
Chapter 4

Greedy Approach

greedY approaCh
In a greedy method, we attempt to construct an optimal solution
in stages.

 • At each stage we make a decision that appears to be the best
(under some criterion) at the time.

 • A decision made at one stage is not changed in a later stage, so
each decision should assure feasibility.

 • Some problems that use greedy approach are:

 1. Knapsack problem
 2. Minimum spanning tree
 3. Prims algorithm
 4. Kruskals algorithm

KnapSaCK problem
The knapsack problem is a problem in combinatorial optimization:
given a set of items, each with a weight and a value, determine
the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is
as large as possible. We have n kinds of items, 1 through n. Each
kind of item i has a value V

i
and a weight W

i
,

usually assume that

all values and weights are non-negative. The maximum weight that
we can carry in the bag is W.

 Greedy approach

 Knapsack problem

 Fractional knapsack problem

 Spanning trees

 Prim's algorithm

 Kruskal's algorithm

 Tree and graph traversals

 Back tracking

 Graph traversal

 Breadth fi rst traversal

 Depth fi rst search

 Huffman codes

 Task-scheduling problem

 Sorting and order statistics

 Simultaneous minimum and maximum

 Graph algorithms

LEARNING OBJECTIVES

Solved Examples

Example 1: (Making change)

Problem: Accept n dollars, to return a collection of coins
with a total value of n dollars.

Confi guration: A collection of coins with a total value of n.
Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can.

 • Coins are valued $.30, $.020, $0.05, $0.01 use a greedy choice
property and make $.40 by using 3 coins.

Solution: $0.30 + $0.05 + $0.05 = $0.40

Fractional Knapsack Problem
Given: A set S of n items, with each item i having

 • b
i
 - a positive benefi t

 • w
i
 - a positive weight

Goal: Choose items with maximum total benefi t but with weight
atmost W.

If we are allowed to take fractional amounts, then this is the frac-
tional knapsack problem.

 • In this case, let x
i
 denote the amount we take of item i.

 • Objective: Maximize b x wi i i
i S

()/
∈
∑

 • Constraint: x Wi

i S

≤
∈
∑

Chapter 4  •  Greedy Approach | 3.117

Example 2:

Items
1 2 3 4 5

Weight 4 ml 8 ml 2 ml 6 ml 1 ml

Benefit $12 $32 $40 $30 $50

Value ($ per ml) 3 4 20 5 50

“Knapsack”

10 ml

Solution: 1 ml of 5, 2 ml of 3, 6 ml of 4, 1 ml of 2

 • Greedy choice: Keep taking item with highest value (ben-
efit to weight ratio).

 • Correctness: suppose there is a better solution, there is
an item i with higher value than a chosen item j. (i.e., v

j

< v
i
). If we replace some j with i, we get a better solution.

Thus there is no better solution than the greedy one.
N = 3, m = 20
(P

1
, P

2
, P

3
) = (25, 24, 15)

(W
1
, W

2
, W

3
) = (18, 15, 10)

Example 3:

X1 X2 X3 S WiXi S Pi Xi

1. 1/2 1/3 1/4 9 + 5 + 2.5 = 16.5 12.5 + 8 + 3.75 = 24.25

2. 1 2/15 0 18 + 2 + 0 = 20 25 + 3.2 + 0 = 28.2

3. 0 2/3 1 0 + 10 + 10 = 20 0 + 16 + 15 = 31

4. 0 1 1/2 0 + 15 + 5 = 20 0 + 24 + 7.5 = 31.5

(1), (2), (3), (4) are feasible ones but (4) is the optimum
solution.

Spanning TreeS
A spanning tree of a graph is just a sub graph that contains
all the vertices and is a tree. A graph may have many span-
ning trees.

 • A sub graph that spans (reaches out to) all vertices of a
graph is called a spanning sub graph.

 • A sub graph that is a tree and that spans all vertices of the
original graph is called a spanning tree.

 • Among all the spanning trees of a weighted and con-
nected graph, the one (possibly more) with the least
total weight is called a Minimum Spanning Tree
(MST).

prim’S algoriThm
Prim’s algorithm is a greedy algorithm that finds a minimum
spanning tree for a connected weighted undirected graph.
This means it finds a subset of the edges that forms a tree
that includes every vertex, where the total weight of all the
edges in the tree is minimized. The algorithm continuously
increases the size, of a tree, one edge at a time starting with
a tree consisting of a single vertex, until it spans all vertices.

 • Using a simple binary heap data structure and an adja-
cency list representation, prim’s algorithm can be shown
to run in time O(E log V) where E is the number of edges
and V is the number of vertices.

Example:

1

4

4

65

5

2

2

3 3

6

6

6 5

1

5

Start:

2

1
4 2

1
4

11

3

6
4

56

3

5

 Iteration 1: U = {1, 3} Iteration 2: U = {1, 3, 6}

2

1

1
4

2

4
3

65

1

1
4

2

4
3

5

5

2

6

 Iteration 3: U = {1, 3, 6, 4} Iteration 4: U = {1, 3, 6, 4, 2}

1

1 4

2

4
3

5

3

2 5

6

Iteration 5: U = {1, 3, 6, 4, 2, 5}

Figure 1 An example graph for illustrating prim’s algorithm.

3.118 | Unit 3  •  Algorithms

KruSKal’S algoriThm

Like prim’s algorithm, Kruskal’s algorithm also constructs
the minimum spanning tree of a graph by adding edges to the
spanning tree one-by-one. At all points, during its execution
the set of edges selected by prim’s algorithm forms exactly one
tree. On the other hand the set of edges selected by Kruskal’s
algorithm forms a forest of trees. Kruskals algorithm is con-
ceptually simple. The edges are selected and added to the
spanning tree in increasing order of their weights. An edge is
added to the tree only if it does not create a cycle.

Example:

5

1

5

6
3

5

1

2

3
4 2

4

6
6

6

5

Start:

1
2

1
4

2

3

5 6 5 6

3

1

1
4

Initial configuration Setp 1: choose (1, 3)

1

1

1

5

3

1

2 2
3 3

2 2
4 4

6 65

Setep 2: choose (4, 6) Setep 3: choose (2, 5)

1

1

1

1

5

33 33

2

2 2

2
4

4

4

4

66 5

5

Setep 4: choose (3, 6) Setep 6: choose (4, 3)

Tree and graph TraverSalS

Back Tracking
Backtracking is a general algorithm technique that consid-
ers searching every possible combination in order to solve
an optimization problem.

Backtracking is also known as depth first search (or)
branch and bound. Backtracking is an important tool for
solving constraint satisfaction problems, such as cross-
words, verbal arithmetic, sudoku and many other puzzles.
It is often the more convenient technique for parsing, for
the knapsack problem and other combinational optimiza-
tion problems.

 • The advantage of backtracking algorithm is that they are
complete, that is they are guaranteed to find every solu-
tion to every possible puzzle.

Graph Traversal
To traverse a graph is to process every node in the graph
exactly once, because there are many paths leading from
one node to another, the hardest part about traversing a
graph is making sure that you do not process some node
twice. There are general solutions to this difficulty.

 1. When you first encounter a node, mark it as
REACHED. When you visit a node, check if it is
marked REACHED, if it is, just ignore it. This is the
method our algorithms will use.

 2. When you process a node, delete it from the graph.
Deleting the node causes the deletion of all the arcs
that lead to the node, so it will be impossible to reach
it more than once.

General traversal strategy

 1. Mark all nodes in the graph as NOT REACHED,
 2. Pick a starting node, mark it as REACHED, and place

it on the READY list.
 3. Pick a node on the READY list. Process it remove it

from READY. Find all its neighbors, those that are
NOT REACHED should marked as REACHED and
added to READY.

 4. Repeat 3 until READY is empty.

Example:

A

C D

B

Step I: A = B = C = D = NOT REACHED
Step II: READY = {A} . A = REACHED
Step III: Process A. READY = {B, C}.
 B = C = REACHED
Step IV: Process C. READY = {B, D}.
 D = REACHED
Step V: Process B. READY = {D}
Step VI: Process D. READY = { }

Chapter 4  •  Greedy Approach | 3.119

The two most common traversal patterns are

 • Breadth first traversal
 • Depth first traversal

Breadth First Traversal
In breadth first traversal, READY is a QUEUE, not an arbi-
trary list. Nodes are processed in the order they are reached
(FIFO), this has the effect of processing nodes according to
their distance from the initial node. First, the initial node is
processed. Then all its neighbors are processed. Then all of
the neighbors etc.

 • Since a graph has no root, we must specify the vertex at
which to start the traversal.

 • Breadth first tree traversal first visits all the nodes at depth
zero (i.e., the root) then all the nodes at depth 1, and so on.

Procedure
First, the starting vertex is enqueued. Then, the following
steps are repeated until the queue is empty.

 1. Remove the vertex at the head of the queue and call it
vertex.

 2. Visit vertex
 3. Follow each edge emanating from vertex to find the

adjacent vertex and call it ‘t
o
’. If ‘t

o
’ has not already

been put into the queue, enqueued it.

Notice, that a vertex can be put into the queue at most once.
Therefore, the algorithm must some how keep track of the
vertices that have been enqueued.

Procedure for BFS for undirected graph G(V, E)
To perform BFS over a graph, the data structures required are
queue (Q) and the visited set (Visited), ‘V ’ is the starting vertex.

Procedure for BFS(V)
Steps

 1. Visit the vertex ‘V’
 2. Enqueue the vertex V
 3. while (Q is not Empty)
 (i) V = dequeue ();
 (ii) for all vertices J adjacent to V

(a) if not visited (J)
 • Enqueue (J)
 • Visit the vertex ‘J’
 • end if.
 • end for
 • end while
 • Stop

Example:

 A Unexplored vertex

 A Visited vertex

 Unexplored edge
 Discovery edge
 Cross edge

C

A

B D

FE

C

A

B D

FE

B C D

FE E

B

A

D

F

C

A

C

A

B D

FE

C

A

B D

FE

C

A

B D

FE

C

A

B D

FE

A

B C D

FE

Figure 2 Breadth–first search

Depth First Search
A depth first traversal of a tree always starts at the root of
the tree. Since a graph has no root, when we do a depth first
traversal, we must specify the vertex at which to begin. A
depth first traversal of a tree visits a node and then recur-
sively visits the sub trees of that node similarly, depth first
traversal of a graph visits a vertex and then recursively vis-
its all the vertices adjacent to that node. A graph may con-
tain cycles, but the traversal must visit every vertex at most
once.

The solution to the problem is to keep track of the nodes
that have been visited.

Procedure for DFS for undirected graph G(V, E)
To perform DFS over a graph, the data structures
required are stack (S) and the list (visited), ‘V ’ is the
start vertex.

3.120 | Unit 3  •  Algorithms

Procedure for DFS(V)
Steps
 1. push the start vertex ‘V ’ into the stack S
 2. while (S is not empty)
 (i) pop a vertex V
 (ii) if ‘V ’ is not visited

(a) visit the vertex
(b) Store ‘V ’ in visited
(c) push all the adjacent vertices of ‘V ’ in to visited

 (iii) End if
 3. End while
 4. Stop.

Example:

C C

A A

B BD DE E

C C

A A

B BD DE E

C C

A A

B BD DE E

C

A

B D E

Figure 3 Depth first search

 • Let us compare two traversal orders on the following graph:

A B C D

HGFE

Initial steps:
READY = [A]. process A. READY = [B, E]. process B.

It is at this point that two traversal strategies differ.
Breadth first adds B’s neighbors to the back of READY,
depth first adds them to the front.

Breadth first

 • READY = [E, C, G]
 • Process E. READY = [C, G, F]
 • Process C. READY = [G, F, D]
 • Process G .READY = [F, D, H]
 • Process F. READY = [D, H]
 • Process D. READY = [H]
 • Process H. READY = []

Depth First

 • READY = [C, G, E]
 • Process C. READY = [D, G, E]
 • Process D. READY = [G, E]
 • Process G. READY = [H, F, E]
 • Process H. READY = [F, E]
 • Process F. READY = [E]
 • Process E. READY = []

ConneCTed ComponenTS
A graph is said to be connected if every pair of vertices
in the graph are connected. A connected component is a
maximal connected sub graph of ‘G’. Each vertex belongs
to exactly one connected component as does each edge.

 • A graph that is not connected is naturally and obvi-
ously decomposed into several connected components
(Figure 4). Depth first search does this handily. Each restart
of the algorithm marks a new connected component.

 • The directed graph in (Figure 5) is “Connected” Part of
it can be “Pulled apart” (so to speak, without “breaking”
any edges).

 • Meaningful way to define connectivity in directed graph is:

‘Two nodes U and V of a directed graph G = (V, E) con-
nected if there is a path from U to V ’, and one from V to U. This
relation between nodes is reflective, symmetric and transitive.
As such, it partitions V into disjoint sets, called the strongly
connected components of the graph. In the directed graph of
figure 2 there are four strongly connected components.

1

3

6
7

4
5

8

11
12 13

14

9 10

2

Figure 4 Undirected graph.

Chapter 4  •  Greedy Approach | 3.121

2 3

6

5

7
8

9 10 11

12

4

1

Figure 5 A directed graph and its strongly connected components

If we shrink each of these strongly connected compo-
nents down to a single node and draw an edge between two
of them if there is an edge from some node in the first to
some node in the second, the resulting directed graph has to
be a directed acyclic graph (DAG) – it has no cycles (figure
6). The reason is simple.

A cycle containing several strongly connected compo-
nents would merge them all to a single strongly connected
component.

1 2-4-5 3-6

7-8-9-10-11-12

Every directed graph is a DAG of its strongly connected
components.

huffman CodeS
For compressing data, a very effective and widely used
technique is Huffman coding. We consider the data to be a
sequence of characters. Huffmans’s greedy algorithm uses
a table of the frequencies of occurrence of the characters to
build up an optimal way of representing each character as a
binary string.

Example: Suppose we have a 1,00,000 – character data file,
that we wish to store compactly. The characters in the file
occur with the frequencies given below:

Character a b c d e f

Frequency 47 12 11 14 10 6

Solution: Two methods are used for compression of data are:

Fixed Length Coding
 • Arrange all the characters in sequence (no particular

order is followed)
 • a = 47, b = 12, c = 11, d = 14, e = 10, f = 6

Step I:

a : 47 b : 12 c : 11 d : 14 e : 10 f : 6

Step II:

a : 47 b : 12 c : 11 d : 14 e : 10 f : 6

59 25 16

Step III:

a : 47 b : 12 c : 11 d : 14 e : 10 f : 6

100

1

01
0

0 1 0 1 0 1

0

84

59 25 16

16

We interpret the binary code word for a character as
the path from the root to that character where ‘0’ means
‘go to the left child’, and 1 means ‘go to the right child’.

The above tree is not binary search tree, since the leaves
need not appear in sorted order.

Constructing Huffman Code
This algorithm builds the tree T corresponding to the opti-
mal code in a bottom-up manner. It begins with set of |C|
leaves and performs a sequence of |C|-1 ‘merging’ opera-
tions to create the final tree.

 • A min-priority queue Q, keyed on f, is used to identify the
2 least – frequent objects to merge together. The result of
the merger of 2 objects is a new object whose frequency
is the sum of the frequencies of the 2 objects that were
merged.

 • In the given example, there are 6 alphabets the initial
queue size is n = 6, and 5 merge steps are required to
build the tree. The final tree represents the optimal prefix
code. The code word for a letter is the sequence of edge
labels on the path from the root to the letter.

a = 47, b = 12, c = 11, d = 14, e = 10, f = 6

Step I: Arrange the characters in non-decreasing order
according to their frequencies

f : 6 e : 10 c : 11 b : 12 d : 14 a : 47

3.122 | Unit 3  •  Algorithms

Let x and y be 2 characters in C having the lowest frequen-
cies. Then there exists an optimal prefix code for C in which
the code words for x and y have the same length and differ
only in the last bit

f : 6 e : 10

16

0 1

c : 11 b : 12 d : 14

f : 6 e : 10

53

0

0 1 0

0 1

1

1

23 30

16

c : 11 b : 12 d : 14

f : 6 e : 10

a : 47

100

0

53

23 30

16

0

0 1 0

0

1

1

1

1

Analysis: The analysis of the running time of Huffman’s
algorithm assumes that Q is implemented as a binary min-
heap for a set C of ‘n’ characters, the initialization of Q can
be performed in O(n) time using the BUILD – MIN HEAP
procedure.

Each heap operation requires O(log n) time, and this
will be performed exactly (n - 1) times, it contributes to
O(n logn) running time. Thus the total running time of
HUFFMAN on a set of ‘n’ characters is O(n log n).

TaSK-SCheduling problem
This is the problem of optimally scheduling unit – time
tasks on a single processor, where each task has a deadline,
along with a penalty that must be paid if the deadline is
missed. The problem looks complicated, but it can be solved
in simple manner using a greedy algorithm.

 • A unit – time task is a job, such as a program to be run
on a computer, that requires exactly one unit of time to
complete.

 • Given a finite set S of unit – time tasks, a schedule for S
is a permutation of S specifying the order in which these
tasks are to be performed.

 • The first task in the schedule begins at time ‘0’ and fin-
ishes at time 1, the second task begins at time 1 and fin-
ishes at time 2, and so on

 • The problem of scheduling unit – time tasks with dead-
lines and penalties for a single processor has the follow-
ing inputs:

 1. A set S = {a
1
, a

2
, … an} of n unit – time tasks:

 2. A set of n integer deadlines d
1
, d

2
, … d

n
 such that each

d
i
 satisfies 1 ≤ d

i
 ≤ n and task a

i
 is supposed to finish

by time d
i
.

 3. A set of n non-negative weights or penalties w
1
,

w
2
, … w

n
, such that we incur a penalty of w

i
 if task a

i

is not finished by time d
i
 and we incur no penalty if a

task finishes by its deadline.

Example: Consider the following 7 tasks, T
1
, T

2
, T

3
, T

4
, T

5

T
6
, T

7
. Every task is associated with profit and deadline.

Tasks T1 T2 T3 T4 T5 T6 T7

Deadline 4 2 4 3 1 4 5
Profit 75 65 55 45 40 35 30

45 65 55 75 30
T4 T2 T3 T1 T7

0 1 2 3 4 5 6 7

T
1
 has highest profit, so it will be executed first and the

deadline of T
1
, is ‘4’ so T

1
 has to be executed within 4

slots of time, same procedure is applied to other tasks
also.

The tasks which are not executed by CPU are T5 and T6.

Profit: sum up the profits made by executing the tasks.
Profit = 45 + 65 + 55 + 75 + 30 = 270

Analysis: We can use a greedy algorithm to find a maxi-
mum weight independent set of tasks. We can then create
an optimal schedule having the tasks in A as its early tasks.

This method is an efficient algorithm for scheduling unit –
time tasks with deadlines and penalties for a single processor.
The running time is O(n2) using GREEDY METHOD, since
each of the O(n) independent checks made by that algorithm
takes time O(n).

SorTing and order STaTiSTiCS

Minimum and Maximum
This algorithm determines, how many comparisons are nec-
essary to find minimum or maximum of a set of ‘n’ elements.
Usually we can obtain maximum or minimum, by performing

Chapter 4  •  Greedy Approach | 3.123

(n - 1) comparisons; examine each element of the set in turn
and keep track of the smallest element seen so far.

Consider the following procedure.
Assume that the set of elements reside in an array A

where length [A] = n
MINIMUM (A)
Min ← A[1]
For i ←2 to length [A]
Do if min > A [i]
Then min ← A [i]
Return min.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and
the maximum of a set of ‘n’ elements.

We can find the minimum and maximum independently
using (n - 1) comparisons for each, for a total of (2n – 2)
comparisons.

 • In fact, atmost 3 2n/ comparisons are sufficient to find
both the minimum and the maximum.

 • The strategy is to maintain the minimum and maximum
elements seen so far.

 • Rather than processing each element of the input by compar-
ing it against the current minimum and maximum at a cost
of 2 comparisons per element, we process elements in pairs.

 • Compare pairs of elements from the input with each
other, and then we compare smaller to the current mini-
mum and the larger to the current maximum, at a cost of
3 comparisons for every 2 elements.

 • Setting up initial values for the current minimum and
maximum depends on whether ‘n’ is odd or even. If ‘n’ is
odd, we set both the minimum and maximum to the value
of the first element, and then we process the rest of the
elements in pairs.

 • If ‘n’ is even, we perform 1 comparison on the first 2 ele-
ments to determine the initial values of the minimum and
maximum and then process the rest of the elements in pairs.

Analysis: If ‘n’ is odd the total number of comparisons

would be 3 2n/ .
If ‘n’ is even, we need 1 initial comparison followed by

3 2

2

()n− comparisons, for a total of 3

2
2

n
− .

\ The total number of comparisons is atmost 3 2n/

graph algoriThmS

Single Source Shortest Path
In a shortest-path problem, we are given a weighted
directed graph G = (V, E) with weight function W : E →R
mapping edges to real-valued weights. The weight of path
P = < V

O
, V

1
 … V

K
> is the sum of the weights of its constitu-

ent edges. Shortest-path weight from U to V is defined by

δ (,)
to otherwise

{min{ (): }if there is a path fromU V
U V

W P u v= ∞
→{ ‘ ’ ‘ ’

Edge weights can be interpreted as metrics other than dis-
tances. They are often used to represent time, cost, penal-
ties, loss, or any other quantity.

 • The breadth first search algorithm is a shortest-path algo-
rithm that works on un weighted graphs, that is, graphs in
which each edge can be considered to have unit weight.

Negative-weight edges
Some of the instances of the single-source-shortest-paths
problem, there may be edges whose weights are negative.

 • If the graph G = (V, E) contains no negative weight cycles
reachable from source S, then for all v ∈ V, the shortest –
path weight d(S, V) remains well defined, even if it has a
negative value.

 • If there is a negative-weight cycle reachable from S,
shortest-path weights are not well defined.

 • No path from ‘S’ to a vertex on the cycle can be a shortest
path - a lesser weight path can always be found that fol-
lows the proposed ‘shortest’ path and then traverses the
negative-weight cycle.

 • If there is a negative-weight cycle on some path form ‘S’
to ‘V’, we define d(S,V) = -∞.

Example: Consider the following graph, calculate the
shortest distance to all vertices from sources ‘S’.

a

4

S 0 6
c d

9 g

84
e

3
f

7
5

b
−5

−5

−2

h i
3

4

j

−7

Solution:

 • Shortest path from S to a is d(S, a) = W(S, a) = 4 (because
there is only one path from ‘S’ to ‘a’)

 • Similarly, there is only one path from ‘s’ to ‘b’
 d(S, a) = W(S, a) + W(a, b) = 4 + (-5) = -1
 • Shortest-path from ‘s’ to ‘c’

3.124 | Unit 3  •  Algorithms

There are infinitely many paths from ‘S’ to ‘c’
 1. <S, c>
 2. <S, c, d, c>
 3. <S, c, d, c, d, c > and so on
 d <S, c> = 6
 d (S, d, d, c) = 6 + 7- 2 = 11
 d (S, c, d, c, d, c) = 6 + 7 – 2 + 7 - 2 = 16
 d (S, c, d, c, d, c, d, c)
 = 6 + 7 - 2 + 7 - 2 + 7 - 2 = 21
The cycle <c, d, c> has weight = 7 + (-2) = 5 > 0

The shortest path from ‘S’ to ‘c’ is <s, c> with weight
d (S, c) = 6 similarly, the shortest-path from ‘S’ to ‘d’ is
<s, c, d>, with weight d (S, d) = w (S, c) + W(c, d) = 13
May there are infinitely paths from ‘S’ to ‘e’

 1. <s, e>
 2. <s, e f, e>
 3. <s, e, f, e, f , e> and so on

Since the cycle <e, f, e> has weight 4 + (-5) = -1 < 0.
However, there is no shortest path from ‘S’ to ‘e’ by traversing
the negative-weight cycle <e, f, e> arbitrarily many times, we
can find paths from ‘s’ to ‘e’ with arbitrarily large negative
weights,

So d(S, e) = -∞
Similarly, d(S, f) = - ∞

 • The shortest path from ‘S’ to ‘g’:
 ‘g’ can be reachable from ‘f ; we can also find paths with arbi-
trarily large negative weights from ‘s’ to ‘g’ and d(s, g) = -∞

 • Vertices ‘h’, ‘i’ and ‘j’ also form a negative - weight
cycle. They are not reachable from ‘S’ so, d(S, h) = d(S,
i) = d(S, j) = ∞

Dijkstra’s Algorithm
Dijkstra’s algotithm solves the single-source shortest-path
problem on a weighted, directed graph G = (V, E), for the
case in which all edge weights are non-negative.

 • The running time of Dijkstra’s algorithm is lower than
that of the Bellman–Ford algorithm.

 • Dijkstra’s algorithm maintains a set ‘s’ of vertices whose
final shortest-path weights from the source ‘S’ have
already been determined.

 • The algorithm repeatedly selects the vertex u ∈ (V - S)
with the minimum shortest-path estimate, adds ‘u’ to ‘S’

DIJKSTRA (G, W, S)
INITIALIZE - SINGLE - SOURCE (G, S)
S ← ∅
S ← V[G]
While Q ≠ 0
do u ← EXTRACT - MIN(Q)
S ← S U{u}
For each vertex v ∈ Adj[u]
do RELAX (u, v, w)

The algorithm maintains the invariant that Q = V - S at the
start of each iteration of the while loop. Initially the min -
priority queue Q contains all the vertices in V. (

\

 S = ∅).
Each time through the while loop, a vertex ‘u’ is extracted
from Q = V - S and added to set S.

 • Each vertex is extracted from Q and added to S exactly
once, so the contents of while loop will be executed
exactly |v| times.

 • Dijkstra’s algorithm always chooses the ‘closest’ or
‘lightest’ vertex in (V - S) to add to set S, we say that it
uses a greedy strategy.

Example: Consider the following graph, what is the
shortest path?

a b

6

d

2

10

5

8

2c

6

3

9

S 4

Solution:

S V - S

S a b c d

S c a b d

S c d a b

S c d a b

S c d a b ∅

Distance from S to all vertices of (V - S)
 d[a] = 9
 d[b] = ∞
d [c] = 6
 d[d] = ∞
9, ∞, 6, ∞ values are given to MIN-PRIORITY Queue ‘Q’,
‘6’ is returned.

S 0

6
6
c

Distance from [Sc] to all vertices of (V - S)

d[b] = (S - c - b) = 6 + 10 = 16

d[a] = min{(S - a) = 9, (s - c - a) = 10} = 9

d[d] = min{∞, (S - c - d) = 6 + 2 = 8 } = 8

Chapter 4  •  Greedy Approach | 3.125

a

S 0

6

c
2

d

b

Distance from [s c d] to [ab]
d[a] = min{9, (S - c - d - S - a) = 25} = 9
d[b] = min{16, (S - c - d - b) =14} = 14

a

9

S 0

6

c
2

d

b

d[a] = min{14, (s - a - b) = 9 + 2 = 11} = 11

a
2

9

S 0

6

c
2

b

Analysis: It maintains the min-priority queue ‘Q’ by calling
three priority-queue operations: INSERT, EXTRACT-MIN,
and DECREASE-KEY. We maintain the min-priority queue
by taking the vertices being numbered 1 to |v|. We store d[v]
in the vth entry of an array. Each INSERT and DECREASE-
KEY operation takes O(1) time, and each EXTRACT- MIN
operation takes O(v) time (\ we have to search through the
entire array) for a total time of O(v2 + E) = O(v2).

 • If we implement the min - priority queue with a binary
min-heap. Each EXTRACT-MIN operation takes time
O(log V), there are |V | such operations.

 • The time to build the binary min-heap is O(v). Each
DECREASE-KEY operation takes time O(log V), and
there are still atmost |E | such operations. The total run-
ning time is O((V + E) log V), which is O(E log V) if all
vertices are reachable form the source.

 • We can achieve a running time of O(V log V + E) by imple-
menting the min-priority queue with a Fibonacci heap.

Bellman–Ford Algorithm
Bellman–Ford algorithm solves the single-source shortest-path
problems in the case in which edge weights may be negative.

 • When negative edge lengths are permitted, we require
that the graph have no cycles of negative length. This is

necessary to ensure that shortest-paths consist of a finite
number of edges.

 • When there are no cycles of negative length, there is a
shortest-path between any two vertices of an n-vertex
graph that has atmost (n - 1) edges on it.

 • A path that has more than (n - 1) edges must repeat atleast
one vertex and hence must contain a cycle

 • Let distx[u] be the length of a shortest-path from the
source vertex ‘v’ to vertex ‘u’ under the constraint that
the shortest-path contains atmost ‘x’ edges. Then dist′[u]
= cost [v, u] 1 ≤ u ≤ n when there are no cycles of negative
length we can limit our search for shortest-paths to paths
with at most (n - 1) edges. Hence, distn-1[u] is the length
of an unrestricted shortest-path from ‘v’ to ‘u’.

The Recurrence Relation for dist is:

Distk[u] = min{distk-1[u], min{distk-1[i] + cost[i, u]}}

This recurrence can be used to compute distk from dist k-1,
for k = 2, 3, … , n - 1.

Example: Consider the given directed graph

5

2

4

4

4

1 3

−1

−1

−1

−1

1

1

7

2

6

5

Find the shortest path from vertex ‘1’ to all other vertices
using Bellman–Ford algorithm?

Solution: Source vertex is ‘1’ the distance from ‘1’ to ‘1’ in
all ‘6’ iterations will be zero. Since the graph has ‘7’ verti-
ces, the shortest-path can have atmost ‘6’ edges. The follow-
ing figure illustrates the implementation of Bellman–Ford
algorithm:

1 2 3 4 5 6 7

1 0 5 4 4 ∞ ∞ ∞

2 0 3 3 4 4 3 ∞

3 0 2 3 4 2 3 5

4 0 2 3 4 1 3 3

5 0 2 3 4 1 3 2

6 0 2 3 4 1 3 2

7 0 2 3 4 1 3 2

Analysis

 • Each iteration takes O(n2) time if adjacency matrices are
used and O(e) time if adjacency lists are used. Here ‘e’ is
the number of edges in the graph.

 • The time complexity is O(n3) when adjacency matrices
are used and O(N * E) when adjacency lists are used.

3.126 | Unit 3  •  Algorithms

exerCiSeS

Practice Problems 1
Directions for questions 1 to 14: Select the correct alterna-
tive from the given choices.
 1. A thief enters a store and sees the following:

$120$80

A

2 pds 2 pds 3 pds

B
C

$100

 His knapsack can hold 4 pounds, what should he steal
to maximize profit? (Use 0-1 Knapsack).

 (A) A and B (B) A and C
 (C) B and C (D) A, B and C

 2. By using fractional Knapsack, calculate the maximum
profit, for the data given in the above question?

 (A) 180 (B) 170
 (C) 160 (D) 150
 3. Consider the below figure:

8

4

a 11

8
h 1

g

6

2 4

7
c d

7

14
e

10

f2

i

7

b

 What is the weight of the minimum spanning tree using
Kruskals algorithm?

 (A) 34 (B) 35
 (C) 36 (D) 38

 4. Construct a minimum spanning tree for the figure given
in the above question, using prim’s algorithm. What are
the first three nodes, added to the solution set respec-
tively (consider ‘a’ as starting node).

 (A) b, c, i (B) h, b, c
 (C) c, i, b (D) h, c, b

 5. Consider the below graph, calculate the shortest dis-
tance from ‘S’ to ‘T ’?

S

1

A

B

11
5

9

E T

FC

5

2

16

2

4 D
18

13

2

 (A) 23 (B) 9
 (C) 20 (D) 22

 6. Solve the travelling salesman problem, with the given
distances in the form of matrix of graph, which of the
following gives optimal solution?

C 1 2 3 4
1 0 15 20 25
2 10 0 14 15
3 11 18 0 17
4 13 13 14 0

1 2

34

 (A) 1 - 2 - 4 - 3 - 1 (B) 2 - 3 - 4 - 1 - 2
 (C) 1 - 4 - 2 - 3 - 1 (D) 2 - 4 - 3 - 1 - 2

 7. Calculate the maximum profit using greedy strategy,
knapsack capacity is 50. The data is given below:

 n = 3
 (w

1
, w

2
, w

3
) = (10, 20, 30)

 (p
1
, p

2
, p

3
) = (60, 100, 120) (dollars)? (0/1 knapsack)

 (A) 180 (B) 220
 (C) 240 (D) 260

Common data for questions 8 and 9: Given that

a b c d e f
Frequency 45 13 12 16 9 5
Fixed length code word 000 001 010 011 100 101

 8. Using Huffman code, find the path length of internal
nodes.

 (A) 8 (B) 100
 (C) 100 × 8 (D) 100/8

 9. Using above answer, external path length will be
 (A) 18 (B) 108
 (C) 8 (D) None of these

Common data for questions 10 and 11:

 10.

50 kg

30 kg

20 kg

10 kg

knapsack20/kg100/kg60/kg

Item 3

Item 2
Item 1

 Using 0-1 knapsack select a subset of the three items
shown, whose weight must not exceed 50 kg. What is
the value?

 (A) 2220 (B) 2100
 (C) 2600 (D) 2180

 11. Which of the following gives maximum profit, using
fractional knapsack?

 (A) x
1
 = 1, x

2
 = 1, x

3
 = 0 (B) x

1
 = 1, x

2
 = 1, x

3
 = 2/3

 (C) x
1
 = 1, x

2
 = 0, x

3
 = 1 (D) x

1
 = 1, x

2
 = 1, x

3
 = 1/3

Chapter 4  •  Greedy Approach | 3.127

 12. Using dynamic programming find the longest common
subsequence (LCS) in the given 2 sub sequences:

 x [1, … , m]
 y [1, … , n]
 x : A B C B D A B
 Y : B D C A B A

 Find longest sequence sets common to both.
 (A) (BDAB, BCAB, BCBA)
 (B) (BADB, BCAB, BCBA)
 (C) (BDAB, BACB, BCBA)
 (D) (BDAB, BCAB, BBCA)

 13. Let C
1
, C

2
, C

3
, C

4
 represent coins.

 C
1
= 25 paisa

 C
2
 = 10 paisa

 C
3
 = 5 paisa

 C
4
 = 1 paisa

 To represents 48 paisa, what is the minimum number of
coins used, using greedy approach?

 (A) 6 (B) 7
 (C) 8 (D) 9

 14. Worst-case analysis of hashing occurs when
 (A) All the keys are distributed
 (B) Every key hash to the same slot
 (C) Key values with even number, hashes to slots with

even number
 (D) Key values with odd number hashes to slots with

odd number.

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. Consider the given graph:

5

4
6

3

5

3
2

d

a f

e

8

c
7

4

2
b

 Which one of the following cannot be the sequence of
edges added, in that order, to a minimum spanning tree
using Kruskal’s algorithm?

 (A) (a - b), (d - f), (b - f), (d - c), (d - e)
 (B) (a - b), (d - f), (d - c), (b - f), (d - e)
 (C) (d - f), (a - b), (d - c), (b - f), (d - e)
 (D) (d - f), (a - b), (b - f), (d - e), (d - c)

 2. The worst case height analysis of B-tree is
 (A) O(n)
 (B) O(n2)
 (C) O(log n)
 (D) O(n log n)

 3. Consider the given graph:

b

f
a

c
1

6

5

6
2

8

44
5

3

d

e

 Which of the following is the minimum spanning tree.
(If we apply Kruskal algorithm).

 (A) b c

a f

e

d

 (B) b c

f

e

a d

 (C)

a

b c

df

e

 (D) b

a f

c

d

e

 4. Consider the following graph:

b

d e

c
4

23 65

47
a

 Find the shortest path using Dijkstra’s algorithm.
 (A) a - b - d - e (B) a - b - c - d
 (C) a - c - d - e (D) a - b - c - e

 5. Which statement is true about Kruskal’s algorithm?
 (A) It is a greedy algorithm for the minimum spanning

tree problem.
 (B) It constructs spanning tree by selecting edges in

increasing order of their weights.
 (C) It does not accept creation of cycles in spanning tree.
 (D) All the above

3.128 | Unit 3  •  Algorithms

 6. Dijkstra’s algorithm bears similarity to which of the
following for computing minimum spanning trees?

 (A) Breadth first search (B) Prim’s algorithm
 (C) Both (A) and (B) (D) None of these

 7. Which of the following algorithm always yields a cor-
rect solution for a graph with non-negative weights to
compute shortest paths?

 (A) Prim’s algorithm (B) Kruskal’s algorithm
 (C) Dijkstra’s algorithm (D) Huffman tree

 8. Let the load factor of the hash table is number of keys
is n, cells of the hash table is m then

 (A) ∝ = n/m (B) ∝ = m/n

 (C) ∝
+m

n

1
 (D) ∝

+n

m

1

 9. To implement Dijkstra’s shortest path algorithm on
unweighted graphs so that it runs in linear time, the
data structure to be used is:

 (A) Queue
 (B) Stack
 (C) Heap
 (D) B-tree
 10. The development of a dynamic-programming algo-

rithm can be broken into a sequence of four steps,
which are given below randomly.

 I. Construct an optimal solution from computed in-
formation.

 II. Compute the value of an optimal solution in a bot-
tom-up fashion.

 III. Characterize the structure of an optimal solution.
 IV. Recursively defines the value of an optimal solution.

 The correct sequence of the above steps is

 (A) I, II, III, IV (B) IV, III, I, II
 (C) IV, II, I, III (D) III, IV, II I

 11. Let V stands for vertex, E stands for edges.

 For both directed and undirected graphs, the adjacency
list representation has the desirable property that the
amount of memory required is

 (A) q(V) (B) q(E)
 (C) q(V + E) (D) q(V - E)

 12. Which of the following is false?
 (A) Adjacency-matrix representation of a graph per-

mits faster edge look up.
 (B) The adjacency matrix of a graph requires q(v2)

memory, independent of the number of edges in
the graph.

 (C) Adjacency-matrix representation can be used for
weighted graphs.

 (D) All the above
 13. Dynamic programming is a technique for solving prob-

lems with
 (A) Overlapped sub problems
 (B) Huge size sub problems
 (C) Small size sub problems
 (D) None of these

 14. The way a card game player arranges his cards, as he
picks them up one by one is an example of _____.

 (A) Bubble sort (B) Selection sort
 (C) Insertion sort (D) None of the above

 15. You want to check whether a given set of items is
sorted. Which method will be the most efficient if it is
already in sorted order?

 (A) Heap sort (B) Bubble sort
 (C) Merge sort (D) Insertion sort

previouS YearS’ QueSTionS

Data for question 1: We are given 9 tasks T
1
, T

2
 … T

9
.

The execution of each task requires one unit of time. We
can execute one task at a time. Each task T

i
 has a profit P

i

and a deadline D
i
. Profit P

i
 is earned if the task is com-

pleted before the end of the D
i
th unit of time.

Task T1 T2 T3 T4 T5 T6 T7 T8 T9

Profit 15 20 30 18 18 10 23 16 25

Deadline 7 2 5 3 4 5 2 7 3

 1. What is the maximum profit earned? [2005]
 (A) 147 (B) 165
 (C) 167 (D) 175

 2. Consider a weighted complete graph G on the ver-
tex set {v

1
, v

2
,…, v

n
} such that the weight of the edge

(,) .v v i ji j is 2 − The weight of the minimum span-

ning tree is: [2006]
 (A) n - 1 (B) 2n - 2

 (C)
n

2

 (D) n2

 3. To implement Dijkstra’s shortest path algorithm on
unweighted graphs so that it runs in linear time, the
data structure to be used is: [2006]

 (A) Queue
 (B) Stack
 (C) Heap
 (D) B-Tree

 4. Consider the following graph: [2006]

a

b

2

7

5
4

4

3

1

6

3
2 1

c

d

e

f

 Which one of the following cannot be the sequence
of edges added, in that order, to a minimum spanning
tree using Kruskal’s algorithm?

Chapter 4  •  Greedy Approach | 3.129

 (A) (a - b), (d - f), (b - f), (d - c), (d - e)
 (B) (a - b), (d - f), (d - c), (b - f), (d - e)
 (C) (d - f), (a - b), (d - c), (b - f), (d - e)
 (D) (d - f), (a - b), (b - f), (d - e), (d - c)

Common data for questions 5 and 6: A 3-ary max-heap
is like a binary max-heap, but instead of 2 children,
nodes have 3 children. A 3-ary heap can be repre-
sented by an array as follows: The root is stored in the
first location, a[0], nodes in the next level, from left
to right, is stored from a[1] to a[3]. The nodes from
the second level of the tree from left to right are stored
from a[4] location onward. An item x can be inserted
into a 3-ary heap containing n items by placing x in
the location a[n] and pushing it up the tree to satisfy
the heap property.

 5. Which one of the following is a valid sequence of
elements in an array representing 3-ary max-heap?
 [2006]

 (A) 1, 3, 5, 6, 8, 9 (B) 9, 6, 3, 1, 8, 5
 (C) 9, 3, 6, 8, 5, 1 (D) 9, 5, 6, 8, 3, 1

 6. Suppose the elements 7, 2, 10 and 4 are inserted, in
that order, into the valid 3-ary max-heap found in the
above question, Q-76. Which one of the following is
the sequence of items in the array representing the
resultant heap? [2006]

 (A) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4
 (B) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
 (C) 10, 9, 4, 5, 7, 6, 8, 2, 1, 3
 (D) 10, 8, 6, 9, 7, 2, 3, 4, 1, 5

 7. In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complex-
ity, by [2007]

 (A) Dijkstra’s algorithm starting from S.
 (B) Warshall’s algorithm
 (C) Performing a DFS starting from S.
 (D) Performing a BFS starting from S.

 8. A complete n-ary tree is a tree in which each node has
n children or no children. Let I be the number of inter-
nal nodes and L be the number of leaves in a complete
n-ary tree. If L = 41, and I = 10, what is the value of
n? [2007]

 (A) 3 (B) 4
 (C) 5 (D) 6

 9. Consider the following C program segment where
CellNode represents a node in a binary tree: [2007]

 struct CellNode {
 struct CellNode *leftChild;

 int element;

 struct CellNode *rightChild;

 };

 int GetValue (struct CellNode *ptr) {

 int value = 0;

 if (ptr != NULL) {

 if ((ptr->leftChild == NULL) &&

 (ptr->rightChild == NULL))

 value = 1;

 else

 value = value + GetValue(ptr->leftChild)

 + GetValue(ptr->rightChild);

 }

 return(value);

 The value returned by GetValue when a pointer to the
root of a binary tree is passed as its argument is:

 (A) The number of nodes in the tree
 (B) The number of internal nodes in the tree
 (C) The number of leaf nodes in the tree
 (D) The height of the tree

10. Let w be the minimum weight among all edge weights
in an undirected connected graph. Let e be a specific
edge of weight w. Which of the following is FALSE?
 [2007]

 (A) There is a minimum spanning tree containing e.
 (B) If e is not in a minimum spanning tree T, then in

the cycle formed by adding e to T, all edges have
the same weight.

 (C) Every minimum spanning tree has an edge of
weight w.

 (D) e is present in every minimum spanning tree.
 11. The Breadth first search algorithm has been imple-

mented using the queue data structure. One possible
order of visiting the nodes of the following graph is

 [2008]

M N O

PQR

 (A) MNOPQR (B) NQMPOR
 (C) QMNPRO (D) QMNPOR

 12. G is a graph on n vertices and 2n - 2 edges. The edges
of G can be partitioned into two edge-disjoint span-
ning trees. Which of the following is NOT true for G?
 [2008]

 (A) For every subset of k vertices, the induced sub-
graph has atmost 2k - 2 edges

 (B) The minimum cut in G has atleast two edges
 (C) There are two edge-disjoint paths between every

pair of vertices

 (D) There are two vertex-disjoint paths between eve-
ry pair of vertices

3.130 | Unit 3  •  Algorithms

 13.

b

a

d

c h
11 1 2

33 2
2

−5

−3

2

2

e

f

g

 Dijkstra’s single source shortest path algorithm when
run from vertex a in the above graph, computes the
correct shortest path distance to [2008]

 (A) Only vertex a
 (B) Only vertices a, e, f, g, h
 (C) Only vertices a, b, c, d
 (D) all the vertices

 14. You are given the post-order traversal, P, of a binary
search tree on the n elements 1, 2,…, n. You have to
determine the unique binary search tree that has P as
its post-order traversal. What is the time complexity
of the most efficient algorithm for doing this? [2008]

 (A) Q(log n)
 (B) Q(n)
 (C) Q(n log n)
 (D) None of the above, as the tree cannot be uniquely

determined

 15. Which of the following statement(s) is/are correct
regarding Bellman–Ford shortest path algorithm?

 [2009]
 P. Always finds a negative weighted cycle, if one

exists.
 Q. Finds whether any negative weighted cycle is

reachable from the source.

 (A) P only (B) Q only
 (C) Both P and Q (D) Neither P nor Q

 16. Consider the following graph: [2009]

b e

d

c

a

5 5

4

43

2
6

3

5

6

6

6
g

f

 Which one of the following is NOT the sequence
of edges added to the minimum spanning tree using
Kruskal’s algorithm? [2009]

 (A) (b, e) (e, f) (a, c) (b, c) (f, g) (c, d)
 (B) (b, e) (e, f) (a, c) (f, g) (b, c) (c, d)
 (C) (b, e) (a, c) (e, f) (b, c) (f, g) (c, d)
 (D) (b, e) (e, f) (b, c) (a, c) (f, g) (c, d)

Common data for questions 17 and 18: Consider a
binary max-heap implemented using an array.

 17. Which one of the following array represents a binary
max-heap? [2009]

 (A) {25, 12, 16, 13, 10, 8, 14}
 (B) {25, 14, 13, 16, 10, 8, 12}
 (C) {25, 14, 16, 13, 10, 8, 12}
 (D) {25, 14, 12, 13, 10, 8, 16}

 18. What is the content of the array after two delete oper-
ations on the correct answer to the previous question?
 [2009]

 (A) {14, 13, 12, 10, 8} (B) {14, 12, 13, 8, 10}
 (C) {14, 13, 8, 12, 10} (D) {14, 13, 12, 8, 10}

Common data for questions 19 and 20: Consider a com-
plete undirected graph with vertex set {0, 1, 2, 3, 4}. Entry
W

ij
 in the matrix W below is the weight of the edge {i, j}.

W =

0 1 8 1 4

1 0 12 4 9

8 12 0 7 3

1 4 7 0 2

4 9 3 2 0

 19. What is the minimum possible weight of a spanning
tree T in this graph such that vertex 0 is a leaf node in
the tree T ? [2010]

 (A) 7 (B) 8
 (C) 9 (D) 10

 20. What is the minimum possible weight of a path P
from vertex 1 to vertex 2 in this graph such that P
contains at most 3 edges? [2010]

 (A) 7 (B) 8
 (C) 9 (D) 10

Common data for questions 21 and 22: A hash table of
length 10 uses open addressing with hash function h(k) =
k mod 10, and linear probing. After inserting 6 values into
an empty hash table, the table is as shown below:

0
1
2 42
3 23
4 34
5 52
6 46
7 33
8
9

 21. Which one of the following choices gives a possi-
ble order in which the key values could have been
inserted in the table?

 [2010]
 (A) 46, 42, 34, 52, 23, 33
 (B) 34, 42, 23, 52, 33, 46
 (C) 46, 34, 42, 23, 52, 33
 (D) 42, 46, 33, 23, 34, 52

Chapter 4  •  Greedy Approach | 3.131

 22. How many different insertion sequences of the key
values using the same hash function and linear prob-
ing will result in the hash table shown above? [2010]

 (A) 10 (B) 20
 (C) 30 (D) 40

 23. A max-heap is a heap where the value of each parent
is greater than or equal to the value of its children.
Which of the following is a max-heap? [2011]

 (A)
10

8 6

5

1

24

 (B)
10

8 6

1 254

 (C)
10

5 6

2 184

 (D) 5

2 8

6 141

Common data for questions 24 and 25: An undirected
graph G (V, E) contains n(n > 2) nodes named V

1
, V

2
, …,

V
n
. Two nodes V

i
, V

j
 are connected if and only if 0 < |i - j|

≤ 2. Each edge (V
i
, V

j
) is assigned a weight i + j. A sample

graph with n = 4 is shown below.

V4
V3

3

4
6

7

5

V2
V1

 24. What will be the cost of the minimum spanning tree
(MST) of such a graph with n nodes? [2011]

 (A)
1

12
11 52()n n− (B) n2 - n + 1

 (C) 6n - 11 (D) 2n + 1

 25. The length of the path from V
5
 to V

6
 in the MST of

previous question with n = 10 is [2011]
 (A) 11 (B) 25
 (C) 31 (D) 41

 26. Consider the directed graph shown in the figure
below. There are multiple shortest paths between ver-
tices S and T. Which one will be reported by Dijkstra’s
shortest path algorithm? Assume that, in any iteration,
the shortest path to a vertex v is updated only when a
strictly shorter path to v is discovered. [2012]

G

2

T5
5

D

1

E1C
1

A

4

4

S

3
B

F

3

7

3

3

2

4
3

 (A) SDT (B) SBDT
 (C) SACDT (D) SACET

 27. Let G be a weighted graph with edge weights greater
than one and G1 be the graph constructed by squaring
the weights of edges in G. Let T and T1 be the mini-
mum spanning trees of G and G1, respectively, with
total weights t and t1. Which of the following state-
ments is TRUE? [2012]

 (A) T 1 = T with total weight t1 = t2

 (B) T 1 = T with total weight t1 < t2

 (C) T 1 ≠ T but total weight t1 = t2

 (D) None of the above

 28. What is the time complexity of Bellman–Ford single-
source shortest path algorithm on a complete graph of
n vertices? [2013]

 (A) Q(n2) (B) Q(n2 log n)
 (C) Q(n3) (D) Q(n3 log n)

 29. Consider the following operation along with Enqueue
and Dequeue operations on queues, where k is a
global parameter.

 MultiDequeue(Q) {

 m = k

3.132 | Unit 3  •  Algorithms

 while (Q is not empty) and (m > 0) {

 Dequeue (Q)

 m = m - 1

 }

 }

 What is the worst case time complexity of a sequence
of n queue operations on an initially empty queue?
 [2013]

 (A) Q(n) (B) Q(n + k)
 (C) Q(nk) (D) Q(n2)

 30. The preorder traversal sequence of a binary search
tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of
the following is the post order traversal sequence of
the same tree? [2013]

 (A) 10, 20, 15, 23, 25, 35, 42, 39, 30
 (B) 15, 10, 25, 23, 20, 42, 35, 39, 30
 (C) 15, 20, 10, 23, 25, 42, 35, 39, 30
 (D) 15, 10, 23, 25, 20, 35, 42, 39, 30

 31. Let G be a graph with n vertices and m edges. What is
the tightest upper bound on the running time of depth
first search on G, when G is represented as an adja-
cency matrix? [2014]

 (A) q(n) (B) q(n + m)
 (C) q(n2) (D) q(m2)

 32. Consider the directed graph given below. [2014]

P Q

SR

 Which one of the following is TRUE?
 (A) The graph does not have any topological order-

ing.
 (B) Both PQRS and SRQP are topological orderings.
 (C) Both PSRQ and SPRQ are topological orderings.
 (D) PSRQ is the only topological ordering.

 33. There are 5 bags labeled 1 to 5. All the coins in a given
bag have the same weight. Some bags have coins of
weight 10 gm. Others have coins of weight 11 gm. I
pick 1, 2, 4, 8, 16 coins respectively from bags 1 to
5. Their total weight comes out to 323 gm. Then the
product of the labels of the bags having 11 gm coins
is ___ [2014]

 34. A priority queue is implemented as a max-heap.
Initially it has 5 elements. The level-order traversal
of the heap is : 10, 8, 5, 3, 2. Two new elements 1 and
7 are inserted into the heap in that order. The level-
order traversal of the heap after the insertion of the
elements is [2014]

 (A) 10, 8, 7, 3, 2, 1, 5 (B) 10, 8, 7, 2, 3, 1, 5
 (C) 10, 8, 7, 1, 2, 3, 5 (D) 10, 8, 7, 5, 3, 2, 1

 35. Consider the tree arcs of a BFS traversal from a
source node W in an unweighted, connected, undi-
rected graph. The tree T formed by the tree acrs is a
data structure for computing [2014]

 (A) The shortest path between every pair of vertices
 (B) The shortest path from W to every vertex in the

graph
 (C) The shortest paths from W to only those nodes

that are leaves of T.
 (D) The longest path in the graph

 36. The number of distinct minimum spanning trees for
the weighted graph below is _______.

 [2014]

2

2

2

2 2

2

2

2

1

1

1

1 1

 37. Suppose depth first search is executed on the graph
below starting at some unknown vertex. Assume that
a recursive call to visit a vertex is made only after
first checking that the vertex has not been visited
earlier. Then the maximum possible recursion depth
(Including the initial call) is _______. [2014]

 38. Suppose we have a balanced binary search tree T
holding n numbers. We are given two numbers L and
H and wish to sum up all the numbers in T that lie
between L and H. suppose there are m such numbers
in T. If the tightest upper bound on the time to com-
pute the sum is O(na logb n + mc logd n), the value of a
+ 10b + 100c + 1000d is -----.

 [2014]

 39. The graph shown below has 8 edges with distinct inte-
ger edge weights. The minimum spanning tree (MST)
is of weight 36 and contains the edges: {(A, C), (B, C),
(B, E), (E, F), (D, F)}. The edge weights of only those
edges which are in the MST are given in the figure
shown below. The minimum possible sum of weights
of all 8 edges of this graph is _______ [2015]

Chapter 4  •  Greedy Approach | 3.133

A F

DC

EB

2

9 6

4

15

 40. Consider two decision problems Q
1
, Q

2
 such that

Q
1
 reduces in polynomial time to 3-SAT and 3-SAT

reduces in polynomial time to Q
2
. Then which one of

the following is consistent with the above statement?
 [2015]
 (A) Q

1
 is in NP, Q

2
 is NP hard.

 (B) Q
2
 is in NP, Q

1
 is NP hard.

 (C) Both Q
1
 and Q

2
 are in NP.

 (D) Both Q
1
 and Q

2
 are NP hard.

 41. Given below are some algorithms, and some algo-
rithm design paradigms.

1. Dijkstra’s Shortest Path i. Divide and Conquer

2. Floyd-Warshall algo-
rithm to compute all
pairs shortest path

ii. Dynamic
Programming

3. Binary search on a
sorted array

iii. Greedy design

4. Backtracking search on
a graph

iv. Depth-first search

v. Breadth-first search

 Match the above algorithms on the left to the corre-
sponding design paradigm they follow.

 (A) 1–i, 2–iii, 3–i, 4–v (B) 1–iii, 2–iii, 3–i, 4–v
 (C) 1–iii, 2–ii, 3–i, 4–iv (D) 1–iii, 2–ii, 3–i, 4–v

 42. A Young tableau is a 2D array of integers increasing
from left to right and from top to bottom. Any unfilled
entries are marked with ∞, and hence there cannot be
any entry to the right of, or below a ∞. The following
Young tableau consists of unique entries.

1 2 5 14

3 4 6 23

10 12 18 25

31 ∞ ∞ ∞

 When an element is removed from a Young tableau,
other elements should be moved into its place so that
the resulting table is still a Young tableau (unfilled
entries maybe filled in with a ∞). The minimum num-
ber of entries (other than 1) to be shifted, to remove 1
from the given Young tableau is _______ [2015]

 43. Which one of the following hash functions on integers
will distribute keys most uniformly over 10 buckets

numbered 0 to 9 for i ranging from 0 to 2020?
 [2015]
 (A) h(i) = i 2 mod 10
 (B) h(i) = i 3 mod 10
 (C) h(i) = (11 * i2) mod 10
 (D) h(i) = (12 * i) mod 10

 44. Let G be a weighted connected undirected graph with
distinct positive edge weights. If every edge weight
is increased by the same value, then which of the fol-
lowing statements is/are TRUE? [2016]

 P : Minimum spanning tree of G does not change.

 Q : Shortest path between any pair of vertices does
not change.

 (A) P only (B) Q only
 (C) Neither P nor Q (D) Both P and Q

 45. Let G be a complete undirected graph on 4 vertices,
having 6 edges with weights being 1,2,3,4,5, and
6. The maximum possible weight that a minimum
weight spanning tree of G can have is _____ . [2016]

 46. G = (V,E) is an undirected simple graph in which each
edge has a distinct weight, and e is a particular edge
of G. Which of the following statements about the
minimum spanning trees (MSTs) of G is/ are TRUE?

 [2016]

 I. If e is the lightest edge of some cycle in G, then
every MST of G includes e

 II. If e is the heaviest edge of some cycle in G, then
every MST of G excludes e

 (A) I only (B) II only
 (C) both I and II (D) neither I nor II

 47. Breadth First Search (BFS) is started on a binary tree
beginning from the root vertex. There is a vertex t at
a distance four from the root. If t is the n-th vertex in
this BFS traversal, then the maximum possible value
of n is _____. [2016]

 48. Let G = (V,E) be any connected undirected edge-
weighted graph. The weights of the edges in E are pos-
itive and distinct. Consider the following statements:

 (I) Minimum spanning Tree of G is always unique.
 (II) Shortest path between any two vertices of G is

always unique.

 Which of the above statements is/are necessarily true?
 [2017]

 (A) (I) only
 (B) (II) only
 (C) both (I) and (II)
 (D) neither (I) nor (II)

 49. The Breadth First Search (BFS) algorithm has been
implemented using the queue data structure. Which
one of the following is a possible order of visiting the
nodes in the graph below? [2017]

3.134 | Unit 3  •  Algorithms

anSwer KeYS

exerCiSeS

Practice Problems 1
 1. A 2. A 3. B 4. A 5. B 6. A 7. B 8. A 9. A 10. C
 11. B 12. A 13. A 14. B

Practice Problems 2
 1. D 2. C 3. A 4. A 5. D 6. C 7. C 8. A 9. A 10. D
 11. C 12. C 13. A 14. C 15. D

Previous Years’ Questions
 1. A 2. B 3. C 4. D 5. D 6. A 7. D 8. C 9. C 10. B
 11. C 12. D 13. D 14. B 15. B 16. D 17. C 18. D 19. D 20. B
 21. C 22. C 23. B 24. B 25. C 26. D 27. 28. C 29. A 30. D
 31. C 32. C 33. 12 to 12 34. A 35. B 36. 6 to 6 37. 19 38. 110 39. 69
 40. A 41. C 42. 5 43. B 44. A 45. 7 46. B 47. 31 48. A 49. D
 50. 225 51. A 52. 4

M N O

PQR

 (A) MNOPQR
 (B) NQMPOR
 (C) QMNROP
 (D) POQNMR

 50. A message is made up entirely of characters from the
set X = {P, Q, R, S,T}. The table of probabilities for
each of the characters is shown below:

Character Probability

P 0.22

Q 0.34

R 0.17

S 0.19

T 0.08

Total 1.00

 If a message of 100 characters over X is encoded
using Huffman coding, then the expected length of
the encoded message in bits is _________. [2017]

 51. Let G be a simple undirected graph. Let T
D
 be a depth

first search tree of G. Let T
B
 be a breadth first search

tree of G.

 Consider the following statements.
(I) No edge of G is a cross edge with respect to T

D
.

(A cross edge in G is between two nodes neither
of which is an ancestor of the other in T

D
.)

(II) For every edge (u, v) of G, if u is at depth i and v
is at depth j in T

B
, then |i – j| = 1.

 Which of the statements above must necessarily be
true? [2018]

 (A) I only (B) II only
 (C) Both I and II (D) Neither I nor II

 52. Consider the following undirected graph G:

4 x

1 3

4

4 5

 Choose a value for x that will maximize the number
of minimum weight spanning trees (MWSTs) of G.
The number of MWSTs of G for this value of x is
______. [2018]

	Unit 3: Programming and Data Structures
	PART B: Algorithms
	Chapter 4: Greedy Approach
	Greedy Approach
	Knapsack Problem
	Spanning Trees
	Prim’s Algorithm
	Kruskal’s Algorithm
	Tree and Graph Traversals
	Connected Components
	Huffman Codes
	Task-scheduling Problem
	Sorting and Order Statistics
	Graph Algorithms
	Exercises
	Previous Years’ Questions
	Answer Keys

