MATHEMATICS

DPP No. 45

Total Marks: 30

Max. Time: 30 min.

Topics: Solution of Triangle, Application of Derivatives, Straight Line

Type of Questions		M.M.	, Min.
Single choice Objective (no negative marking) Q.1,2,3,4	(3 marks, 3 min.)	[12,	12]
Multiple choice objective (no negative marking) Q.5,6	(5 marks, 4 min.)	[10,	8]
Subjective Questions (no negative marking) Q.7,8	(4 marks, 5 min.)	[8,	10]
<u> </u>			

- In a $\triangle ABC$, a = 5, b = 4 and $\tan \frac{C}{2} = \sqrt{\frac{7}{9}}$, then the side c is equal to 1.
 - (A) 2
- (B) 3
- (C) 6
- (D) None of these
- In a triangle ABC, if $a^3 \cos (B-C) + b^3 \cos (C-A) + c^3 \cos (A-B) = \lambda$ abc, then ' λ ' is equal to 2. (D) None of these
- With usual notations, in a $\triangle ABC$ $\frac{r_1}{(s-b)(s-c)}$ + $\frac{r_2}{(s-c)(s-a)}$ + $\frac{r_3}{(s-a)(s-b)}$ is equal to 3.
 - (A) $\frac{1}{r}$

- (C) $\frac{3}{r}$ (D) $\frac{4}{r}$
- Let $f(x) = \begin{bmatrix} \sin \frac{\pi x}{2} & , \ 0 \le x < 1 \\ 3 2x & , \ x \ge 1 \end{bmatrix}$ then:
 - f(x) has local maxima at x = 1(A)
 - (B) f(x) has local minima at x = 1
 - f(x) does not have any local extrema at x = 1(C)
 - f(x) has a global minima at x = 1(D)
- In a $\triangle ABC$, if a + b = 3c, then $\cos A + \cos B$ is equal to 5.
 - (A) 3cos C
- (B) $6 \sin^2 \frac{C}{2}$
- (C) $3 \cos (A + B)$ (D) $3 + 3 \cos (A + B)$
- 6. If $H \equiv (3, 4)$ and $C \equiv (1, 2)$ are orthocentre and circumcentre of $\triangle PQR$ and equation of side PQ is x - y + 7 = 0, then
 - (A) equation of circum circle $(x 1)^2 + (y 2)^2 = 80$
 - (B) equation of circum circle $(x 1)^2 + (y 2)^2 = 70$
 - (C) centroid is $\left(\frac{5}{3}, \frac{8}{3}\right)$
 - (D) circumradius = $\sqrt{70}$
- The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non zero local minimum and maximum values at x = -2 and 7. x = 2 respectively. If a is a root of the equation $x^2 - x - 6 = 0$. Find all possible values of a, b, c, and d.
- Let $f(x) = \begin{cases} |x-2| + a^2 9a 9 & \text{if } x < 2 \\ 2x 3 & \text{if } x \ge 2 \end{cases}$ 8.

Then find the value of 'a' for which f(x) has local minimum at x = 2

Answers Key

1. (C) **2.** (C) **3.** (C) **4.** (A)

5. (B)(D) **6.** (A)(C) **7.** a = -2, b = 0, c = 24, d > 32

8. $(-\infty, -1] \cup [10, \infty)$