Class XII Session 2024-25 Subject - Applied Mathematics Sample Question Paper - 5

Time Allowed: 3 hours

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with total weightage of 12 marks.
- 3. Section A: It comprises of 20 MCQs of 1 mark each.
- 4. Section B: It comprises of 5 VSA type questions of 2 marks each.
- 5. Section C: It comprises of 6 SA type of questions of 3 marks each.
- 6. Section D: It comprises of 4 LA type of questions of 5 marks each.
- 7. Section E: It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study.
- 8. Internal choice is provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D.You have to attempt only one of the alternatives in all such questions.

Section A

1. If A is a non-singular matrix, then

a) $ \mathbf{A} eq \mathbf{A}' $	b) $\left {{ m A}{ m A}'} ight eq \left {{ m A}^2} ight $
c) $ \mathrm{A} + \mathrm{A}' eq 0$	d) $\left \mathbf{A}^{-1} ight eq \left \mathbf{A} ight ^{-1}$

A machine makes car wheels and in a random sample of 26 wheels, the test statistic is found to be 3.07. As per t- [1] distribution test (of 5% level of significance), what can you say about the quality of wheels produced by the machine? (Use t₂₅ (0.05) = 2.06)

a) Different quality	b) Inferior quality

c) Same quality d) Superior quality

A person invested ₹180000 in a mutual fund in year 2016. If the value of mutual fund increased to ₹ 225000 in [1] year 2020, then compound annual growth rate of his investment is [use (1.25)^{1/4} = 1.057)

a) 57%	b) 10.57%
c) 5.7%	d) 57.57%

4. The position of points O(0, 0) and P(2, -2) in the region of graph of in equation 2x - 3y < 5 will be

Page 1 of 20

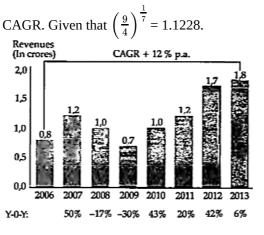
Maximum Marks: 80

[1]

[1]

	a) O outside and P inside	b) O and P both inside	
	c) O and P both outside	d) O inside and P outside	
5.	If the total cost function is given by $C(x) = 10x - 7x^2$ given by	+ $3x^3$, then the marginal average cost function (MAC) is	[1]
	a) -14 + 18x	b) $_{10}$ - $_{7x}$ + $_{3x^2}$	
	c) -7 + 6x	d) 10 - 14x + 9x	
6.	A fair coin is tossed 100 times. The probability of ge	tting tails an odd number of times is	[1]
	a) $\frac{5}{8}$	b) $\frac{3}{8}$	
	c) $\frac{1}{2}$	d) $\frac{1}{8}$	
7.	If X is a binomial variate with parameters n and p, w r, then p equals	here $0 such that \frac{P(X=r)}{P(X=n-r)} is independent of n and$	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	
	c) $\frac{1}{3}$	d) $\frac{1}{5}$	
8.	The solution of the differential equation $2x \frac{dy}{dx} - y = 0$	3 represents:	[1]
	a) parabolas	b) straight lines	
	c) ellipses	d) circles	
9.	In a 400 m race, A gives B a start of 5 seconds and b $\frac{1}{7}$ seconds. Their respective speeds are:	eats him by 15 m. In another race of 400 m, A beats B by 7	[1]
	a) 8 m/sec, 7 m/sec	b) 5 m/sec, 7 m/sec	
	c) 9 m/sec, 7 m/sec	d) 6 m/sec, 7 m/sec	
10.	The solution of the differential equation $\frac{dy}{dx} = \frac{2y}{x} = 0$	0 with $y(1) = 1$ is given by:	[1]
	a) $x = \frac{1}{y}$	b) $y = \frac{1}{x^2}$	
	c) $x = \frac{1}{u^2}$	d) $y = \frac{1}{x}$	
11.	(49 + 57) (mod 50) is		[1]
	a) 6	b) 4	
	c) 5	d) 7	
12.	If B > A, then which expression will have the highes	t values given that A and B are positive integers?	[1]
	a) A + B	b) $A \times B$	
	c) can't say	d) A - B	
13.	A pipe can fill a tank in ${\bf n}_1$ hours and another pipe ca	n empty it in n_2 ($n_2 > n_1$) hours. If both the pipes are	[1]
	opened together, the tank will be filled in		
	a) (n ₁ - n ₂) hours	b) $\frac{n_1 n_2}{n_2 - n_1}$ hours	
	c) $\frac{n_1 n_2}{n_1 + n_1}$ hours	d) $\frac{n_1 n_2}{n_1 - n_2}$ hours	
14.	Feasible region in the set of points which satisfy	·	[1]

) NT -	1										
	·	objective f					ne the give					
		bjective f					of the give	en constrai	ints			
15.	Given that	Given that x, y and b are real numbers and $x < y$, $b > 0$										[1]
	a) $rac{x}{b} \geq$	$\frac{y}{b}$				b) <u>x</u> <	$\leq \frac{y}{b}$					
	c) $\frac{x}{b} >$	$\frac{y}{b}$				d) $\frac{x}{b}$ <	$< \frac{y}{b}$					
16.	For the pur	pose of t-t	est of sign	ificance, a	random s	ample of s	ize (n) 34	is drawn f	rom a nori	mal popula	ation, then	[1]
	the degree	of freedom	n (v) is									
	a) 35					b) $\frac{1}{34}$						
	c) 33					d) 34						
17.	$\int e^x \Big(rac{1-x}{1+x^2} \Big)$	$\Big)^2 dx$ is equivalent of the second secon	qual to									[1]
	a) $-\frac{e^{x}}{1+x}$	$\frac{1}{x^2} + C$				b) — —	$\frac{e^x}{\left(1+x^2\right)^2}+C$	7				
	c) $\frac{e^x}{1+x^2}$	+ C				d) $\frac{e}{(1+e)}$	$\left(\frac{x}{x^2}\right)^2 + C$					
18.	Time series	analysis l	nelps to									[1]
	a) predi	ct the futu	re behavio	our of a va	riable.	b) und	erstand the	e behaviou	ır of a vari	able in the	2	
						past	t.					
	c) all of	these.				d) plar	n future op	erations.				
19.	Assertion ((A): Scala	r matrix A	$= [a_{ij}] =$	$\begin{cases} k, & i = \\ 0, & i = \end{cases}$	$\stackrel{=}{_{\neq}} j$, where j	e k is a sca	ılar, is an i	dentity ma	atrix when	k = 1.	[1]
	Reason (R)	: Every id	lentity ma	trix is not	a scalar m	atrix.						
	a) Both	A and R a	re true and	l R is the o	correct	b) Bot	h A and R	are true b	ut R is not	the		
	expla	nation of A	A.			COLI	ect explan	ation of A	L.			
	c) A is t	rue but R	is false.			d) A is	s false but	R is true.				
20.	Let $f(x) = 2$	$x^3 - 15x^2$	+ 36x + 1									[1]
	Assertion ((A): f is st	rictly decr	easing in [[2, 3]							
	Reason (R)): f is stric	tly increas	sing in $(-$	∞ , 2] \cup [3	8, (0).						
	a) Both	A and R a	re true and	l R is the o	correct	b) Bot	h A and R	are true b	ut R is not	the		
	expla	nation of <i>A</i>	A.			cori	ect explan	ation of A	L.			
	c) A is t	rue but R	is false.			d) A is	s false but	R is true.				
					S	ection B						
21.	Assuming a	a four year	ly cycle, c	alculate tl	ne trend by	the metho	od of movi	ing averag	es from th	e followin	g data:	[2] 1
	Year	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	


	Value	12	25	39	54	70	87	105	100	82	65
2.	Mr. Y has t	wo investi	ment optic	ons - either	at 10% pe	er annum o	compound	ed semi-an	nually or	9.5 % per a	annum

22. [2] compounded continuously. Which option is preferable and why?

OR

A person has set up a sinking fund so that he can accumulate ₹ 100000 in 10 years for his children's higher education. How much amount should he deposit every six months if interest is 5% per annum compounded semi-annually?

- 23. By using property of definite integrals, evaluate $\int x\sqrt{2-x} dx$
- 24. An interviewer gives the following graph on a client's sales in the last 7 years to candidate and said find the [2]

OR

Find the declared rate of return compounded semiannually which is equivalent to 6% effective rate of return [Use $(1.06)^{\frac{1}{2}} = 1.0296$]

25. Solve:
$$12x \equiv 44 \pmod{59}$$

26.

[2]

[3]

[2]

Solve the initial value problem: $x \frac{dy}{dx} + y = x \log x$, $y(1) = \frac{1}{4}$ [3]

Obtain the differential equation of all circles of radius r.

- 27. The cost of a washing machine depreciates by ₹720 during the second year and by ₹648 during the third year. [3]Calculate:
 - i. the rate of depreciation per annum.
 - ii. the original cost of the machine.
 - iii. the value of the machine at the end of third year.

28. The demand and supply functions for a commodity are $p = x^2 - 6x + 16$ and $p = \frac{1}{3}x^2 + \frac{4}{3}x + 4$ respectively. [3] Find each of the following assuming $x \le 5$:

- i. The equilibrium point.
- ii. The consumer's surplus at the equilibrium point.
- iii. The producer's surplus at the equilibrium point.
- 29. Find the mean, variance and standard deviation of the number of tails in three tosses of a coin. [3]

OR

A random variable X has the following probability distribution:

x _i	-2	-1	0	1	2	3
Pi	0.1	k	0.2	2k	0.3	k

i. Find the value of k.

ii. Calculate the mean of X.

iii. Calculate the variance of X.

30. i. Obtain the three year moving averages for the following series of observations:

Year	1995	1996	1997	1998	1999	2000	2001	2002

	Annual Sales (in 000 ₹)	3.6	4.3	4.3	3.4	4.4	5.4	3.4	2.4	
	ii. Obtain the five year moving average	ge.								
	iii. Construct also the 4-year centred m	noving av	/erage.							
31.	A random sample of 10 boys had the f	ollowing	I.Q's: 70	, 120, 11	0, 101, 8	8, 83, 95	98, 107,	100. Do	these data	[3]
	support the assumption of a population	n mean I.	Q. of 100)? Find a	reasonat	ole range	in which	most of tl	ne mean	
	I.Q. values of samples of 10 boys lie. (Given to	(0.05) =	2.262)						
			Sectio	on D						
32.	A firm produces three products P_1 , P_2	and P ₃ re	equiring	the mix-	up of thre	e materia	ls M ₁ , M	$_2$ and M_3	. The per-	[5]
	unit requirement of each product for each	ach matei	rial is as	follows:						

	M ₁	M ₂	M ₃
P ₁	2	4	5
P ₂	3	2	4
P ₃	1	3	2

Using matrix algebra, find:

i. The total requirement of each material if the firm produces 100, 200 and 300 units of products P₁, P₂ and P₃ respectively.

ii. The per-unit cost of production of each product if the per-unit costs of materials M₁, M₂ and M₃ are ₹10, ₹15 and ₹12 respectively.

iii. The total cost of production.

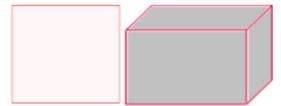
OR If A = $\begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$, find A⁻¹ Using A⁻¹ solve the system of linear equations x - 2y = 10, 2x - y - z = 8, -2y + z = 7.

- 33. A person can row a boat at 5 km/h in still water. It takes him thrice as long to row upstream as to row [5] downstream. Find the rate at which the stream is flowing.
- 34. Two cards are drawn successively with replacement from a well-shuffled deck of 52 cards. Compute the [5] variance of the number of aces.

OR

Two positive numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and the variance of the distribution.

- 35. The cost of a car purchased 2 years ago, depreciates at the rate of 20 % every year. If its present worth is ₹ [5] 315600, find:
 - i. its purchase price


ii. its value after 3 years.

Section E

36. **Read the text carefully and answer the questions:**

> Yash wants to prepare a handmade gift box for his friend's birthday at his home. For making lower part of the box, he took a square piece of paper of each side equal to 10 cm.

[4]

- (a) If x cm be the size of the square piece cut from each corner of the paper of size 10cm, then a possible value of x will be given by interval:
- (b) Volume of the open box formed by folding up the cutting corner can be expressed as:
- (c) Find the value of x for which $\frac{dV}{dx} = 0$?

OR

Yash is interested to maximise the volume of the box, So what will be the side of the square to be cut to maximise the volume?

37. **Read the text carefully and answer the questions:**

Loans are an integral part of our lives today. We take loans for a specific purpose - for buying a home, or a car, or sending kids abroad for education - loans help us achieve some significant life goals. That said, when we talk about loans, the word "EMI", eventually crops up because the amount we borrow has to be returned to the lender with interest.

Suppose a person borrows ₹1 lakh for one year at the fixed rate of 9.5 percent per annum with a monthly rest. In this case, the EMI for the borrower for 12 months works out to approximately ₹8,768.

Example:

In year 2000, Mr. Tanwar took a home loan of ₹3000000 from State Bank of India at 7.5% p.a. compounded monthly for 20 years.

- (a) Find the equated monthly installment paid by Mr. Tanwar.
- (b) Find interest paid by Mr. Tanwar in 150th payment.
- (c) Find Principal paid by Mr. Tanwar in 150th payment.

OR

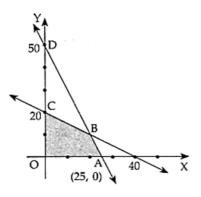
Find principal outstanding at the beginning of 193th month.

38. Read the following text carefully and answer the questions that follow:

The feasible region for an L.P.P. is shown in the adjoining figure. The line CB is parallel to OA.

- i. Find the equation of the line OA. (1)
- ii. Find the equation of the line BC. (1)
- iii. Find the constraints for the L.P.P (2)

OR


Find the minimum value of the objective function Z = 3x - 4y. (2)

OR

Read the following text carefully and answer the questions that follow:

The feasible region for an L.P.P is shown in the figure given below:

[4]

i. What is equation of the line AD? (1)

ii. What is the equation of the line BC? (1)

iii. What are the coordinates of the points B and C? (2)

OR

What are the constraints for the L.P.P.? (2)

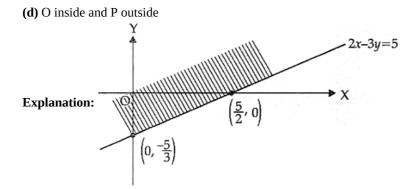
Solution

Section A

1.

(c) $|\mathbf{A}| + |\mathbf{A}'| \neq 0$ **Explanation:** $\therefore |\mathbf{A}| \neq 0$ and $|\mathbf{A}| = |\mathbf{A}'|$. So, $|\mathbf{A}| + |\mathbf{A}'| = |\mathbf{A}| + |\mathbf{A}| = 2|\mathbf{A}| \neq 0$. \therefore Option (d) is the correct answer.

2.


(b) Inferior quality Explanation: Given n = 26 and t = 3.0 \Rightarrow degree of freedom = n - 1 = 26 - 1 = 25Now, level of significance = 5% = 0.05 $t_{25}(0.05) = 2.06$ $\therefore t = 3.07 > 2.06$

So, the wheels produced by the machine are of inferior quality.

3.

(c) 5.7% Explanation: 5.7%

4.

(c) -7 + 6x

Explanation: $C(x) = 10x - 7x^2 + 3x^3$ AC = $\frac{C(x)}{x} = 10 - 7x + 3x^2$ Now, MAC = $\frac{d}{dx}(AC) = -7 + 6x$

6.

(c) $\frac{1}{2}$

Explanation: A fair coin tossed 100 times then probability of odd or even numbers are same and equals $=\frac{1}{2}$ \Rightarrow The probability of getting tails an odd number of times is also $\frac{1}{2}$

7. (a) $\frac{1}{2}$

Explanation: $\therefore P(X = r) = {}^{n}C_{r}(P)^{r}(q)^{n-r}$ $= \frac{n!}{(n-r)!r!} (P)^{r}(1 - p)^{n-r} [\because q = 1 - p] ...(i)$ $P(X = 0) = (1 - p)^{n}$ And $P(X = n - r) = {}^{n}C_{n-r}(P)^{n-r}(q)^{n-(n-r)}$ $= \frac{n!}{(n-r)!r!} (p)^{n-r}(1 - p)^{-r} [\because q = 1 - p] [\because {}^{n}C_{r} = {}^{n}C_{n-r}] ...(ii)$

Now,
$$\frac{P(x=r)}{P(x=n-r)} = \frac{\frac{n!}{(n-r)!r!} p^{r} (1-p)^{n-r}}{\frac{n!}{(n-r)!r!} p^{n-r} (1-p)^{+r}}$$
 [using Eqs. (i) and (ii)]
= $\left(\frac{1-p}{p}\right)^{n-\gamma} \times \frac{1}{\left(\frac{1-p}{p}\right)^{r}}$

The above expression is independent of n and r, if $\frac{1-p}{p} = 1 \Rightarrow \frac{1}{p} = 2 \Rightarrow p = \frac{1}{2}$

8. (a) parabolas

Explanation:
$$2x \frac{dy}{dx} = y + 3 \Rightarrow \frac{dy}{dx} = \frac{y+3}{2x} \Rightarrow \frac{2\frac{dy}{dx}}{y+3} = \frac{1}{x}$$

Integration both sides

$$\int \frac{2\frac{d}{dx}}{y+3} = \int \frac{1}{x}$$

$$\Rightarrow 2 \log (y+3) = \log x + c$$

$$\Rightarrow (y+3)^2 = x + c$$

9. (a) 8 m/sec, 7 m/sec

Explanation: Suppose A covers 400 m in t seconds

Then, B covers 385 m in (t + 5) seconds

$$\therefore B \text{ covers 400 m} = \left\{ \frac{(t+5)}{385} \times 400 \right\} \text{sec}$$

$$= \frac{80(t+5)}{77} \text{ sec}$$
Also, B covers 400 m = $\left(t + 7\frac{1}{7}\right) \text{ sec}$

$$= \frac{(7t+50)}{7} \text{ sec}$$

$$\therefore \frac{80(t+5)}{77} = \frac{7t+50}{7}$$

$$\therefore 80(t+5) = 11(7t+50)$$

$$\Rightarrow (80t - 77t) = (550 - 400)$$

$$\Rightarrow 3t = 150$$

$$\Rightarrow t = 50$$

$$\therefore A'\text{s speed}$$

$$= \frac{400}{50} \text{ m/sec}$$

$$= 8 \text{ m/sec}$$

$$\therefore B'\text{s speed}$$

$$= \frac{385}{55} \text{ m/sec}$$

$$= 7 \text{ m/sec}$$

(b) $y = \frac{1}{x^2}$ Explanation: We have, $\frac{dy}{dx} + \frac{2y}{x} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{2y}{x}$ q $\Rightarrow \frac{dy}{2y} = -\frac{dx}{x}$ $\Rightarrow \int \frac{dy}{2y} = -\int \frac{dx}{x}$ $\Rightarrow \frac{1}{2}\log |y| = -\log |x| + \log c$ $\Rightarrow \sqrt{yx} = c$ $\Rightarrow yx^2 = c$ Given that $y(1) = 1 \Rightarrow x = y = 1$ $\Rightarrow c = 1$ $\Rightarrow yx^2 = 1$ $\Rightarrow y = \frac{1}{x^2}$

11. **(a)** 6

Explanation: 6

12.

(c) can't say **Explanation:** Cannot say, because when A = 1, B = 3, then $A \times B = 1 \times 3 = 3$ and A + B = 4Here, $A + B > A \times B$ and when A = 2, B = 3, then $A \times B = 2 \times 3 = 6$ and A + B = 2 + 3 = 5. Here, $A \times B > A + B$

13.

(b) $\frac{n_1n_2}{n_2-n_1}$ hours Explanation: $\frac{n_1n_2}{n_2-n_1}$ hours

14.

(d) All of the given constraintsExplanation: All of the given constraints

15.

(c) $\frac{x}{b} > \frac{y}{b}$ Explanation: x < y and b < 0 $\Rightarrow \frac{x}{b} > \frac{y}{b}$

16.

(c) 33

Explanation: Given n = 34 \Rightarrow degree of freedom (v) = 34 - 1 = 33

17.

$$\begin{split} & (\mathbf{c}) \, \frac{e^x}{1+x^2} + C \\ & \mathbf{Explanation: Given} \, \int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx \\ & \Rightarrow \int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx = \int e^x \left(\frac{1+x^2-2x}{(1+x^2)^2}\right) dx \\ & \Rightarrow \int e^x \left(\frac{1+x^2-2x}{(1+x^2)^2}\right) dx = \int e^x \left\{ \left(\frac{1+x^2}{(1+x^2)^2}\right) + \left(\frac{-2x}{(1+x^2)^2}\right) \right\} dx \\ & = \int e^x \left\{ \left(\frac{1}{(1+x^2)}\right) + \left(\frac{-2x}{(1+x^2)^2}\right) \right\} dx \\ & \text{Now using the property: } \int e^x \left(f(\mathbf{x}) + f'(\mathbf{x})\right) d\mathbf{x} = e^x f(\mathbf{x}) \\ & \text{Now in } \int e^x \left\{ \left(\frac{1}{(1+x^2)}\right) + \left(\frac{-2x}{(1+x^2)^2}\right) \right\} dx \\ & \Rightarrow f(\mathbf{x}) = \frac{1}{(1+x^2)} \\ & \Rightarrow f(\mathbf{x}) = \frac{-2x}{(1+x^2)^2} \\ & \Rightarrow \int e^x \left\{ \left(\frac{1}{(1+x^2)}\right) + \left(\frac{-2x}{(1+x^2)^2}\right) \right\} d\mathbf{x} = \frac{e^x}{1+x^2} + C \\ & \Rightarrow \int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx = \frac{e^x}{1+x^2} + C \,. \end{split}$$

18.

(c) all of these.Explanation: all of these.

19.

(c) A is true but R is false.

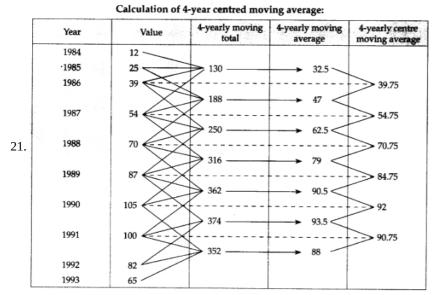
Explanation: A scalar matrix $A = [a_{ij}] = \begin{cases} k; & i = j \\ 0; & i \neq j \end{cases}$ is an identity matrix when k = 1. But every identity matrix is clearly a scalar matrix.

20.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation: Given $f(x) = 2x^3 - 15x^2 + 36x + 1$

 \Rightarrow f'(x) = 6x² - 30x + 36


$$= 6(x^2 - 5x + 6) = 6(x - 2)(x - 3)$$

 \therefore f is strictly decreasing in [2, 3].

$$\begin{array}{c} + \\ 2 \\ 3 \end{array}$$

f is strictly increasing in $(-\infty, 2] \cup [3, \infty)$. Assertion and Reason both are true. Reason is not the correct explanation of Assertion.

Section B

22. When compounded semi-annually we have r = 0.10, m = 2

Now,
$$r_{eff} = \left(1+rac{r}{m}
ight)^m - 1$$
 $= \left(1+rac{0.10}{2}
ight)^2 - 1$

= 0.1025 or 10.25 %

when compounded continuously

 $r_{eff} = e^r - 1 = e^{0.095} - 1$

= 0.0996 = 9.96%

Thus, the first investment is preferable.

OR

Given A = ₹ 100000, r = $\frac{5}{2}$ % per half year \Rightarrow i = $\frac{2.5}{100}$ = 0.025 and n = 20 half year Using formula

$$A = R \left[\frac{(1+i)^n - 1}{i} \right] \Rightarrow 100,000 = R \left[\frac{(1.025)^{20} - 1}{0.025} \right]$$

$$\Rightarrow R = \frac{10000 \times 0.025}{(1.025)^{20} - 1}$$

$$\Rightarrow R = \frac{2500}{1.637 - 1} = \frac{2500}{0.637}$$

$$\Rightarrow R = ₹ 3924.64$$

Let x = (1.025)^{20}
Taking logarithm on both sides, we get
log x = 20 log 1.025

$$\Rightarrow \log x = 20 \times 0.0107$$

$$\Rightarrow \log x = 0.2140$$

$$\Rightarrow x = antilog 0.2140$$

$$\Rightarrow x = 1.637$$

23.
$$\int_{0}^{2} x\sqrt{2-x} dx = \int_{0}^{2} (2-x)(2-(2-x))^{\frac{1}{2}} dx \text{ (by property P_4)}$$
$$= \int_{0}^{2} (2-x)x^{\frac{1}{2}} dx = \int_{0}^{2} \left(2x^{\frac{1}{2}} - x^{\frac{3}{2}}\right) dx$$
$$= \left[\frac{4}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}}\right]_{0}^{2} = \frac{4}{3} \cdot 2\sqrt{2} - \frac{2}{5} \cdot 4\sqrt{2} = \frac{16}{15}\sqrt{2}.$$

24. Sales in 2006 were 0.8 crores (beginning value). In 2013, after 7 years, sales increased to 1.8 crores.

$$CAGR = \left(\frac{End value}{Beginning value}\right)^{\frac{1}{n}} - 1$$
$$= \left(\frac{1.8}{0.8}\right)^{\frac{1}{7}} - 1 = \left(\frac{9}{4}\right)^{\frac{1}{7}} - 1$$
$$= 0.1228$$
$$CAGR\% = 12.28\%$$

OR

Let declared rate of interest be r % p.a. compounded half yearly. Given effective rate of return (per rupee) = $\frac{6}{100}$ = 0.06 (per-rupee), p = 2 half years.

$$\therefore 0.06 = \left(1 + \frac{x}{200}\right)^2 - 1$$

$$\Rightarrow \left(1 + \frac{x}{200}\right)^2 = 1.06 \Rightarrow 1 + \frac{x}{200} = (1.06)^{\frac{1}{2}}$$

$$\Rightarrow 1 + \frac{x}{200} = 1.0296 \Rightarrow \frac{x}{200} = 0.0296$$

$$\Rightarrow r = 0.0296 \times 200 \Rightarrow r = 5.92$$
Hence, the declared rate of return = 5.92%
25. We know that $a \equiv b \pmod{m} \Rightarrow \frac{a}{x} \equiv \frac{b}{x} (mod \frac{m}{d})$, where $d = (x, m)$.

$$\therefore 12x \equiv 44 \pmod{59}$$

$$\Rightarrow 3x \equiv 11 \pmod{59} [\because (4, 59) = 1]$$
We find that $(3, 59) = 1$, hence it has unique solution (mod 59). Using division algorithm, we obtain
 $59 = 19 \times 3 + 2$
 $3 = 2 \times 1 + 1$
Using back substitution, we obtain
 $1 = 3 - 2 \times 1$
 $\Rightarrow 1 = 3 - (59 - 19 \times 3) \times 1$
 $\Rightarrow 1 = 59 \times (-1) + 20 \times 3$
The coefficient of 3 i.e. 20 is the inverse of 3 (mod 59)
Now,
 $3x \equiv 11 \pmod{59}$
 $\Rightarrow 20 \times 3x \equiv 20 \times 11 \pmod{59}$ [Multiplying throughout by inverse of 3 i.e. 20]
 $\Rightarrow (20 \times 3)x \equiv 220 \pmod{59}$
 $\Rightarrow x \equiv 43 \pmod{59}$
Hence $x \equiv 43 \pmod{59}$ is the solution of the given linear congruence.
Section C
26. We have, $x\frac{dy}{dx} + y = x \log x$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \log x \dots (i)$
This is linear differential equation of the form $\frac{dy}{dx} + Py = Q$ with $P = \frac{1}{x}$ and $Q = \log x$
 $\therefore 1.F. = e^{\int \frac{1}{x} dx} = e^{\log x} = x [\because x > 0]$
Multiplying both sides of (i) by I.F. = x, we get
 $x\frac{dy}{dx} + y = x \log x$
Integrating with respect to x, we ge
 $yx = \int \frac{x}{t_0} \log x dx$ (Using: $y (1.F.) = \int Q (1.F.) dx + C]$
 $\Rightarrow yx = \frac{x^2}{t_0} (\log x) \frac{1}{2} \int x dx$

$$\Rightarrow yx = \frac{x^2}{2}(\log x) - \frac{x^2}{4} + C \dots (ii)$$

It is given that $y(1) = \frac{1}{4}$ i.e. $y = \frac{1}{4}$ where $x = 1$. Putting $x = 1$ and $y = \frac{1}{4}$ in (ii), we get

 $\frac{1}{4} = 0 - \frac{1}{4} + C \Rightarrow C = \frac{1}{2}$ Putting C = $\frac{1}{2}$ in (ii), we get $xy = \frac{x^2}{2}(\log x) - \frac{x^2}{2} + \frac{1}{2} \Rightarrow y = \frac{1}{2}x \log x - \frac{x}{4} + \frac{1}{2x}$ Hence, y = $\frac{1}{2}x \log x - \frac{x}{4} + \frac{1}{2x}$ is the solution of the given differential equation.

OR

The equation of the family of circles of radius r is

$$(x - a)^2 + (y - b)^2 = 2 ...(i)$$

where a and bare a parameters.

Clearly equation (i) contains two arbitrary constants. So, let us differentiate it two times with respect to x.

Differentiating (i) with respect to x, we get

$$2 (x - a) + 2 (y - b) \frac{dy}{dx} = 0$$

$$\Rightarrow (x - a) + (y - b) \frac{dy}{dx} = 0 \dots (ii)$$

Differentiating (ii) with respect to x, we get

$$1 + (y - b) \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0 \dots (iii)$$
$$\Rightarrow y - b = -\frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}} \dots (iv)$$

Putting this value of (y - b) in (ii), we obtain

$$\mathbf{x} - \mathbf{a} = \frac{\left|1 + \left(\frac{dy}{dx}\right)^2\right| \frac{dy}{dx}}{\frac{d^2y}{dx^2}} \dots (\mathbf{v})$$

Substituting the values of (x - a) and (y - b) in (i), we get

$$\frac{\left\{\frac{1+\left(\frac{dy}{dx}\right)^2}{\left(\frac{d^2y}{dx^2}\right)^2} + \frac{\left|1+\left(\frac{dy}{dx}\right)^2\right\}}{\left(\frac{d^2y}{dx^2}\right)^2} = r^2 \Rightarrow \left\{1+\left(\frac{dy}{dx}\right)^2\right\}^3 = r^2 \left(\frac{d^2y}{dx^2}\right)^2$$

This is the required differential equation.

27. i. Let the original cost of the washing machine be ₹P and the rate of depreciation be r % p.a. Then the value of machine (in ₹) after one year, two years and 3 years are P(1 - i), P(1 - i)² and P(1 - i)³ respectively, where i = $\frac{r}{100}$.

According to given,

P(1 - i) - P(1 - i)² = 720 and P(1 - i)² - P(1 - i)³ = 648
⇒ P(1 - i)[1 - (1 - i)] = 720 and P(1 - i)²[1 - (1 - i)] = 648 ...(ii)
⇒ P(1 - i) i = 720 ...(i) and P(1 - i)² · i = 648
Dividing (ii) by (i), we get
1 - i =
$$\frac{648}{720}$$
 ⇒ 1 - i = $\frac{9}{10}$
⇒ i = 1 - $\frac{9}{10}$ ⇒ i = $\frac{1}{10}$ ⇒ $\frac{r}{100}$ = $\frac{1}{10}$
⇒ r = 10

Hence, the rate of depreciation = 10 % p.a.

ii. Putting i =
$$\frac{1}{10}$$
 in equation (i), we get

P
$$\left(1-\frac{1}{10}\right)$$
 × $\frac{1}{10}$ = 720 ⇒ P × $\frac{9}{100}$ = 720 ⇒ P = 8000
Hence, the original cost of the machine = ₹ 8000

iii. The value of machine at the end of third year = $P(1 - i)^3$

$$= 8000 \left(1 - \frac{1}{10}\right)^3 = 8000(0.9)^3$$
$$= 8000 \times 0.729 = 5832$$

Hence, the value of the machine at the end of the third year = ₹5832

28. The demand and supply functions are p = D(x) and p = S(x), where $D(x) = x^2 - 6x + 16$ and $S(x) = \frac{1}{3}x^2 + \frac{4}{3}x + 4$

i. The equilibrium point (x_0, p_0) is the point at which the demand-supply curves intersect. Therefore, the equilibrium point is obtained by setting D(x) = S(x). Now, D(x) = S(x)

$$\Rightarrow x^2 - 6x + 16 = \frac{1}{3}x^2 + \frac{4}{3}x + 4$$

$$\Rightarrow \frac{2}{3}x^2 - \frac{22}{3}x + 12 = 0 \Rightarrow x^2 - 11x + 18 = 0 \Rightarrow (x - 2)(x - 9) \Rightarrow x = 2 [\because x \le 5]$$

Putting x = 2 either in p = D (x) or in p = S(x), we obtain p = 8. Thus, x_0 = 2 and p_0 = 2

Putting x = 2 either in p = D(x) or in p = S(x), we obtain p = 8. Thus, $x_0 = 2$ and $p_0 = 8$. Hence, (2, 8) is the equilibrium point. ii. The consumer's surplus (CS) at the equilibrium point (2, 8) is given by

$$CS = \int_0^{x_0} D(x) dx - p_0 x_0$$

$$\Rightarrow CS = \int_0^2 (x^2 - 6x + 16) dx - 8 \times 2$$

$$\Rightarrow CS = \left[\frac{x^3}{3} - 3x^2 + 16x\right]_0^2 - 16 = \left(\frac{8}{3} - 12 + 32\right) - 16 = \frac{20}{3}$$

iii. The producer's surplus (PS) at the equilibrium point (2, 8) is given by

$$PS = p_0 x_0 - \int_0^{x_0} S(x) dx$$

$$\Rightarrow PS = 8 \times 2 - \int_0^2 \left(\frac{1}{3}x^2 + \frac{4}{3}x + 4\right) dx$$

$$\Rightarrow PS = 16 - \left[\frac{x^3}{9} + \frac{2}{3}x^2 + 4x\right]_0^2 = 16 - \left(\frac{8}{9} + \frac{8}{3} + 8\right) = \frac{40}{9}$$

29. Let X be a random variable denoting the number of tails in three tosses of a coin. Then, X can take the values 0, 1, 2 and 3 Now, we have,

 $P(X = 0) = P(HHH) = \frac{1}{8}$ $P(X = 1) = P(THH \text{ or } HHT \text{ or } HTH) = \frac{3}{8}$ $P(X = 2) = P(TTH \text{ or } THT \text{ or } HTT) = \frac{3}{8}$ $P(X = 2) = P(TTTT) = \frac{1}{8}$

 $P(X = 3) = P(TTT) = \frac{1}{8}$

Thus, the probability distribution of X is as follows:

X	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Computation of mean and variance:

x _i	Pi	p _i x _i	$p_i x_i^2$
0	$\frac{1}{8}$	0	0
1	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$
2	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{12}{8}$
3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{9}{8}$
		$\sum p_i x_i = \frac{3}{2}$	$\sum p_i x_i^2 = 3$

Therefore, mean = $\sum p_i x_i = \frac{3}{2}$

Variance = $\sum p_i x_i^2$ - (Mean)² = 3 - $\left(\frac{3}{2}\right)^2$ = 3 - $\frac{9}{4}$ = $\frac{3}{4}$ Standard deviation = $\sqrt{\text{Variance}}$ = $\sqrt{\frac{3}{4}}$ = 0.87

OR

We know that sum of the probabilities in a probability distribution is always unity.

 $\therefore 0.1 + k + 0.2 + 2k + 0.3 + k = 1$

 $\Rightarrow 0.6 + 4k = 1 \Rightarrow 4k = 0.4 \Rightarrow k = 0.1$ Calculation of mean and variance:

x _i	p _i	P _i x _i	$p_i x_i^2$
- 2	0.1	- 0.2	0.4
- 1	0.1	- 0.1	0.1

0	0.2	0	0
1	0.2	0.2	0.2
2	0.3	0.6	1.2
3	0.1	0.3	0.9
		$\Sigma p_i x_i$ = 0.8	$\Sigma p_i x_i^2$ = 2.8

Therefore, $\Sigma p_i x_i = 0.8$ and $\Sigma p_i x_i^2 = 2.8$

 \therefore Mean = $\Sigma p_i x_i$ = 0.8

and Variance = $\Sigma p_i x_i^2 - (\Sigma p_i x_i)^2 = 2.8 - (0.8)^2 = 2.8 - 0.64 = 2.16$

30. i. First 3-year moving average is $\frac{3.6+4.3+4.3}{3} = \frac{12.2}{3} = 4.067$, and is placed against 2nd year i.e. 1996; second 3-year moving average is $\frac{4.3+4.3+3.4}{3} = \frac{12.0}{3} = 4.0$, and is placed against 3rd year i.e. 1997, and so on. Thus, we have:

Calculation of 3-year moving averages:							
Year	Annual sale	3-year moving total		3-year moving avera			
1995	3.6	-	1/3		-		
1996	4.3	> 12.2		→	4.067		
1997	4.3	> 12.0		→	4.00		
1998	3.4	> 12.1		→	4.03		
1999	4.4	> 13.2		→	4.40		
2000	5.4	3.2		→	4.40		
2001	3.4 🧷	> 11.2		->	3.73		
2002	2.4	-			-		

ii. First 5-yearly moving average is $\frac{3.6+4.3+4.3+3.4+4.4}{5} = \frac{20.0}{5} = 4.00$, and is placed against 3rd year i.e. 1997. Second 5-yearly moving average is $\frac{4.3+4.3+3.4+4.4+5.4}{5} = \frac{21.8}{5} = 4.36$, and is placed against 4th year i.e. 1998, and so on. Thus, we have: Calculation of 5-year moving averages:

Year	Annual sale	5-year moving total		5-year moving average		
1995	3.6	-			-	
1996	4.3		1/5		-	
1997	4.3	⇒ 20.0		→	4.00	
1998	3.4	21.8			4.36	
1999	4.4	20.9			4.18	
2000	5.4	19.0			3.80	
2001	3.4	-			-	
2002	2.4	-			-	

iii. In the 4-year moving averages, the first step of averaging of 4 values each results in placing these in between years — so we take averages of each two successive moving averages to synchronise them with given time frame. Thus, we have the following table:

	Construction of 4-year centred moving averages							
Year	Annual Sale total	4-yearly moving total	4-yearly moving average	4-year centred moving average				
1995	3.6							
1996	4.3							
1997	4.3		→ 3.9 	4.0				
1998	3.4		4.1	4.2375				
1999	4.4	17.5	→ 4.375	4.2652				
	\sim	16.6	→ 4.15 <					
2000	5.4	15.6	→ 3.9	4.025				
2001	3.4	1010	- 0.7					
2002	2.4							

Note that values of 4th column are not synchronised with first column, but values of 5th column are synchronised.

31. We have,

 μ = Population mean = 100, n = Sample size = 10

We define

Null Hypothesis H₀: The data are consistent with the assumption of a mean I.Q. of 100 in the population.

Alternate hypothesis H₁: The mean I.Q. of population \neq 100

Let the sample statistic t be given by

t =
$$\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$$
, where S² = $\frac{1}{n-1}\sum_{i=1}^{n} \left(x_i - \bar{X}\right)^2$

Let us now compute \bar{X} and S^2 .

Computation of \bar{X} and S

x _i	$\mathbf{d_1} = \mathbf{x_i} - 90$	d _i ²
70	-20	400
120	30	900
110	20	400
101	11	121
88	-2	4
83	-7	49
95	5	25
98	8	64
107	17	289
100	10	100
	$\sum d_i = 72$	$\sum d_i^2 = 2352$

Here, d_i = x_i - 90

$$\therefore \bar{X} = 90 + \frac{1}{10} \sum d_{i} = 90 + \frac{72}{10} = 972 \text{ [Using} : \bar{X} = A + \frac{1}{n} \sum d_{i}\text{]}$$

$$S^{2} = \frac{1}{n-1} \left\{ \sum d_{i}^{2} - \frac{1}{n} (\sum d_{i})^{2} \right\} = \frac{1}{9} \left\{ 2352 - \frac{(72)^{2}}{10} \right\} = \frac{1833.6}{9} = 203.73$$

$$\therefore t = \frac{\bar{X} - \mu}{S/\sqrt{n}} \Rightarrow t = \frac{97.2 - 100}{\sqrt{\frac{203.73}{10}}} = \frac{-2.8}{\sqrt{20.37}} = \frac{-2.8}{4514} = -0.62$$

 $\Rightarrow |t| = 0.62$

The sample statistict follows student's t -distribution with v = (10 - 1) = 9 degrees of freedom. It is given that $t_9(0.05) = 2.262$

: Calculated $|t| < tabulated t_9(0.05)$

So, the null hypothesis may be accepted at 5% level of significance.

Hence, the assumption of a population mean I.Q. of 100 is valid.

The 95% confidence limits within which the mean I.Q. values of samples of 10 boys will lie are

 $\overline{X} - \frac{S}{\sqrt{n}}$ t₉(0.05) and $\overline{X} + \frac{S}{\sqrt{n}}$ t₉(0.05) or 97.2 - $\sqrt{\frac{203.73}{10}} \times 2.262$ and 97.2 + $\sqrt{\frac{203.73}{10}} \times 2.262$ or, 97.2 - 4514 × 2.262 and 97.2 + 4.514 × 2.262 or, 97.2 - 10.21 and 97.2 + 10.21 or, 86.99 and 107.41

Hence, the required 95% confidence interval is [86.99, 107.41]

Section D

32. The matrix showing per unit requirement of materials M₁, M₂ and M₃ in producing three products P₁, P₂ and P₃ is

 $A = \begin{array}{ccc} P_2 & P_3 & P_3 \\ M_1 & \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 3 \\ M_3 & 5 & 4 & 2 \end{bmatrix}$

i. (i) The matrix representing the requirements of products $\mathsf{P}_1, \mathsf{P}_2$ and P_3 is

 $\mathbf{B} = \begin{array}{c} P_1 \\ P_2 \\ P_3 \end{array} \begin{bmatrix} 100 \\ 200 \\ 300 \end{bmatrix}$

So, the requirements of each material for producing the given quantities of three products is given by the product

					P_1	100	
AB =		P_2	P_3	P	$P_3 P_2$	$\begin{bmatrix} 100 \\ 200 \\ 300 \end{bmatrix}$	
	M_1	$\lceil 2 \rangle$	3	1]	P_3	300	
	M_2	4	2	3			
	M_3	$\lfloor 5$	4	2			

$$\Rightarrow AB = \frac{M_1}{M_2} \begin{bmatrix} 200 + 600 + 300\\ 400 + 400 + 900\\ 500 + 800 + 600 \end{bmatrix} = \frac{M_1}{M_2} \begin{bmatrix} 1100\\ 1700\\ 1900 \end{bmatrix}$$

Thus, 1100 units of material M₁, 1700 emits of material M₂ and 1900 units of material M₃ are required to produce 100 units

of P₁, 200 units of P₂ and 300 units of P₃.

ii. The matrix representing per-unit costs of materials M₁, M₂ and M₃ is as given below:

$$C = \begin{array}{c} M_1 \\ M_2 \\ M_3 \end{array} \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

The matrix exhibiting the materials M_1 , M_2 and M_3 in three products P_1 , P_2 and P_3 is

$$\begin{array}{cccc} {\rm D}=&& M_1 \; M_2 \; M_3 \\ & P_1 & \left[\begin{array}{cccc} 2 & 4 & 5 \\ & P_2 & 3 & 2 & 4 \\ & P_3 & 1 & 3 & 2 \end{array} \right] \\ \end{array}$$

So, the per emit cost of each product is given by the matrix product

$$DC = \begin{bmatrix} M_1 & 10 \\ 15 \\ P_1 & 2 & 4 & 5 \\ P_2 & 3 & 2 & 4 \\ P_3 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix} = \begin{bmatrix} 20 + 60 + 60 \\ 30 + 30 + 48 \\ 10 + 45 + 24 \end{bmatrix} = \begin{bmatrix} 140 \\ 108 \\ P_3 \end{bmatrix}$$

Hence, per unit cost of production of products P_1 , P_2 and P_3 are \gtrless 140, \gtrless 180 and \gtrless 79 respectively.

iii. The total cost of product is given by the matrix product

 $\begin{array}{cccc} P_1 & P_2 & P_3 & P_1 \\ [100 & 200 & 300] & P_2 \\ P_3 & P_3 \end{array} \begin{bmatrix} 140 \\ 108 \\ 79 \end{bmatrix} = (14,000 + 21,600 + 23,700) = ₹ 59,300$

Hence, the total cost of product is ₹ 59,300

$$\begin{array}{l} \text{OR} \\ \text{Here, } |\mathbf{A}| = \begin{vmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{vmatrix} = 1(-1-2) - 2(-2-0) \\ = -3 + 4 = 1 \neq 0 \\ \Rightarrow \ \mathbf{A}^{-1} \text{ exists and } \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \text{ adj } \mathbf{A} \\ \text{Here, } \mathbf{A}_{11} = \begin{vmatrix} -1 & -2 \\ -1 & 1 \end{vmatrix} = -3, \ \mathbf{A}_{12} = -\begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix} = 2, \ \mathbf{A}_{13} = \begin{vmatrix} -2 & -1 \\ 0 & -1 \end{vmatrix} = 2; \\ \mathbf{A}_{21} = -\begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = -2, \ \mathbf{A}_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \ \mathbf{A}_{23} = -\begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = 1; \\ \mathbf{A}_{31} = \begin{vmatrix} 2 & 0 \\ -1 & -2 \end{vmatrix} = -4, \ \mathbf{A}_{32} = -\begin{vmatrix} 1 & 0 \\ -2 & -2 \end{vmatrix} = 2, \ \mathbf{A}_{33} = \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} = 3 \\ \therefore \ \text{adj } \mathbf{A} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix}^{t} = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \\ \therefore \ \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \ \text{adj } \mathbf{A} = \frac{1}{1} \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
The given system of equations can be written as
$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$
or \ \mathbf{A}'\mathbf{X} = \mathbf{B}, where $\mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$
Now $|\mathbf{A}'| = |\mathbf{A}| = 1 \neq 0 \Rightarrow (\mathbf{A}')^{-1}$ exists

 \Rightarrow the given system has a unique solution X = (A')⁻¹ B

or X = (A⁻¹)' B (: (A')-1 = (A⁻¹)')

$$\Rightarrow X = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}' \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -30 + 16 + 14 \\ -20 + 8 + 7 \\ -40 + 16 + 21 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix} \Rightarrow x = 0, y = -5, z = -3$$

Hence, the solution of the given system of equations is x = 0, y = -5, z = -3.

33. Let the distance covered be d km. and y be speed of stream

speed of boat = 5 km/h speed of stream = y km/h speed of boat in upstram(u): x - y km/h = 5 - y km/h speed of boat in downstream (v) = x + y km/h = 5 + y km/h ATQ. $\frac{d}{5-y} = 3\left(\frac{d}{5+y}\right) \left[\because T = \frac{D}{S}\right]$ $\frac{1}{5-y} = \frac{3}{5+y}$ 5 + y = 3(5 - y) 5 + y = 15 - 3y y + 3y = 15 - 5 4y = 10 y = \frac{10}{4} y = $\frac{5}{2}$ km/h y = $2\frac{1}{2}$ km/h

speed of stream is 2.5 km/h

34. Let A_i(i = 1, 2) denote the event of getting an ace in ith draw. Since the cards are drawn with replacement. Therefore,

 $P(A_i) = Probability of getting an ace in ith draw = \frac{{}^4C_1}{{}^{52}C_1} = \frac{4}{{}^{52}} = \frac{1}{{}^{13}}$ and $P\left(\overline{A_i}\right) = 1 - P(A_i) = 1 - \frac{1}{{}^{13}} = \frac{{}^{12}}{{}^{13}}$, i = 1, 2 Let X denote the number of aces in two draws. Then, X can take values 0, 1, 2. Now, P(X = 0) = Probability of getting no ace in two draws $\Rightarrow P(X = 0) = P\left(\overline{A_1} \cap \overline{A_2}\right) = P\left(\overline{A_1}\right) P\left(\overline{A_2}\right) = \frac{{}^{12}}{{}^{13}} \times \frac{{}^{12}}{{}^{13}} = \frac{{}^{144}}{{}^{169}}$ $\Rightarrow P(X = 1) = Probability of getting an ace in either of the two draws$ $\Rightarrow P(X = 1) = P\left(\left(A_1 \cap \overline{A_2}\right) \cup \left(\overline{A_1} \cap A_2\right)\right)$ $\Rightarrow P(X = 1) = P\left(A_1 \cap \overline{A_2}\right) + P\left(\overline{A_1} \cap A_2\right)$ $\Rightarrow P(X = 1) = P\left(A_1 \cap P\left(\overline{A_2}\right) + P\left(\overline{A_1} \cap A_2\right)$

Thus, the probability distribution of X is given by:

Х	0	1	2
P(X)	$\frac{144}{169}$	$\frac{24}{169}$	$\frac{1}{169}$

 $\therefore \Sigma p_i x_i = 0 \times \frac{144}{169} + 1 \times \frac{24}{169} + 2 \times \frac{1}{169} = \frac{26}{169}$ and, $\Sigma p_i x_i^2 = 0 \times \frac{144}{169} + 1 \times \frac{24}{169} + 4 \times \frac{1}{169} = \frac{28}{169}$ Hence, \bar{X} = Mean = $\Sigma p_i x_i = \frac{26}{169} = \frac{2}{13}$ and, $Var(X) = \sum p_i x_i^2 - (\Sigma p_i x_i)^2 = \frac{28}{169} - (\frac{2}{13})^2 = \frac{24}{169}$ \therefore S.D. = $\sqrt{Var(X)} = \sqrt{\frac{24}{169}} = \frac{2\sqrt{6}}{13}$ Hence, Mean = $\frac{2}{13}$ and S.D. = $\frac{2\sqrt{6}}{13}$

OR

The number of ways of selecting two numbers from the first five positive integers $= {}^5C_2 = 10$.

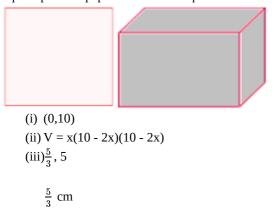
So, the sample space S of the random experiment has 10 equally likely outcomes.

The outcomes are:

1, 2; 1, 3; 1, 4; 1, 5; 2, 3; 2, 4; 2, 5; 3, 4; 3, 5; 4, 5.

As the random variable X denote the larger of the two numbers. X can take values 2, 3, 4, 5. Note that in a sample space S, we have

Larger than any number	Number of outcomes			
2	1			
3	2			
4	3			
5	4			
$\overline{P(X=2)} = \frac{1}{10}, P(X=3) = \frac{2}{10}, \ P(X=4) = \frac{3}{10}, P(X=5) = \frac{4}{10}$				


∴ Probability distribution of X is

	Х	2	3	4	5			
	P(X)	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$			
	Mean = $\Sigma p_i x_i = rac{1}{10} imes 2 + rac{2}{10} imes$	$ imes 3+rac{3}{10} imes 4+rac{4}{10} imes 5$	=4					
	Variance $= \Sigma p_i x_i^2 - (\Sigma p_i x_i)^2$							
	$=\frac{1}{10} (1 \times 2^2 + 2 \times 3^2 + 3 \times 4^2 + 3)$	+ 4 \times 5 ²) - (4) ²						
	$=\frac{170}{10}$ - 16 = 17 - 16 = 1.							
35.	It is given that,							
	Present value of car = 315600							
	Rate of depreciation $(r) = 20\%$							
	i. We know that							
	Value of car 2 years ago = $A - 3$	$+(1-rac{r}{100})^n$						
	Substituting the values							
	$= 315600 \div (1 - \frac{20}{100})^2$							
	By further calculation							
	$= 315600 \times \frac{5}{4} \times \frac{5}{4}$							
	= 493125							
	ii. We know that							
	Value of car after 3 years = 31	$5600 imes (1-rac{20}{100})^3$						
	By further calculation							
	$= 315600 \times \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}$							
	= 161587.20							

Section E

36. Read the text carefully and answer the questions:

Yash wants to prepare a handmade gift box for his friend's birthday at his home. For making lower part of the box, he took a square piece of paper of each side equal to 10 cm.

OR

37. Read the text carefully and answer the questions:

Loans are an integral part of our lives today. We take loans for a specific purpose - for buying a home, or a car, or sending kids abroad for education - loans help us achieve some significant life goals. That said, when we talk about loans, the word "EMI", eventually crops up because the amount we borrow has to be returned to the lender with interest.

Suppose a person borrows $\gtrless 1$ lakh for one year at the fixed rate of 9.5 percent per annum with a monthly rest. In this case, the EMI for the borrower for 12 months works out to approximately $\gtrless 8,768$.

Example:

In year 2000, Mr. Tanwar took a home loan of ₹3000000 from State Bank of India at 7.5% p.a. compounded monthly for 20 years.

- (i) ₹ 24167.82
- (ii) ₹ 10458.69
- (iii)₹13709.13

₹410293.41

OR

38. i. O(0, 0), A(6, 12), so equation of OA is

$$y - 0 = \frac{12 - 0}{6 - 0} (x - 0) \Rightarrow y - 2x = 0.$$

ii. Since BC is parallel to OA, so slope of BC = slope of OA.

: Equation of BC is Y - 4 = $2(x - 0) \Rightarrow y - 2x = 4$.

iii. Constraints for the L.P.P. are

 $y \ge 2x, y - 2x \le 4, x \le 6, x \ge 0, y \ge 0$

OR

The corner points of the feasible region are (0, 0), (6, 12), (6, 16) and (0, 4). The values of Z = 3x - 4y at these corner points are 0, -30, - 46 and -16. Hence, the minimum value of Z = -46.

OR

- i. From the given figure, OA = 25 and OD = 50
- The equation of the line AD is $\frac{x}{25} + \frac{y}{50} = 1$...(intercept form)

i.e. 2x + y = 50

ii. The equation of the line BC is $\frac{x}{40} + \frac{y}{20} = 1$ i.e. x + 2y = 40

iii. Solving equations 2x + y = 50 and x + 2y = 40 simultaneously, we get x = 20, y - 10

... The coordinates of point B are (20, 10).

From the given figure, the coordinates of point C are (0, 20).

OR

As (0, 0) lies in the region $2x + y \le 50$ and (0,0) also lies in the region $x + 2y \le 40$, therefore, the constraints for the L.P.P. are $2x + y \le 50$, $x + 2y \le 40$, $x \ge 0$, $y \ge 0$