estimating the incorpo	oration of radio labelled
(a) Uracil	(b) Adenine	(c) Thymidine	(d) Deoxyribose sugar
1050. Feulgen reaction a te	echnique has been develop	ed by Feulgen and Ros	senbeck to study or to strain
(a) Proteins	(b) Lipids	(c) DNA	(d) RNA
1051. If an isolated strain	of DNA is kept at $82-90^{\circ}C$, then	
(a) It changes into R	NA	(b) It divides into or	ne million pieces
(c) No effect		(d) It uncoild in to h	nelixes
1052. Who was awarded N	Nobel Prize for synthesis of	f RNA in 1959	
(a) S. Ochoa	(b) A. Kornberg	(c) H. Khorana	(d) Nirenberg
1053. Which type of RNA	is most abundant in cell		
1			

(a) <i>m</i> RNA	(b) t RNA	(c) r RNA	(d) Catalytic RNA		
1054. Which RNA is having least age					
(a) <i>m</i> RNA	(b) t RNA	(c) <i>r</i> RNA	(d) None of these		

1055. Which site of a *t*-RNA molecule hydrogen bonds to a *m*-RNA molecule (a) Codon (b) Anticodon (c) 5' end of the *t*-RNA molecule (d) 3' end of the *t*-RNA molecule 1056. Which of the character is not applicable to *t*-RNA (a) It is the smallest of the RNAs (b)Its acts as an adapter for amino acids (c) It has a clover leaf like structure (d)It is the largest of the RNAs 1057. Which one of the following pairs is not correctly matched (a) Recombinant DNA DNA formed by the joining of segments of DNA from different sources (b) Purine Nitrogenous bases-cytosine, thymine and uracil (c) ATP The principal energy carrying compound in the cell RNA molecules found in ribosomes (d) *r*-RNA 1058. Break through of the year 2002 (a) cDNA (b) 16 *Sr*RNA (c) *r*DNA (d) *mi*RNA 1059. ATP is (a) Nucleotide (b) Nucleoside (c) Purine base (d) Nucleosome 1060. Maximum number of nitrogen atoms occur in (d) Ammonia (b) Uric acid (c) Urea (a) Guanine **1061.** Ultraviolet light absorbed by nucleic acids is (a) 26 *nm* (b) 75 *nm* (c) 260 *nm* (d) 1500 nm 1062. Which type of protein is found in nucleus (a) Simple protein (b) Structural protein (c) Conjugated protein (d) Derived protein 1063. How many microfibrils combine to form a fibril of cellulose (a) 50 (b) 100 (c) 200 (d) 250 1064. The enzyme for conversion of fats into carbohydrate are provided by (a) Golgi complex (b) Lysosomes (c) Glyoxysomes (d) Lomasomes

CELL DIVISION

1065. Which one connected with the cell division
(a) ER(b) Peroxysomes(c) Ribosomes(d) Microtubules1066. Cell division is initiated by

Basic Level

(a) Centrosome	(b) Centriole	(c) Centromere	(d) Chromomere	
1067. Cell division in blue	e-green algae is more or le	ess similar to that in		
(a) Red algae	(b) Green algae	(c) Brown algae	(d) Bacteria	
1068. Which one of the fo	ollowing forms the spindle	apparatus during cell	division	
(a) Chromosome	(b) Centrosome	(c) Ribosome	(d) Kinetosome	
1069. The replication of n	uclear DNA occurs in			
(a) G_1 phase	(b) G_2 phase	(c) <i>S</i> phase	(d) <i>M</i> phase	
1070. Duplication of chron	mosomes take place in			
(a) G_1 phase	(b) G_2 phase	(c) S phase	(d) In all of the above	
1071. The number of DNA	A in chromosome at G_2 sta	age of cell cycle		
(a) One	(b) Two	(c) Four	(d) Eight	
1072. The decision for div	vision occurs in a cell at			
(a) S phase	(b) G_2 phase	(c) G_1 phase	(d) None of these	
1073. During interphase, I	RNA and proteins are synt	thesized in		
(a) S phase	(b) G_1 phase	(c) G_2 phase	(d)In both G_1 and G_2 phases	
1074. Mitosis results in				
(a) Reduction in chromosome number		(b) Doubling of c	(b) Doubling of chromosome number	
(c) Constant chromosome number		(d) Increase in ce	(d) Increase in cell volume	
1075. The process of mite	075. The process of mitosis is divided into 4 phases. Identify the correct order in which these phase			
appear in mitosis				
(a) Anaphase, metaj	phase, telophase and propl	hase		
(b) Telophase, anap	hase, metaphase and prop	hase		
(c) Metaphase, prop	bhase, anaphase and teloph	nase		
	hase, anaphase and teloph	nase		
1076. Between mitosis a c	cell is called to be in the			
(a) Resting stage	(b) Sleeping stage	(c) Active stage	(d) None of these	
1077. Which is not the cha				
(a) Leptotene	(b) Zygotene	(c) Pachytene	(d) All of the above	
	llowing is not a divisional	•		
(a) Telophase	(b) Interphase	(c) Metaphase	(d) Prophase	
-	nitosis the chromosomes a	-		
(a) Prophase	(b) Metaphase	(c) Anaphase	(d) Telophase	
-	mosomes go to their pole	-		
(a) Prophase	(b) Metaphase	(c) Anaphase	(d) Telophase	
1081. Centromere is conce			. 11 (21	
(a) Splitting of chro		(b) Formation of	-	
(c) Movement of chromosomes to poles (d) Duplication of DNA			I DNA	
1082. In mitosis the duplic	cation of chromosomes oc	ccurs during		

(a) Early prophase	(b) Late prophase	(c) Interphase	(d) Late telophase
1083. In mitosis nucleolus an	nd nuclear membrane disa	ppear at	
(a) Interphase	(b) Prophase	(c) Metaphase	(d) Telophase
1084. Which of the followin	g structure will not be com	mon to mitotic cell of a	higher plant
(a) Cell plate	(b) Centromere	(c) Centriole	(d) Spindle fibre
1085. During cell division in	apical meristem nuclear r	nembrane reappears in	
(a) Interphase	(b) Telophase	(c) Prophase	(d) S phase
1086. Spindle apparatus is fo	ormed during which stage	of mitosis	
(a) Prophase	(b) Metaphase	(c) Anaphase	(d) Telophase
1087. The nuclear spindle co	onsists of		
(a) One type of fibre	(b) Two types of fibres	(c) Three types of fibr	res(d) Four types of fibres
1088.Spindle fibres are mad	le up of		
(a) Proteins	(b) Cellulose	(c) Lipids	(d) Pectin
1089. Phragmoplast is precu	rsor of		
(a) Cell plate	(b) Chloroplast	(c) Chromoplast	(d) Colourless plastid
1090. In mitosis then moven	nent of chromosomes requi	ires	
(a) Presence of centron	mere (b)	Plasmalemma	(c) Spindle fibres
(d) Nucleotides			
1091. What is the stage of m			
(a) Prophase		(c) Anaphase	(d) Telophase
1092. In the somatic cell cyc			
-	is followed by along mitot	tic phase	
(b) G_2 phase follows n	nitotic		
(c) In G_1 phase DNA c	content is double the amou	nt of DNA present in th	e original cell
(d) DNA replication ta	kes place in S phase		
1093. Chromosome start sep	arating at which stage of n	nitosis	
(a) Early metaphase	(b) Late metaphase	(c) Early anaphase	(d) Early telophase
1094. The stage of mitosis ir	which chromosomes are	arranged on the equator	of spindle
(a) Anaphase	(b) Metaphase	(c) Prophase	(d) Late prophase
1095. A diploid somatic cell	can divide by	-	
(a) Mitosis but not me	iosis (b)Meiosis but not m	iitosis	
(c) Meiosis or mitosis			
1096. The best stage to view	•	nt the number of chromo	osome is
(a) Metaphase	(b) Late prophase	(c) Early anaphase	(d) <i>I-phase</i>
1097. In mitosis, anaphase d			× / 1
_	promosomes and half num	-	

	(b) Half number of chromosomes and half number of chromatids				
	(c) Half number of chromosomes and same number of chromatids				
	(d) Same number of ch	romosomes and same num	ber of chromatids		
1098	-	ne interferes in mitosis du	ring the spindle mic	rotubule formation; it does so	
	by				
	(a) Arresting chromoso		(b) Breaking micro		
	(c) Thickening microtu	Ibule	(d)Arresting centri	ole movement	
1099	. In the flowering plants	, a mature female gametop	hyte is derived from	megaspore cell by	
	(a) Three mitotic divisi	ions	(b)One meiotic	and two mitotic divisions	
	(c) Two mitotic divisio	ons	(d)A single mei	otic division	
1100.	1100. The term "mitosis" was proposed by				
	(a) Fleming	(b) Farmer	(c) Moore	(d) Boveri	
1101.	In mitotic cell division				
	(a) Number of chromosomes is doubled at the end				
	(b)Number of chromosomes is reduced to half				
	(c) Number of chromosomes remain unchanged (d) There is no division of chromosomes				
1102.	102. Prophase in onion root tip takes place in				
	(a) 71 minutes	(b) 6.5 minutes	(c) 2.4 minutes	(d) 3.8 minutes	
1103.	. Mitotic crossing over t	akes place in			
	(a) Normal mitosis	(b) Normal sexual cycle	(c) Parasexual cycl	e (d) Lytic cycle	
1104.	. An acentric chromosor	ne at metaphase will be			
	(a) Condensed and lie	near the equator	(b) Irregularly shap	bed and lie at one of the poles	
	(c) Condensed and lie	at poles	(d) Coiled and get	attached to spindle fibre	
1105.	Which one of the follo	wing are mainly concerned	d with the spindle fil	ore formation	
	(a) Sphaerosomes	(b) Microtubules	(c) Golgi bodies	(d)Endoplasmic reticulum	
1106.	. Meiosis was discovere	d by			
	(a) Strasburger	(b) Hofmeister	(c) Sutton	(d) Amici	
1107.	In which of the following	ng meiosis takes place			
	(a) Pollen grains	(b) Pollen tube	(c) Pollen mother c	cells (d) Generative cells	
1108.	. The significance of me	iosis lies in			
	(a) Reduction of the di	ploid number of chromoso	omes to haploid		
	(b) Maintaining consta	ncy in the number of diplo	id chromosomes du	ring sexual reproduction	
	(c) Production of gener	tic variability in the popula	ation of a species		
	(d) All of the above				
1109.	Prophase of reduction sequence is	n division is divided into	o number of stages	. The correct chronological	

	(a) Leptotene – pachyte	ene – zygotene – diplotene	e – diakinesis	
	(b) Leptotene – diploten	ne – pachytene – zygotene	e – diakinesis	
	(c) Leptotene – zygoter	ne – diplotene – pachytene	e – diakinesis	
	(d) Leptotene – zygoter			
1110.	When during the meiot	gous chromosomes pair	with each other	
	(a) Leptotene	(b) Pachytene	(c) Zygotene	(d) Metaphase-I
1111.	Repulsion of homologo	ous chromosomes takes pla	ace in	
	(a) Zygotene	(b) Leptotene	(c) Diakinesis	(d) Diplotene
1112.	Chiasmata formation of	ccurs during		
	(a) Diplotene	(b) Leptotene	(c) Pachytene	(d) Diakinesis
1113.	In pachytene stage of n	neiosis the chromosomes a	appear	
	(a) Single stranded	(b) Double stranded	(c) Three stranded	(d) Four stranded
1114.	Pacytene occurs during	5		
	(a) Meiosis		(b) Mitosis	
	(c) Growth of a cell		(d) Formation of endos	perm
1115.	Chromonemata start as	sociating into bivalent chr	omosomes during.	
	(a) Zygotene	(b) Leptotene	(c) Pachytene	(d) Diplotene
1116.	In which of the following	ng stage, the chromosome	is thin and like long thr	ead
	(a) Leptotene	(b) Zygotene	(c) Pachytene	(d) Diakinesis
1117.	Prophase is longer in			
	(a) Mitosis	(b) Meiosis	(c) Equal in both	(d) Amitosis
1118.	In meiosis, the centrom	ere divides during		
	(a) Prophase-I	(b) Metaphase-I	(c) Anaphase-I	(d) Anaphase-II
1119.	Chromosome number i	s halved in meiosis during	5	
	(a) Metaphase-I	(b) Anaphase-I	(c) Metaphase-II	(d) Telophase-I
1120.	Synapsis is pairing of			
	(a) Any two chromoson	mes	(b)Non homologous	s chromosomes
	(c) Acentric chromosor	mes	(d)Homologous chr	omosomes
1121.	Synapsis is characterist	ic of		
	(a) Leptotene	(b) Pachytene	(c) Zygotene	(d) Diplotene
1122.	Crossing over is advant	tageous because it brings a	about	
	(a) Variation	(b) Linkage	(c) Inbreeding	(d) Stability
1123.	The meiotic process by	which homologous chron	nosomes are paired durin	ng prophase I is called
	(a) Interkinesis	(b) Crossing over	(c) Chiasma	(d) Synapsis
1124.		osome groups at the equa	torial plate in metaphas	e-I of meiosis in a plant
	with $2n = 50$ shall be	4 > 25	() 20	(1) 100
	(a) 50	(b) 25	(c) 30	(d) 100

1125.	Centromere divides at			
	(a) Prophase I of reduc		(b)Metaphase I of reduction division	
	(c) Anaphase II of reduction division		(d)Telophase	I of reduction division
1126.	Spindle fibres attach to	chromosomes at their		
	(a) Telomeres		(c) Kinetochores	(d) Centromeres
1127.	The spindle fibre contr	acts in		
	(a) Metaphase I	(b) Anaphase II	(c) Prophase II	(d) Telophase II
1128.	Assuming no linkage occurs at	and no crossing over, s	egregation of Mer	ndelian factors during meiosis
	(a) Anaphase I	(b) Anaphase II	(c) Diplotene	(d) Metaphase I
1129.	How many meiotic d angiosperm	ivisions would be requin	red to produce 10	1 female gametophytes in an
	(a) 26	(b) 101	(c) 127	(d) None of these
1130.	Meiosis occurs in Neu	rospora, at the time of		
	(a) Gemetic fusion		(b) Ascospore for	rmation
(c) Gamete formation (d) Fertilizati		(d) Fertilization	ion	
1131. Number of cells undergo meiotic divisions to produce 216 gametes in gymnosperm is			in gymnosperm is	
	(a) 54	(b) 216	(c) 108	(d) 432
1132.	In flowering plants, me	eiosis takes place at the tir	ne of	
	(a) Seed germination		(b) Bud formation	n
	(c) Formation of poller	n grains	(d) Formation of	root tip
1133.	How many reduction d	livisions are necessary for	the formation of 1	00 grains of wheat
	(a) 125	(b) 50	(c) 25	(d) 36
1134.	Meiosis differs from m	nitosis as		
	(a) It takes place in veg	getative cells	(b) It shows cross	•
	(c) It forms two cells		(d) Number of ch	romosomes remain unchanged
1135.	Meiosis is significant			
	(a) It produces identica			
	-	nal number of chromosom		on)
	-	of DNA contents in the cel	1	
	(d) It occurs only in ve	getative cells		
	ance Level			
1136.	The function of centro			
	(a) Inhibition of cell di		(b)Initiates ce	
	(c) To increase protein	•	(d)None of th	ese
1137.	• •	ision occurs in the gonads		
	(a) Mitosis only	(b) Meiosis	(c) Both (a) and ((b) (d)Amitosis and meiosis

1138. Coiling of chromatids in	mitotic and meiotic divi		
(a) Paranemic in both		(b) Plectonemic in both	l
	and plectonemic in meio		
	is and paranemic in meio	S1S	
1139. DNA replication takes p			
	Or		
DNA molecule of each of	chromosome become dou	ble in	
(a) G_1 phase	(b) G_2 phase	(c) S phase	(d) Mitotic phase
1140. G_2 phase of mitosis take	S		
(a) 50% time of cell cyc	le	(b)25 to 33% time of ce	ell cycle
(c) 12 to 16% time of ce		(d) 4% time of cell cycl	•
1141. At G_1 stage which phenomenation	omenon takes place		
(a) DNA synthesis	(b) RNA synthesis	(c) Reverse transcription	on (d)All of the above
1142. Regarding the sequence	of cell cycle, which one	is correct	
(a) G_1 , G_2 , S and M	(b) S , G_1 , G_2 and M	(c) G_1 , S , G_2 and M	(d) G_2 , S , G_1 and M
1143. Phase of cell cycle wher	DNA polymerase is act	ive	
(a) G_1	(b) <i>S</i>	(c) <i>G</i> ₂	(d) <i>M</i>
1144. Histone protein synthesi	s occurs during		
(a) G_1 phase	(b) G_2 phase	(c) <i>S</i> phase	(d) Prophase
1145. "Go" state of cells in eu	karyotic cell cycle denote	es	
(a) Check point before e	ntering the next phase		
(b) Pausing in the middle	e of a cycle to cope with	a temporary delay	
(c) Death of a cell			
(d) Exit of cells from cel	ll cycle		
1146. The process by which t			nd their number reduced
	bid condition is known as		
	(b) Mitosis	(c) Conjugation	(d) Meiosis
1147. Constancy of the chrome			• •
	(b) Meiosis	(c) Conjugation	(d) None of these
1148. The process of mitosis c		(c) Tendrit tin	(d) All of the above
(a) Onion root tip 1149. Mitosis occurs in	(b) Garlic root tip	(c) Tendrit tip	(d) All of the above
(a) Haploid individuals	(b) Diploid individuals	(c) Both (a) and (b)	(d) In bacteria only
1150. Period of active mitosis		(\mathbf{c}) boun (a) and (b)	
	1411505 110111		

	(a) 10 minutes to a few	v hours	(b) A few hours to a or	ne day
	(c) One day to a week		(d) Less than a minute	
1151.	Which cell division is	found during cleavage		
	(a) Amitosis	(b) Mitosis	(c) Closed mitosis	(d) Meiosis
1152.	In cancer cells			
	(a) Meiosis takes place	;		(b) Mitosis takes place
	(c) Sometimes meiosis	and sometimes mitosis ta	ke place	(d) Cell division stops
1153.	Cancer cells are more a (a) Different in structure	easily damaged by radiations (b) Non-dividing	on than normal cells bec	ause they are
		(d)Undergoing rapid	division	
1154.	Cyclin is associated with	th which one of the follow	ving	
	(a) Glycolysis	(b) Clyclosis	(c) Haemolysis	(d) Mitosis
1155.	Which of the following	g stage is affected by colcl	hicum	
	(a) Metaphase	(b) Prophase	(c) Interphase	(d) Anaphase
1156.	DNA replication occur	s during		
	(a) Prophase	(b) Metaphase	(c) Anaphase	(d) Interphase
1157.	An anaphase chromoso	ome contains		
	(a) 1 DNA molecule	(b) 3 DNA molecule	(c) 2 DNA molecule	(d) 4 DNA molecule
1158.	How many ATP is requ	uired during anaphase to r	nove chromosomes from	n equator to the poles
	(a) 38 ATP	(b) 5 ATP	(c) 30 ATP	(d) 76 ATP
1159.	The number of chroma	tids in a chromosome at a	naphase is	
	(a) 2 in mitosis and 1 is	n meiosis	(b)1 in mitosis and	2 in meiosis
	(c) 2 each in mitosis ar	nd meiosis	(d)2 in mitosis and	4 in meiosis
1160.	In which of the following	ing stages chromosomes a	re attached on equatoria	l plate
	(a) Metaphase	(b) Anaphase	(c) Telophase	(d) None of these
1161.	Recombinant nodules a	are found during which of	the following	
	(a) Anaphase	(b) Prophase	(c) Telophase	(d) Metaphase
1162.	Cellular structure alwa	ys disappears during mito	sis is	
	(a) Cell wall	(b) Cell membrane	(c) Nucleolus	(d) All of the above
1163.	Which one of the follo cell cycle	owing precedes reformation	on of the nuclear envelo	op during <i>M</i> phase of the
	(a) Formation of contra	actile ring and formation o	of phragmoplast	
	(b) Formation of contra	actile ring and transcriptio	n from chromosome	
	(c) Decondensation from	om chromosomes and reas	sembly of the nuclear la	mina
	(d) Transcription from	chromosome and reassem	bly of the nuclear lamin	a

1164	. The nuclear membrane	disappears in		
	(a) Metaphase	(b) Early prophase	(c) Late prophase	(d) Anaphase
1165	Phragmoplast is			
	(a) Cell plate formed by	y endoplasmic reticulum a	and products of dictyos	ome during cytokinesis
	(b) Cell membrane for	med by endoplasmic retic	culum, golgi bodies and	l secretory vesicles during
	cytokinesis			
	(c) Plastid capable of f	ragmentation		
	(d) Plastid capable of d	uplication		
1166	. Cell plate is referred as	5		
	(a) Germplast	(b) Idioblast	(c) Phragmoplast	(d) Middle lamella
1167.	Mitosis is the process b	by which eukaryotic cells		
	(a) Expose the genes for	or protein synthesis		
	(b) Become specialized	l in structure and function		
	(c) Multiply		(d) Grow	
1168	. Normal cellular activiti	ies, such as protein synthe	sis occur primarily dur	ng
	(a) Interphase	(b) Anaphase	(c) Metaphase	(d) Prophase
1169	. How many mitotic divi	isions must occur in a cell	of root tip to form 128	cells
	(a) 128	(b) 127	(c) 64	(d) 32
1170	How many mitotic divi	sions are needed for a sing	gle cell to make 128 ce	lls
	(a) 7	(b) 14	(c) 28	(d) 32
1171.	•		rormosomes during m	itosis is or structure of
	chromosomes can be b			
	(a) Prophase	-	(c) Anaphase	(d) Telophase
1172.	Bivalents in meiosis ar	e		
	(a) Tetrad		(b) Pairs of non-homo	-
	(c) Pairs of several chro		(d) Pairs of homozygo	ous chromosomes
1173.	Mitosis and meiosis tal	·		
	(a) Meristem and game	-	(b) Gametangia and m	
	(c) Permanent tissue ar	•	(d) Secretory tissue an	nd permanent tissue
1174.	-	g will show simple cell div		11
	(a) Microspore mother	cells	(b) Megaspore mother	r cells
	(c) Archesporial cells		(d) All of the above	
1175.		nd more condensation of o	chromatin during cell d	ivision, there occurs
	(a) Increase in heteroch			
	(b) Increase in euchron			
		eterochromatin and euchro		
		eterochromatin and euchro		
1176.	Amorphous and filame	ntous part of the interphas	se nucleolus is called as	

	(a) Nucleolar organizers (b)Nucleolonema		
	(c) Nucleolar zone (d)Nucleolar chromos	somes	
1177.	A cell in prophase of mitosis can be distinguished	from a cell in prophase	-I of meiosis by
	(a) The presence of only half as many chromosor		·
	(b) The formation of tetrads in the meiotic cell		
	(c) The presence of twice as many chromosomes	in the meiotic cell	
	(d) None of these		
1178.	"Endomitosis" refers to		
	(a) Division of nucleus without chromosomal div	ision	
	(b) Division of chromosome without nuclear divi		
	(c) Division of cytoplasm	(d)None of these	
1170.	Mitotic index means		
11/50	(a) Rate of mitotic division	(b) Ratio of mitotic and	meiotic division
	(c) Ratio of dividing and non-dividing cells	(d) None of these	
1180.	The term meiosis was coined by		
	(a) Farmer and Moore (b) Flemming	(c) Blackman	(d) Robertson
1181.	Meiosis occurs in		
	(a) Embryo sac	(b) Megaspore	
	(c) Megaspore mother cell	(d) Nucellus	
1182.	The role of meiosis		
	(a) Formation of gametes (b)Bringing haplopha	se	
	(c)Bringing diplophase (d)Completing life cy	cle	
1183.	Four daughter cells formed after meiosis are		
	(a) Genetically similar (b) Genetically different	(c) Anucleate	(d) Multinucleate
1184.	Meiosis can be observed in		
	(a) Root tips (b) Cambium	(c) Anther (PMC)	(d) Pollen grains
1185.	Which stage connecting link between Meiosis I a	nd Meiosis II	
	(a) Interphase I (b) Interphase II	(c) Interkinesis	(d) Anaphase I
1186.	The second division in meiosis is called		
	(a) Equational division (b) Reduction division	• •	
1187.	The homologous chromosomes follow the proces	s of synapsis in the stage	e
	Or		
	Pairing of homologous chromosome takes place i		
	(a) Leptotene (b) Zygotene	(c) Diplotene	(d) Pachytene
1188.	Four chromatids and two centromeres which are	-	
	(a) Zygotene (b) Diplotene	(c) Diakinesis	(d) Pachytene
1189.	The replication of centrioles occurs during		(d) Inton-1
		(c) Late telophase	—
1190.	In an organism, if the normal diploid number of present in each daughter cell at the end of meiosic		ow many chromatids are
	present in each daughter cell at the end of meiosis	51	

	(a) 2	(b) 4	(c) 8	(d) 16									
1191.	How many meiotic div	isions will be necessary to	o produce two hundre	ed pollen grains									
	(a) 50	(b) 100	(c) 199	(d) 150									
1192.	If at the end of meiosis	, the 4 daughter cells hav	e 4 chromosomes. H	ow many chromosomes were									
	in the mother cell												
	(a) 8	(b) 16	(c) 2	(d) 4									
1193.	If there were 4 chrome	osomes present during p	rophase I. How mar	ny chromosomes are there in									
	each cell at the end of a	anaphase II											
	(a) 16	(b) 4	(c) 2	(d) 8									
1194.	At what phase of meic equator	osis are there two cells, e	each with sister chro	matids aligned at the spindle									
	(a) Anaphase II	(b) Metaphase II	(c) Metaphase I	(d) Anaphase I									
1195.	Recombination of gene	s occur at											
	(a) Prophase in mitosis (b)Prophase I in meiosis												
	(c) Prophase II in meiosis (d)Metaphase II in meiosis												
1196.	Which one of the follow	wing pairs is correctly ma	tched										
	(a) Anaphase I Homologous chromosomes are separated												
	(b) Metaphase I Pairing of maternal and paternal homologous chromosomes takes place												
	(c) Interphase I	A nuclear envelope encl	-										
	(d) Prophase I	Non-homologous chrom	-										
1197.		and select the correct answ	ver using the code gi	ven below in the lists									
	List I	List II											
		(Event that occurs)											
	(1) Prophase I	Crossing over occurs											
	(2) Metaphase I	Sister chromatids migrat											
	(3) Anaphase I	Homologous line up at e	equator in pairs										
	Code :												
	(a) 1, 2 and 3 are correct (b) 1		()	correct, 3 is false									
	(c) 1 is correct, 2 and 3			correct, 2 is false									
1198.		somes after I phase of me											
	(a) Remain unchanged		(c) Become halved	· · ·									
1199.		division. Meiosis II is ec	•										
	(a) Separation of chron	natids	(b) Pairing of home	ologous chromosomes									
	(c) Terminalization		(d) Disjunction of l	nomologous chromosomes									
1200	-			plane of metaphase-I whose									
		chromosomes visible will											
	(a) 100	(b) 25	(c) 50	(d) 75									
1201.	In Neurospora crassa 8	ascospores are formed in	stead of 4, this is by										

(a) One meiosis	(b) Two meiosis	(c) Two mitosis	(d) Meiosis followed by										
mitosis													
1202. In algae meiosis occu	urs during												
(a) Spore formation	(b) Spore germination	(c) Zygote formation	(d) Zygote germination										
1203. During the first meta	phase of meiosis the centro	omeres											
(a) Undergo division	L	(b) Do not divide											
(c) Divide but do not	tseparate		(d) Are not identical										
1204. When during the me	iotic division, do the centro	meres divide											
(a) Diplotene	(b) Metaphase-I	(c) Pachytene	(d) Anaphase-II										
1205. Exchange of chromo called	osome segments between m	naternal and paternal chr	omatids during meiosis is										
(a) Linkage	(b) Dominance	(c) Crossing over	(d) DNA multiplication										
1206. For viewing diakines	sis which one of the followi	ng would be a suitable m	aterial										
(a) Onion root tip	(b) Leaf of Dichanthiun	n (c) Rat tail	(d) Flower bud										
1207. The study of chromo	somes at meiotic diplotene	shows that											
(a) The intimately pa	ired chromosomes repel ea	ch other and begin to sep	varate										
(b) The pairing of ho	(a) The intimately paired chromosomes repel each other and begin to separate(b) The pairing of homologous chromosomes which had initiated in the earlier stage is completed												
(c) The homologous	(c) The homologous chromosomes remain united by chiasmata												
(d) None of these													
1208. Synaptonemal comp	lex is formed during												
(a) Meiosis	(b) Amitosis	(c) Mitosis	(d) Cytokinesis										
1209. Synaptonemal comp	lex was discovered in												
(a) 1953	(b) 1950	(c) 1935	(d) 1980										
1210. The points at which	crossing over has taken place	ce between homologous	chromosomes are called										
(a) Protein axes	(b) Synaptonemal comp	lexes (c)Chiasmata	(d) Centromeres										
1211. If for a species $2n = 2$	16, then during Ist prophas	e and IInd prophase of	meiotic division of a cell,										
how many tetrads an	d diads will be formed												
(a) 4 and 4	(b) 8 and 4	(c) 8 and 8	(d) 4 and 8										
1212. In pollen mother cell	s cytokinesis during meiosi	is is											
(a) Successive type													
(b) Simultaneous typ	e												
	ccessive type while in other	s simultaneous type											
(d) No cytokinesis ta		• 1											
•	f DNA replication without	t separation of daughter	chromatids leads to the										
formation of	Ĩ												
(a) Pachytene chrom	osome (b)Leptotene chrom	osomes											
•	some (d)Zygotene chromo												
-	e for the terminalization at		S										

(a) Chemostatic (b) Galvanostatic (c) Electrostatic 1215. Meiosis and mitosis differ from each other because in meiosis

(a) The four nuclei formed are not similar to parental ones

(b) Homologous chromosomes pair are exchange parts

(c) Number of chromosomes gets halved (d) All of the above

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 a a a a c a a a b b b c b c b d c 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 c b d c c c c c d c	19 20 d d 39 40 c b 59 60
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	39 40 c b
	c b
c b d c c b c c c c c a a b a c d c	59 60
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
abcdbabbbdaacdbad	c d
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	79 80
d a a d b b c a d c d b c a c a	c a
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	99 100
ddbdaabbcbbbdcbbb	a c
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	119 120
b a a b b d d b c b a d d c b a d	b d
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	139 140
d a c b b c d c b a d b c d b d b	b c
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	159 160
b a d d d d c d d b b d b b d b c a	b b
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178	179 180
a b a d d a a b c a d c d b d d	c c
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198	199 200
d a b c b c c c b b d a c a c d d b	d c
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	219 220
b c d c d a c d c b b b c b a b d c	a d
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 238 238	239 240

(d) None of these

b	a	b	c	c	c	b	b	a	b	c	c	d	c	b	b	d	b	b	b
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	c	c	c	a	a	c	c	c	a	a	b	a	b	c	c	b	d	d	d
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
c	b	b	c	b	a	d	b	a	d	b	d	c	c	a	d	a	c	b	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
d	a	a	d	d	a	a	d	c	a	a	a	a	b	b	b	d	c	d	c
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
b	d	b	d	a	b	b	b	b	c	d	a	a	d	c	b	a	a	d	d
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
a	d	b	a	b	d	a	a	b	a	d	b	a	d	b	b	a	b	d	a
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
b	b	d	d	a	d	b	b	d	b	b	a	c	b	d	b	d	b	d	a
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
с	a	a	c	b	b	a	a	a	a	b	c	a	a	c	c	b	c	a	d
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
b	a	c	b	d	d	b	c	c	a	a	d	c	c	c	d	d	a	b	a
401	402	403	404	405	406	40 7	408	409	410	411	412	413	414	415	416	417	418	419	420
a	с	a	b	b	d	d	c	c	c	d	b	b	c	b	c	b	a	a	a
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
b	d	a	d	d	a	d	a	a	a	d	a	d	c	b	c	d	b	b	a
441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460
с	b	a	a	a	b	d	a	a	d	b	b	d	c	b	c	c	d	d	a
461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
d	a	b	a	d	c	c	d	b	c	b	d	a	c	d	c	a	c	c	c
481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
a	a	b	b	d	b	b	a	c	a	d	d	b	b	c	d	a	c	a	c
501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520
a	d	c	d	d	d	a	c	a	a	d	b	b	c	a	c	b	a	b	c
521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540
c	c	b	c	a	d	c	a	b	c	a	d	c	b	b	b	d	a	a	d
541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560
b	b	a	c	c	d	a	c	a	d	c	a	d	a	d	c	b	d	b	a
561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580
a	b	c	a	d	a	a	a	d	a	d	a	a	b	a	c	c	c	c	b
581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
b	d	c	a	b	a	c	b	c	c	b	b	c	d	a	d	c	b	d	b
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620

a	d	a	a	b	d	d	a	c	b	d	c	c	b	b	a	d	d	d	d
621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640
d	c	b	c	b	d	a	c	d	b	c	c	b	a	c	b	b	d	d	d
641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660
a	a	b	c	a	c	d	b	a	c	c	b	a	a	d	b	d	b	a	d
661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680
с	b	c	a	a	d	b	a	c	b	a	d	d	a	d	b	d	b	b	a
681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700
d	b	c	d	c	b	a	a	d	c	a	a	d	a	a	b	c	c	c	d
701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720
d	a	a	d	c	c	a	d	c	b	b	b	b	d	c	d	c	b	b	b
721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740
a	d	d	d	b	a	b	d	d	c	a	a	c	b	b	d	a	c	c	d
741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760
a	a	d	a	c	b	a	c	d	d	d	b	b	a	d	b	c	a	b	b
761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780
c	c	b	c	a	d	d	d	a	c	c	b	b	b	c	b	c	a	d	d
781	782	783	784	785	786	787	788	789	7 90	791	792	793	794	795	796	797	798	799	800
c	d	b	b	b	b	b	a	b	b	a	b	b	b	b	b	d	d	b	c
801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820
a	b	a	c	c	b	b	c	d	b	c	a	d	d	d	c	a	c	a	c
821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840
а	c	c	d	c	b	c	c	a	b	c	a	a	a	c	c	b	b	a	a
841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860
d	b	b	d	d	b	a	d	b	b	b	a	c	d	d	b	c	b	d	d
861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880
b	a	a	c	c	b	b	d	b	a	a	d	b	a	d	d	c	a	d	a
881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900
с	c	b	a	a	b	c	b	d	c	b	b	с	c	d	b	c	d	a	b
901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920
a	b	b	a	c	b	a	a	a	a	c	a	c	c	c	c	a	a	d	d
921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940
а	b	a	d	a	c	a	d	d	a	c	d	b	b	d	c	c	a	a	b
941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960
d	a	c	a	b	a	b	c	b	c	d	a	d	c	b	d	b	c	b	d
961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980
b	d	b	d	c	c	c	c	b	d	d	d	b	c	b	c	c	b	b	d

981	982	983	984	985	986	98 7	988	989	990	991	992	993	994	995	996	997	998	999	1000
a	b	с	b	с	d	с	а	c	b	b	a	c	d	c	c	b	d	a	c
1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020
d	d	a	С	a	a	a	c	a	a	С	c	d	b	а	c	d	d	c	a
1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040
b	b	a	а	d	d	С	d	c	c	d	c	a	b	b	c	d	d	d	a
1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060
d	d	d	d	b	c	b	c	c	c	d	a	c	a	b	d	b	d	a	a
1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080
c	С	d	С	d	a	d	d	c	c	b	c	d	c	d	а	d	b	b	c
1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100
c	С	b	С	b	b	c	a	a	c	a	d	c	b	a	a	a	b	a	a
1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120
с	а	С	а	b	а	С	d	d	с	d	a	d	a	а	а	b	d	b	d
1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140
c	а	d	b	с	с	b	а	b	b	а	c	a	b	b	b	с	d	с	c
1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160
b	с	b	с	а	d	b	d	c	а	c	b	d	d	а	d	a	с	d	a
1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180
b	С	a	С	a	c	С	а	b	a	b	a	a	c	С	а	b	b	c	a
1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200
c	b	b	c	c	a	b	a	d	c	a	a	c	b	b	a	b	c	a	c
1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215					
d	d	b	d	c	d	c	a	a	c	c	c	c	c	d					