### Introduction

- Logic gates are most fundamental digital circuit that can be constructed from clodes, transistors and resistors connected in such a way that the circuit output is the result of a basic logic operation performed on the inputs.
- · The Boolean '0' and '1' represents the "logic level".

| Logic 0     | Logic 1       |  |
|-------------|---------------|--|
| False       | True          |  |
| OFF         | ON            |  |
| Low         | High          |  |
| No          | Yes           |  |
| Open switch | Closed switch |  |

 A "Truth table" is a means of describing how a logic circuits output depends on the logic levels present at circuits input.

| Note: | <br> | <br> | <br> |
|-------|------|------|------|
|       |      |      |      |

The number of input combinations will equals to  $2^{N'}$  for an "N-input" truth table.

- · The logic Gates can be classified as
  - (a) Basic Gate: NOT, AND, OR.
  - (b) Universal Gate: NAND, NOR.
  - (c) Special Purpose Gates: EX-OR and EX-NOR. They are used in arithmetic circuit, comparators, code conversion, parity generators and parity checkers etc.

#### **NOT Gate**

It is also referred as "inversion" or "complementation".

### Symbol and Truth Table



| Input | Output |
|-------|--------|
| Α.    | y = A  |
| 0     | Ţ,     |
| 1     | 0      |

### **Switching Circuit**



### **Transistor Circuit**



 When even number of NOT Gates are connected in series then it acts like Buffer Circuit.



 When even number of NOT Gates are connected with feedback then it acts like a "Bistable multivibrator". It is also a basic memory element.



When odd number of NOT Gates are connected with feedback, then it acts like an astable multivibrator (AMV) or square-wave generator or clock generator or ring oscillator.



All inverter take some time to get the response 'Y', this time is called propagation delay time  $(t_{\rm pd})$ .

### For an Astable Multivibrator (AMV)

Time period of Square Wave Generated by AMV:

$$T = 2nt_{pd}$$

where

n = Number of inverters (NOT Gates)

t<sub>bd</sub> = Propagation delay time of each inverter

T = Time period of a square wave generated by AMV or Ring oscillator

#### **AND Gate**

### Symbol, Truth Table and Switching Circuit



| 83 | Inp | urs | Cumput |
|----|-----|-----|--------|
|    | Α   | 8   | Y = AB |
|    | 0   | 0   | 0      |
| 1  | 0   | 1   | 0      |
|    | 1   | 0   | , o 🐬  |
| L  | 1   | 1   | 1      |



Note: ....

#### In AND operation

- ENABLE INPUT ⇒ Logic'1'
- DISABLE INPUT ⇒ Logic'0'

#### Transistor circuit:



| A | B | T,  | Т2  | Y  |
|---|---|-----|-----|----|
| 0 | 0 | OFF | OFF | 0  |
| 0 | 1 | OFF | ON  | 0. |
| 1 | 0 | ON  | OFF | 0  |
| 1 | 1 | ÓИ  | ON  | 1  |

### Diode circuit diagram:



| A   | В.,          | D <sub>1</sub> | D <sub>2</sub> Y |
|-----|--------------|----------------|------------------|
| 0   | 0            | ÓŇ             | ON 0             |
| 0,, | *** <b>†</b> | ON             | OFF 0            |
| 1   | 0            | OFF            | ON O             |
|     | 1            | OFF            | OFF 1            |

# Remember:

- In AND gate operation, any unused inputs (Floating inputs) may be connected as:
  - Logic'1'for TTL circuit Logic'0'for ECL circuit
- AND gate is also known as detector logic

### oR Gate

# symbol, Truth Table and Switching Circuit



|         | Inp | uts | Output    |
|---------|-----|-----|-----------|
|         | Α   | В   | Y = A + B |
| ;<br>-} | 0   | . 0 | 0         |
|         | 0   | 1   | 1         |
|         | ::1 | 0   | 1         |
|         | 1   | . 1 | 1         |



Remember:

#### In OR operation

- ENABLE INPUT ⇒ Logic '0'
- DISABLE INPUT ⇒ Logic'1'

### **Transistor Circuit**



| ſ | A   | B  | T,  | T <sub>2</sub> | ¥     |
|---|-----|----|-----|----------------|-------|
|   | .0  | 0  | OFF | OFF            | Ο.    |
| ١ | 0   | 1. | OFF | ON             | ··· 1 |
|   | 1   | Ö  | ON  | OFF            | ij.,  |
| İ | . 1 | 1  | ON  | ON             | 10    |

## Diode Circuit Diagram



| А   | В  | D <sub>1</sub> | D <sub>2</sub> Y |
|-----|----|----------------|------------------|
| 0   | 0  | ON             | ON 1             |
| 0   | 1  | ON             | OPF 1            |
| 1   | ្ល | OFF            | 0N 1             |
| . 1 | 1  | OFF            | OFF 0            |

#### **NAND Gate**

## Symbol, Truth Table and Switching Circuit



| Inputs |    | Output              |
|--------|----|---------------------|
| Α      | В  | $Y = \overline{AB}$ |
| 0      | 0  | 1                   |
| 0      | 1, | . 1                 |
| 1      | 0  | 1                   |
| 1      | 1  | 0                   |



### Remember:

#### In NAND operation

- ENABLE INPUT ⇒ Logic'1'
- DISABLE INPUT ⇒ Logic '0'

#### **Transistor Circuit**



| A   | В  | T   | T <sub>2</sub> | Υ |
|-----|----|-----|----------------|---|
| 0   | O. | OFF | OFF            | 1 |
| C   | 1  | OFF | ON .           | 1 |
| 1 1 | 0: | ON  | OFF            | 1 |
| Ť.  | 1  | ON  | ON             | 0 |

### **NOR Gate**

## Symbol, Truth Table and Switching Circuit



| inputs | Output      |
|--------|-------------|
| A B    | Y = (A + B) |
| 0 0    | 1           |
| 0 1    | . 0         |
| 1 60   | * o         |
| 1.4    | 0           |



#### member: .....

#### In NOR operation

- ENABLE INPUT ⇒ Logic'0'
- DISABLE INPUT ⇒ Logic'1'



|   | A | B | , Ja | T <sub>2</sub> | Υ |
|---|---|---|------|----------------|---|
|   | 0 | 0 | OFF  | OFF            | 1 |
|   | 0 | 1 | OFF  | ON             | 0 |
| i | 1 | 0 | ON - | OFF            | 0 |
|   | 1 | 1 | ON   | ON             | 0 |

#### **EXOR Gate**

It is also called "stair case switch".

#### Symbol and Truth Table



| Inp | uts      | Output           |  |
|-----|----------|------------------|--|
| Α   | В        | $Y = A \oplus B$ |  |
| 0   | 0        | . °O             |  |
| 0   | <b>1</b> | 1                |  |
| 1   | 0        |                  |  |
| 1   | 1        | 0                |  |

# ☐ Boolean function of 2-input EXOR operation

$$Y = A \oplus B = \overline{A}B + A\overline{B}$$

## Remember:

- It acts as "odd number of 1's detector in the input".
- It is mostly used in "parity generation and detection".
- When both the inputs are same, then output becomes LOW or Logic '0'.
- When both the inputs are different, then output becomes HIGH or Logic'1'.
- In EXOR operation
  - (i) For BUFFER CIRCUIT ⇒ Logic '0'
  - (ii) For INVERSION CIRCUIT ⇒ Logic'1'

Note: .....

$$A \oplus A = 0$$
,  $A \oplus 0 = A$   
 $A \oplus \overline{A} = 1$ ,  $A \oplus 1 = \overline{A}$ 

• A  $\oplus$  A  $\oplus$  A  $\oplus$ .....upto n terms = 0, when n = even

$$= A$$
, when  $n = odd$ 

#### **EXNOR Gate**

- It acts as "even number of 1's detector".
- It is also called "Gate of equivalence" or "coincidence logic".

### Symbol and Truth Table



| Inp | uts | Output        |  |
|-----|-----|---------------|--|
| Α   | В   | $Y = A \in B$ |  |
| 0   | 0   | 1             |  |
| 0   | 1 - | 0             |  |
| · 1 | 0   | 0             |  |
| 1   | 1   | 71            |  |

■ Boolean function of 2-input EXNOR operation

$$Y = A \odot B = \overline{A \oplus B} = \overline{(\overline{A}B + A\overline{B})} = AB + \overline{A}\overline{B}$$

#### Remember:

- When both the inputs are same, then output becomes HIGH or Logic'1'.
- When both the inputs are different, then output becomes LOW or Logic'0'.
- In EXNOR operation
  - (i) For BUFFER CIRCUIT ⇒ Logic'1'
  - (ii) For INVERSION CIRCUIT ⇒ Logic'0'

Note:

$$A \odot A = 1$$
,  $A \odot 1 = A$   
 $A \odot \overline{A} = 0$ ,  $A \odot 0 = \overline{A}$ 

• A  $\odot$  A  $\odot$  A  $\odot$  .....upto n terms = 1, when n = even = A, when n = odd

$$\overline{A} \oplus B = A \odot B \text{ and } A \oplus \overline{B} = A \odot B$$
  
 $\overline{A} \odot B = A \oplus B \text{ and } A \odot \overline{B} = A \oplus B$ 

## **Alternative Symbols of Gates**

Bubbled - OR gate = NAND gate

$$\begin{array}{ccc}
A & & & & & & \\
B & & & & & \\
\end{array}$$

$$\begin{array}{ccc}
A & & & & & \\
B & & & & \\
\end{array}$$

$$\begin{array}{cccc}
A & & & & \\
B & & & & \\
\end{array}$$

Bubbled - NAND gate = OR gate

Bubble - NOR gate ≡ AND gate

Bubbled - AND gate ≡ NOR gate

#### NAND and NOR Gate as Universal Gate

| Logic gates | No. of NAND<br>gate required | No. of NOR gate required |
|-------------|------------------------------|--------------------------|
| NOT         | <b>1</b>                     | 1                        |
| AND         | 2                            | 3 ***                    |
| OR          | 3                            | 2                        |
| EX-OR       | 4                            | 5                        |
| EX-NOR      | 5                            | 4                        |