Sample Question Paper

CLASS: XII

Session: 2021-22

Mathematics (Code-041)

Term - 2

Time Allowed: 2 hours

Maximum Marks: 40

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. **Section A** has 6 **short answer type (SA1) questions** of 2 marks each.
- 3. **Section B** has 4 **short answer type (SA2) questions** of 3 marks each.
- 4. **Section C** has 4 **long answer type questions (LA)** of 4 marks each.
- 5. There is an **internal choice** in some of the questions.
- 6. Q14 is a **case-based problem** having 2 sub parts of 2 marks each.

SECTION - A			
1.	Find $\int \frac{\log x}{(1+\log x)^2} dx$	2	
	OR		
	Find $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$		
2	1,7 000 %		
2.	Write the sum of the order and the degree of the following differential	2	
	equation: $\frac{d}{d} \left(\frac{dy}{dx} \right) = \frac{1}{2}$		
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = 5$		
3.	If \hat{a} and \hat{b} are unit vectors, then prove that	2	
	$ \hat{a} + \hat{b} = 2\cos\frac{\theta}{2}$, where θ is the angle between them.		
4.	Find the direction cosines of the following line:	2	
	$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$		
5.	A bag contains 1 red and 3 white balls. Find the probability distribution of	2	
<i>J</i> .	the number of red balls if 2 balls are drawn at random from the bag one-by-	2	
	one without replacement.		
6.	Two cards are drawn at random from a pack of 52 cards one-by-one without	2	
	replacement. What is the probability of getting first card red and second		
	card Jack?		
	<u>SECTION - B</u>		
7.	Find: $\int \frac{x+1}{(x^2+1)x} dx$	3	
8.	Find the general solution of the following differential equation:	3	
	$x\frac{dy}{dx} = y - x\sin(\frac{y}{x})$		
	OR Find the particular solution of the following differential equation given that		
	Find the particular solution of the following differential equation, given that $y = 0$ when $y = \frac{\pi}{2}$.		
	$y = 0 \text{ when } x = \frac{n}{4}$		
	$\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$		
9.	If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	3	

10.	Find the shortest distance between the following lines: $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$ $\vec{r} = (\hat{\imath} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$ OR Find the vector and the cartesian equations of the plane containing the point $\hat{\imath} + 2\hat{\jmath} - \hat{k} \text{ and parallel to the lines } \vec{r} = (\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) + s(2\hat{\imath} - 3\hat{\jmath} + 2\hat{k}) = 0$ and $\vec{r} = (3\hat{\imath} + \hat{\jmath} - 2\hat{k}) + t(\hat{\imath} - 3\hat{\jmath} + \hat{k}) = 0$ SECTION - C	3
11		1
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$	4
12.	Using integration, find the area of the region in the first quadrant enclosed by the line $x + y = 2$, the parabola $y^2 = x$ and the x-axis. OR Using integration, find the area of the region $\{(x,y): 0 \le y \le \sqrt{3}x, x^2 + y^2 \le 4\}$	4
13.	Find the foot of the perpendicular from the point $(1, 2, 0)$ upon the plane $x - 3y + 2z = 9$. Hence, find the distance of the point $(1, 2, 0)$ from the given plane.	4
14.	CASE-BASED/DATA-BASED Fig 3	
	An insurance company believes that people can be divided into two classes: the	ose who

An insurance company believes that people can be divided into two classes: those who are accident prone and those who are not. The company's statistics show that an accident-prone person will have an accident at sometime within a fixed one-year period with probability 0.6, whereas this probability is 0.2 for a person who is not accident prone. The company knows that 20 percent of the population is accident prone.

Based on the given information, answer the following questions.

ı	based on the given information, answer the following questions.	
	(i) what is the probability that a new policyholder will have an accident	2
	within a year of purchasing a policy?	
Ī	(ii) Suppose that a new policyholder has an accident within a year of	2
	purchasing a policy. What is the probability that he or she is accident prone?	

Marking Scheme CLASS: XII

Session: 2021-22 Mathematics (Code-041) Term - 2

SECTION - A

1. Find: $\int \frac{\log x}{(1+\log x)^2} dx$	
Solution: $\int \frac{\log x}{(1 + \log x)^2} dx = \int \frac{\log x + 1 - 1}{(1 + \log x)^2} dx = \int \frac{1}{1 + \log x} dx - \int \frac{1}{(1 + \log x)^2} dx$	1/2
$= \frac{1}{1 + \log x} \times x - \int \frac{-1}{(1 + \log x)^2} \times \frac{1}{x} \times x dx - \int \frac{1}{(1 + \log x)^2} dx = \frac{x}{1 + \log x} + c$ OR	1+1/2
Find: $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$	
Solution: Put $cos^2x = t \Rightarrow -2cosxsinxdx = dt \Rightarrow sin2xdx = -dt$	1
The given integral $= -\int \frac{dt}{\sqrt{3^2 - t^2}} = -\sin^{-1}\frac{t}{3} + c = -\sin^{-1}\frac{\cos^2 x}{3} + c$	1
Write the sum of the order and the degree of the following differential equation: $\frac{d}{dx} \left(\frac{dy}{dx} \right) = 5$	
Solution: Order = 2 Degree = 1	1 1/2
Sum = 3	1/2
3. If \hat{a} and \hat{b} are unit vectors, then prove that	
$\left \hat{a} + \hat{b} \right = 2\cos\frac{\theta}{2}$, where θ is the angle between them.	
Solution: $(\hat{a} + \hat{b}) \cdot (\hat{a} + \hat{b}) = \hat{a} ^2 + \hat{b} ^2 + 2(\hat{a} \cdot \hat{b})$	1
$\left \left \hat{a}+\hat{b}\right ^2=1+1+2cos\theta$	
$=2(1+\cos\theta)=4\cos^2\frac{\theta}{2}$	1/2
$ \hat{a} + \hat{b} = 2\cos\frac{\theta}{2},$	1/2
4. Find the direction cosines of the following line:	
$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$	
Solution: The given line is	
$\frac{x-3}{1} = \frac{y-\frac{1}{2}}{1} = \frac{z}{4}$	1
Its direction ratios are <1, 1, 4>	1/2
Its direction cosines are $\langle \frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}} \rangle$	1/2

5.	5. A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement. Solution: Let X be the random variable defined as the number of red balls.			
	Then $X = 0, 1$			1/2 1/2
	P(X=0) = $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}$ P(X=1) = $\frac{1}{4} \times \frac{3}{3} + \frac{3}{4} \times \frac{1}{3} = \frac{6}{12}$	-		1/2
	Probability Distribution Ta	bie:	1	
	P(X)	1	1	1/2
		2	$\overline{2}$	
6.	replacement. What is the probability of getting first card red and second card Jack? Solution: The required probability = P((The first is a red jack card and The			
	second is a jack card) or (a jack card))	The first is a red non-jack	card and The second is	1
	$= \frac{2}{52} \times \frac{3}{51} + \frac{24}{52} \times \frac{4}{51} = \frac{1}{26}$	OFOTION D		1
		SECTION - B		
7.	Find: $\int \frac{x+1}{(x^2+1)x} dx$			
	Solution: Let $\frac{x+1}{(x^2+1)x} = \frac{Ax+B}{x^2+1} + \frac{C}{x} = \frac{(Ax+B)x+C(x^2+1)}{(x^2+1)x}$			1/2
	Solution. Let $\frac{1}{(x^2+1)x} = \frac{1}{x^2+1} + \frac{1}{x} = \frac{1}{(x^2+1)x}$ $\Rightarrow x + 1 = (Ax + B)x + C(x^2 + 1)$ (An identity)			1/2
	Equating the coefficients, we get			
	B = 1, C = 1, A + C = 0 Hence, $A = -1, B = 1, C = 1$			1/2
	The given integral = $\int \frac{-x+1}{x^2+1} dx + \int \frac{1}{x} dx$			
				1/2
	$= \frac{-1}{2} \int \frac{2x-2}{x^2+1} dx + \int \frac{1}{x} dx$			1/2
	$= \frac{-1}{2} \int \frac{2x}{x^2 + 1} dx + \int \frac{1}{x^2 + 1} dx + \int \frac{1}{x} dx$			
				1+1/2
	$= \frac{-1}{2}\log(x^2 + 1) + \tan^{-1}x + \log x + c$			
8.	Find the general solution	of the following differential	l equation:	
	$x \frac{dy}{dx} = y - x \sin(\frac{y}{x})$			
	Solution: We have the diff	erential equation:		
	$\frac{dy}{dx} = \frac{y}{x} - \sin(\frac{y}{x})$			
	$\frac{dx}{dx} = \frac{x}{x}$ The equation is a homogeneous differential equation.			
	Putting $y = vx \Rightarrow \frac{dy}{dx} = v + \frac{dy}{dx}$			1
	The differential equation becomes			
	$v + x \frac{dv}{dx} = v - \sin v$			
$\int \frac{dx}{dv} dx = dx$			1/2	
	$\Rightarrow \frac{dv}{\sin v} = -\frac{dx}{x} \Rightarrow \csc v dv = -\frac{dx}{x}$ Integrating both sides, we get		/2	
	Integrating both sides, we get			

$\begin{aligned} & \log[\csc v - \cot v] = -i \operatorname{olg} x_1 + i \operatorname{olg} x, \lambda \geq 0 \text{ (Here, log A is an arbitrary constant.)} \\ & \Rightarrow \log[(\operatorname{cose} v - \cot v) x] = \operatorname{log} x \\ & \Rightarrow ([\operatorname{cose} v - \cot v) x] = K \\ & \Rightarrow (\operatorname{cose} v - \cot v) x = \pm K \\ & \Rightarrow (\operatorname{cose} v - \frac{v}{x} - \cot v - \frac{v}{x}) x = C, \text{ which is the required general solution.} \end{aligned}$ $\begin{aligned} & \text{OR} \\ & \text{Find the particular solution of the following differential equation.} \end{aligned}$ $& \text{If } x = \frac{v}{4} \end{aligned}$ $& \text{Or } x = \frac{v}{4} \end{aligned}$ $& $				
$ \log (\csc c - \cot c) x = \log K $ $ (\csc c - \cot c) x = K $ $ (\csc c - \cot $		log cosecv - cotv = -log x + logK, K > 0 (Here, $logK$ is an arbitrary	1	
$\Rightarrow (cosec v - cotv)x = \pm K$ $\Rightarrow (cosec \frac{v}{x} - cot \frac{v}{x})x = C, \text{ which is the required general solution.}$ OR Find the particular solution of the following differential equation, given that $y = 0$ when $x = \frac{\pi}{4}$: $\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$ Solution: The differential equation is a linear differential equation $IF = e^{\int cotx dx} = e^{\log sinx} = sinx$ The general solution is given by $ysinx = \int 2 \frac{sinx}{1 + sinx} dx$ $\Rightarrow ysinx = 2 \int \frac{sinx + 1 - 1}{1 + sinx} dx = 2 \int [1 - \frac{1}{1 + sinx}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{1 + cos(\frac{\pi}{2} - x)}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2cos^2(\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2cos^2(\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2cos^2(\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow ysinx = 2[x + tan(\frac{\pi}{4} - \frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$. Hence, $0 = 2I_{4}^{\pi} + tan \frac{\pi}{4} + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan \frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\{x + tan(\frac{\pi}{4} - \frac{x}{2})\} - (\frac{\pi}{2} + 2tan \frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} , $\vec{b} = \vec{a}$, \vec{c} , \vec{a} \vec{c} $\vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ $\vec{c} = \vec{c} + 2tan \frac{\vec{c}}{\vec{c}} + 2$,	•	
$ \begin{array}{c} \Rightarrow \left(cosec \frac{y}{x} - cot \frac{y}{x} \right) x = C, \text{ which is the required general solution.} \\ & OR \\ \text{Find the particular solution of the following differential equation, given that y} \\ & = 0 \text{ when } x = \frac{\pi}{4}; \\ & \frac{dy}{dx} + ycotx = \frac{2}{1 + sinx} \\ \text{Solution:} \\ \text{The differential equation is a linear differential equation} \\ \text{IF} = e^{\int cotx dx} = e^{\log sinx} = sinx \\ \text{The general solution is given by} \\ & ysinx = \int 2 \frac{sinx}{1 + sinx} dx \\ & \Rightarrow ysinx = 2 \int \frac{sinx}{1 + sinx} dx = 2 \int \left[1 - \frac{1}{1 + sinx}\right] dx \\ & \Rightarrow ysinx = 2 \int \left[1 - \frac{1}{1 + cos\left(\frac{\pi}{2} - x\right)}\right] dx \\ & \Rightarrow ysinx = 2 \int \left[1 - \frac{1}{2cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}\right] dx \\ & \Rightarrow ysinx = 2 \int \left[1 - \frac{1}{2cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}\right] dx \\ & \Rightarrow ysinx = 2 \left[1 + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] + c \\ & \text{Given that y} = 0, \text{when } x = \frac{\pi}{4}, \\ & \text{Hence, } 0 = 2 \frac{1}{4}^{\pi} + \tan \frac{\pi}{8} + c \\ & \Rightarrow c = -\frac{\pi}{2} - 2\tan \frac{\pi}{8} \\ & \text{Hence, the particular solution is} \\ & y = cosecx \left[2 \left\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)\right] \end{aligned}$ $ \begin{array}{c} 9. & \text{If } \vec{a} \neq \vec{0}, \vec{a}. \vec{b} = \vec{a}. \vec{c}, \vec{a} \times \vec{b} = \vec{a} \times \vec{c}, \text{ then show that } \vec{b} = \vec{c}. \\ & \text{Solution: We have } \vec{a}. (\vec{b} - \vec{c}) = 0 \\ & \Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c}) \\ & \Rightarrow $				
Find the particular solution of the following differential equation, given that $y=0$ when $x=\frac{\pi}{4}$: $\frac{dy}{dx} + ycotx = \frac{2}{1+sinx}$ Solution: The differential equation is a linear differential equation $1F=e^{\int cvtxdx}=e^{\log sinx}=sinx$ The general solution is given by $ysinx=\int 2\frac{sinx}{1+sinx}dx$ $\Rightarrow ysinx=2\int \frac{sinx+1-1}{1+sinx}dx=2\int [1-\frac{1}{1+sinx}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{1-cos(\frac{\pi}{2}-x)}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2cos^2}(\frac{\pi}{4}-\frac{x}{2})]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2cos^2}(\frac{\pi}{4}-\frac{x}{2})]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2cos^2}(\frac{\pi}{4}-\frac{x}{2})]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2sec^2}(\frac{\pi}{4}-\frac{x}{2})]dx$ $\Rightarrow ysinx=2[x+\tan(\frac{\pi}{4}-\frac{x}{2})]+c$ Given that $y=0$, when $x=\frac{\pi}{4}$. Hence, $0=2[\frac{\pi}{4}+tan\frac{\pi}{8}]+c$ $\Rightarrow c=-\frac{\pi}{2}-2tan\frac{\pi}{8}$ Hence, the particular solution is $y=cosecx[2\{x+\tan(\frac{\pi}{4}-\frac{x}{2})\}-(\frac{\pi}{2}+2tan\frac{\pi}{8})]$ 9. If $\vec{a}\neq\vec{0}$, \vec{a} , \vec{b} = \vec{a} , \vec{c} , \vec{a} × \vec{b} = \vec{a} × \vec{c} , then show that \vec{b} = \vec{c} . Solution: We have \vec{a} , $(\vec{b}-\vec{c})=0$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0}$ or \vec{a} ± $(\vec{b}-\vec{c})$ $\Rightarrow \vec{b}$ = \vec{c} or \vec{c} =			1/	
Find the particular solution of the following differential equation, given that $y=0$ when $x=\frac{\pi}{4}$: $\frac{dy}{dx}+ycotx=\frac{2}{1+sinx}$ Solution: The differential equation is a linear differential equation $1F=e^{\int cotxdx}=e^{icgsinx}=sinx$ The general solution is given by $ysinx=\int 2\frac{sinx}{1+sinx}dx$ $\Rightarrow ysinx=2\int \frac{sinx+1-1}{1+sinx}dx=2\int [1-\frac{1}{1+sinx}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{1-cos(\frac{\pi}{2}-x)}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2coc^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2coc^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2coc^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx=2\int [1-\frac{1}{2coc^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx=2\left[x+\tan(\frac{\pi}{4}-\frac{x}{2})\right]+c$ Given that $y=0$, when $x=\frac{\pi}{4}$, Hence, $0=2[\frac{\pi}{4}+tan\frac{\pi}{8}]+c$ $\Rightarrow c=-\frac{\pi}{2}-2tan\frac{\pi}{8}$ Hence, the particular solution is $y=cosecx[2\left\{x+\tan(\frac{\pi}{4}-\frac{x}{2})\right\}-(\frac{\pi}{2}+2tan\frac{\pi}{8})]$ 9. If $\vec{a}\neq\vec{0}$, \vec{a} , \vec{b} = \vec{a} , \vec{c} , \vec{a} × \vec{b} = \vec{a} × \vec{c} , then show that \vec{b} = \vec{c} . Solution: We have \vec{a} . (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ± (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ± (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ± (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ± (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ± (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{a} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{b} = \vec{c}$ or \vec{c} ≡ (\vec{b} - \vec{c}) $\Rightarrow \vec{c}$ = (\vec{c} + \vec{c}		$\Rightarrow \left(cosec \frac{y}{x} - cot \frac{y}{x} \right) x = C, \text{ which is the required general solution.}$	1/2	
$=0 \text{ when } \mathbf{x} = \frac{\pi}{4};$ $\frac{dy}{dx} + y \cot \mathbf{x} = \frac{2}{1+\sin x}$ Solution: The differential equation is a linear differential equation $1 \mathbf{F} = e^{\int \cot x dx} = e^{\log x \ln x} = \sin x$ The general solution is given by $y \sin x = \int 2 \frac{\sin x}{1+\sin x} dx$ $\Rightarrow y \sin x = 2 \int \frac{\sin x+1-1}{1+\sin x} dx = 2 \int [1-\frac{1}{1+\sin x}] dx$ $\Rightarrow y \sin x = 2 \int [1-\frac{1}{1+\cos(\frac{\pi}{2}-x)}] dx$ $\Rightarrow y \sin x = 2 \int [1-\frac{1}{2\cos^2(\frac{\pi}{4}-\frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1-\frac{1}{2}\sec^2(\frac{\pi}{4}-\frac{x}{2})] dx$ $\Rightarrow y \sin x = 2 [x+\tan(\frac{\pi}{4}-\frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4}+\tan \frac{\pi}{8}] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2\tan \frac{\pi}{8}$ Hence, the particular solution is $y = \csc x[2\{x+\tan(\frac{\pi}{4}-\frac{x}{2})\} - (\frac{\pi}{2}+2\tan \frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} , $\vec{b} = \vec{a}$, \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have \vec{a} . $(\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = c$		OR		
$\frac{dy}{dx} + ycotx = \frac{2}{1+sinx}$ Solution: The differential equation is a linear differential equation $I = e^{\int cotxdx} = e^{\log sinx} = sinx$ The general solution is given by $ysinx = \int 2 \frac{sinx}{1+sinx} dx$ $\Rightarrow ysinx = 2 \int \frac{sinx+1-1}{1+sinx} dx = 2 \int [1-\frac{1}{1+sinx}] dx$ $\Rightarrow ysinx = 2 \int [1-\frac{1}{1-cos(\frac{\pi}{4}-\frac{x}{2})}] dx$ $\Rightarrow ysinx = 2 \int [1-\frac{1}{2cos^2}(\frac{\pi}{4}-\frac{x}{2})] dx$ $\Rightarrow ysinx = 2 \int [1-\frac{1}{2cos^2}(\frac{\pi}{4}-\frac{x}{2})] dx$ $\Rightarrow ysinx = 2[x+\tan(\frac{\pi}{4}-\frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4}+tan\frac{\pi}{8}]+c$ $\Rightarrow c = -\frac{\pi}{2}-2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\{x+\tan(\frac{\pi}{4}-\frac{x}{2})\}]-(\frac{\pi}{2}+2tan\frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} , \vec{b} = \vec{a} , \vec{c} , \vec{d} \times \vec{b} = \vec{c} . Solution: We have \vec{a} . (\vec{b} - \vec{c}) = 0 $\Rightarrow (\vec{b} - \vec{c}) = \vec{0}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ Also, $\vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c}$ \vec{c}				
Solution: The differential equation is a linear differential equation $ \begin{aligned} & F = e^{\int \cot x dx} = e^{\log x inx} = \sin x \\ & \text{The general solution is given by} \end{aligned} $ $y \sin x = \int 2 \frac{\sin x}{1 + \sin x} dx $ $\Rightarrow y \sin x = 2 \int \frac{1 - 1}{1 + \sin x} dx = 2 \int [1 - \frac{1}{1 + \sin x}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{1 + \cos (\frac{\pi}{2} - x)}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{$		$= 0 \text{ when } x = \frac{\pi}{4}$:		
Solution: The differential equation is a linear differential equation $ \begin{aligned} & F = e^{\int \cot x dx} = e^{\log x inx} = \sin x \\ & \text{The general solution is given by} \end{aligned} $ $y \sin x = \int 2 \frac{\sin x}{1 + \sin x} dx $ $\Rightarrow y \sin x = 2 \int \frac{1 - 1}{1 + \sin x} dx = 2 \int [1 - \frac{1}{1 + \sin x}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{1 + \cos (\frac{\pi}{2} - x)}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{2 \cos^2 (\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow y \sin x = 2 \int [1 - \frac{1}{$		$\frac{dy}{dy} + y_{cot} = \frac{2}{y_{cot}}$		
The differential equation is a linear differential equation $\begin{aligned} & \ F = e^{\int cox dx} = e^{\int cox dx} = sinx \\ & \ The general solution is given by \\ & \ ysinx = \int 2 \frac{sinx}{1+sinx} dx \end{aligned} \qquad $				
I F = $e^{\int cotx dx} = e^{\log sinx} = sinx$ The general solution is given by $ysinx = \int 2\frac{sinx}{1+sinx} dx$ $\Rightarrow ysinx = 2\int \frac{sinx+1-1}{1+sinx} dx = 2\int [1-\frac{1}{1+sinx}] dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{1+cos(\frac{\pi}{2}-x)}] dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2cos^2(\frac{\pi}{4}-\frac{x}{2})}] dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2cos^2(\frac{\pi}{4}-\frac{x}{2})}] dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2sec^2(\frac{\pi}{4}-\frac{x}{2})}] dx$ $\Rightarrow ysinx = 2[x+tan(\frac{\pi}{4}-\frac{x}{2})]+c$ Given that $y=0$, when $x=\frac{\pi}{4}$. Hence, $0=2[\frac{\pi}{4}+tan\frac{\pi}{8}]+c$ $\Rightarrow c=\frac{\pi}{2}-2tan\frac{\pi}{8}$ Hence, the particular solution is $y=cosecx[2\{x+tan(\frac{\pi}{4}-\frac{x}{2})\}-(\frac{\pi}{2}+2tan\frac{\pi}{8})]$ 9. If $\vec{a}\neq \vec{0}$, \vec{a} , \vec{b} = \vec{a} , \vec{c} , \vec{a} × \vec{b} = \vec{a} × \vec{c} , then show that \vec{b} = \vec{c} . Solution: We have \vec{a} . (\vec{b} – \vec{c}) = 0 $\Rightarrow (\vec{b}-\vec{c})=\vec{0}$ or \vec{a} ± (\vec{b} – \vec{c}) Also, \vec{a} × (\vec{b} – \vec{c}) = $\vec{0}$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0}$ or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{a} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{c} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{b}$ = \vec{c} or \vec{c} ii (\vec{b} – \vec{c}) $\Rightarrow \vec{c}$ ii (\vec{c} + $$				
The general solution is given by $ysinx = \int 2\frac{sinx}{1+sinx}dx$ $\Rightarrow ysinx = 2\int \frac{sinx+1-1}{1+sinx}dx = 2\int [1-\frac{1}{1+sinx}]dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{1+cos(\frac{\pi}{2}-x)}]dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2cos^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2cos^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx = 2\int [1-\frac{1}{2sec^2(\frac{\pi}{4}-\frac{x}{2})}]dx$ $\Rightarrow ysinx = 2[x+tan(\frac{\pi}{4}-\frac{x}{2})]+c$ Given that $y=0$, when $x=\frac{\pi}{4}$. Hence, $0=2[\frac{\pi}{4}+tan\frac{\pi}{8}]+c$ $\Rightarrow c=-\frac{\pi}{2}-2tan\frac{\pi}{8}$ Hence, the particular solution is $y=cosecx[2\{x+tan(\frac{\pi}{4}-\frac{x}{2})\}-(\frac{\pi}{2}+2tan\frac{\pi}{8})]$ 9. If $\vec{a}\neq\vec{0}$, \vec{a} , \vec{b} = \vec{a} , \vec{c} , \vec{a} × \vec{b} = \vec{a} × \vec{c} , then show that \vec{b} = \vec{c} . Solution: We have \vec{a} . (\vec{b} - \vec{c}) = 0 $\Rightarrow (\vec{b}-\vec{c})=\vec{0} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{c} \text{ or } \vec{c} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{c} \text{ or } \vec{c} \parallel (\vec{c}-\vec{c})$ $\Rightarrow \vec{c} \text{ or } \vec$			1	
$ysinx = \int 2 \frac{sinx}{1 + sinx} dx$ $\Rightarrow ysinx = 2 \int \frac{sinx + 1 - 1}{1 + sinx} dx = 2 \int [1 - \frac{1}{1 + sinx}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{1 + cos(\frac{\pi}{2} - x)}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2cos^2(\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2}sec^2(\frac{\pi}{4} - \frac{x}{2})] dx$ $\Rightarrow ysinx = 2 \int [1 - \frac{1}{2}sec^2(\frac{\pi}{4} - \frac{x}{2})] dx$ $\Rightarrow ysinx = 2[x + tan(\frac{\pi}{4} - \frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4} + tan\frac{\pi}{8}] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\{x + tan(\frac{\pi}{4} - \frac{x}{2})\} - (\frac{\pi}{2} + 2tan\frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} , $\vec{b} = \vec{a}$, \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have \vec{a} . $(\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{t} + \hat{j} - \hat{k}) + s(2\hat{t} + \hat{j} + \hat{k})$				
$\Rightarrow ysinx = 2\int \frac{sinx + 1 - 1}{1 + sinx} dx = 2\int [1 - \frac{1}{1 + sinx}] dx$ $\Rightarrow ysinx = 2\int [1 - \frac{1}{1 + \cos(\frac{\pi}{2} - x)}] dx$ $\Rightarrow ysinx = 2\int [1 - \frac{1}{2\cos^2(\frac{\pi}{4} - \frac{x}{2})}] dx$ $\Rightarrow ysinx = 2\int [1 - \frac{1}{2}\sec^2(\frac{\pi}{4} - \frac{x}{2})] dx$ $\Rightarrow ysinx = 2[x + \tan(\frac{\pi}{4} - \frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4} + tan\frac{\pi}{8}] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = \csc x[2\{x + \tan(\frac{\pi}{4} - \frac{x}{2})\} - (\frac{\pi}{2} + 2tan\frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} , $\vec{b} = \vec{a}$, \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have \vec{a} . $(\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ Also, $\vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c}$ or $\vec{a} \parallel (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$			1/6	
$\Rightarrow ysinx = 2\int \left[1 - \frac{1}{1 + \cos\left(\frac{\pi}{2} - x\right)}\right] dx$ $\Rightarrow ysinx = 2\int \left[1 - \frac{1}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}\right] dx$ $\Rightarrow ysinx = 2\int \left[1 - \frac{1}{2}\sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] dx$ $\Rightarrow ysinx = 2\left[x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2\left[\frac{\pi}{4} + \tan\frac{\pi}{8}\right] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2\tan\frac{\pi}{8}$ Hence, the particular solution is $y = \csc \left[2\left\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2\tan\frac{\pi}{8}\right)\right]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have \vec{a} . $(\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c} \parallel (\vec{c} + \vec{c}) + \vec$			/2	
$\Rightarrow ysinx = 2\int [1 - \frac{1}{2cos^2}(\frac{\pi}{4} - \frac{x}{2})]dx$ $\Rightarrow ysinx = 2\int [1 - \frac{1}{2}sec^2(\frac{\pi}{4} - \frac{x}{2})]dx$ $\Rightarrow ysinx = 2[x + \tan(\frac{\pi}{4} - \frac{x}{2})] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4} + tan\frac{\pi}{8}] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\{x + \tan(\frac{\pi}{4} - \frac{x}{2})\} - (\frac{\pi}{2} + 2tan\frac{\pi}{8})]$ 9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$				
$\Rightarrow ysinx = 2\int \left[1 - \frac{1}{2}sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right)\right]dx$ $\Rightarrow ysinx = 2\left[x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$. Hence, $0 = 2\left[\frac{\pi}{4} + tan\frac{\pi}{8}\right] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx\left[2\left\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)\right]$ 9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c} = (\hat{c} + \hat{c}) - \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c})$ $\Rightarrow \vec{c} = (\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c})$		$\Rightarrow y \sin x = 2 \int \left[1 - \frac{1}{1 + \cos\left(\frac{\pi}{2} - x\right)}\right] dx$		
$\Rightarrow ysinx = 2\int \left[1 - \frac{1}{2}sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right)\right]dx$ $\Rightarrow ysinx = 2\left[x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$. Hence, $0 = 2\left[\frac{\pi}{4} + tan\frac{\pi}{8}\right] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx\left[2\left\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)\right]$ 9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c} = (\hat{c} + \hat{c}) - \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c})$ $\Rightarrow \vec{c} = (\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c}) + s(\hat{c} + \hat{c})$		$\Rightarrow y \sin x = 2 \int \left[1 - \frac{1}{2\cos^2\left(\frac{\pi}{x} - \frac{x}{x}\right)}\right] dx$		
$\Rightarrow ysinx = 2[x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)] + c$ Given that $y = 0$, when $x = \frac{\pi}{4}$, Hence, $0 = 2[\frac{\pi}{4} + \tan\frac{\pi}{8}] + c$ $\Rightarrow c = -\frac{\pi}{2} - 2\tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\} - \left(\frac{\pi}{2} + 2\tan\frac{\pi}{8}\right)]$ $y = \frac{\pi}{2} + \frac$				
Given that $y=0$, when $x=\frac{\pi}{4}$, Hence, $0=2[\frac{\pi}{4}+\tan\frac{\pi}{8}]+c$ $\Rightarrow c=-\frac{\pi}{2}-2\tan\frac{\pi}{8}$ Hence, the particular solution is $y=cosecx[2\left\{x+\tan\left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}-\left(\frac{\pi}{2}+2\tan\frac{\pi}{8}\right)]$ y_2 9. If $\vec{a}\neq \vec{0}$, $\vec{a}.\vec{b}=\vec{a}.\vec{c}$, $\vec{a}\times\vec{b}=\vec{a}\times\vec{c}$, then show that $\vec{b}=\vec{c}$. Solution: We have $\vec{a}.(\vec{b}-\vec{c})=0$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0}$ or $\vec{a}\perp(\vec{b}-\vec{c})$ 1 Also, $\vec{a}\times(\vec{b}-\vec{c})=\vec{0}$ or $\vec{a}\parallel(\vec{b}-\vec{c})$ $\Rightarrow \vec{b}=\vec{c}$ or $\vec{a}\parallel(\vec{b}-\vec{c})$ 1 Also, $\vec{a}\times(\vec{b}-\vec{c})=\vec{0}$ or $\vec{a}\parallel(\vec{b}-\vec{c})$ 1 \vec{a} can not be both perpendicular to $(\vec{b}-\vec{c})$ and parallel to $(\vec{b}-\vec{c})$ Hence, $\vec{b}=\vec{c}$. 1 Find the shortest distance between the following lines: $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+s(2\hat{i}+\hat{j}+\hat{k})$			4	
Hence, $0 = 2\left[\frac{\pi}{4} + tan\frac{\pi}{8}\right] + c^4$ $\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\left\{x + tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)]$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have \vec{a} . $(\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ Also, $\vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$		\4 \ \\ \2' \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ı	
$\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$ Hence, the particular solution is $y = cosecx[2\left\{x + tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)]$ 9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{c} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$ $\Rightarrow \vec{c} = \vec{c} \text{ or } \vec{c} \parallel (\vec{c} - \vec{c})$		4		
Hence, the particular solution is $y = cosecx[2\left\{x + \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)]$ 9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$				
9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $Also, \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$		2 0		
9. If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$. Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $Also, \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$				
Solution: We have $\vec{a}.(\vec{b}-\vec{c})=0$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $\Rightarrow \vec{b}=\vec{c} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $Also, \vec{a} \times (\vec{b}-\vec{c})=\vec{0}$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{b}=\vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b}-\vec{c}) \text{ and parallel to } (\vec{b}-\vec{c})$ Hence, $\vec{b}=\vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+s(2\hat{i}+\hat{j}+\hat{k})$		$y = cosecx[2\{x + tan(\frac{1}{4} - \frac{1}{2})\} - (\frac{1}{2} + 2tan(\frac{1}{8})]$	1/2	
Solution: We have $\vec{a}.(\vec{b}-\vec{c})=0$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $\Rightarrow \vec{b}=\vec{c} \text{ or } \vec{a} \perp (\vec{b}-\vec{c})$ $Also, \vec{a} \times (\vec{b}-\vec{c})=\vec{0}$ $\Rightarrow (\vec{b}-\vec{c})=\vec{0} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\Rightarrow \vec{b}=\vec{c} \text{ or } \vec{a} \parallel (\vec{b}-\vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b}-\vec{c}) \text{ and parallel to } (\vec{b}-\vec{c})$ Hence, $\vec{b}=\vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+s(2\hat{i}+\hat{j}+\hat{k})$				
Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\text{Also, } \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$	9.	If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.		
$\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $Also, \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$		Solution: We have $\vec{a} \cdot (\vec{b} - \vec{c}) = 0$		
$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$ $\text{Also, } \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ $\text{Hence, } \vec{b} = \vec{c}.$ $10. \text{ Find the shortest distance between the following lines:}$ $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$				
Also, $\vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$ $\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$			1	
$\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$				
$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$ $\vec{a} \text{ can not be both perpendicular to } (\vec{b} - \vec{c}) \text{ and parallel to } (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$				
$\vec{a} \ can \ not \ be \ both \ perpendicular \ to \ (\vec{b} - \vec{c}) \ and \ parallel \ to \ (\vec{b} - \vec{c})$ Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$			1	
Hence, $\vec{b} = \vec{c}$. 10. Find the shortest distance between the following lines: $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$				
10. Find the shortest distance between the following lines: $\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$			1	
$\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$	10.		ı	
$\vec{r} = (\hat{\imath} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$		I		
		$\vec{r} = (\hat{\imath} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$		

Solution: Here, the lines are parallel. The shortest distance = $\frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}) \times \overrightarrow{b} }{ \overrightarrow{b} }$	
$= \frac{\left (3\hat{k}) \times (2\hat{i} + \hat{j} + \hat{k}) \right }{\sqrt{4 + 1 + 1}}$	1+1/2
Y = 1 = 1 =	
$ \begin{vmatrix} (3\hat{k}) \times (2\hat{i} + \hat{j} + \hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 3 \\ 2 & 1 & 1 \end{vmatrix} = -3\hat{i} + 6\hat{j} $	1
	1/2
Hence, the required shortest distance = $\frac{3\sqrt{5}}{\sqrt{6}}$ units	
OR	
Find the vector and the cartesian equations of the plane containing the point $\hat{\imath} + 2\hat{\jmath} - \hat{k}$ and parallel to the lines $\vec{r} = (\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) + s(2\hat{\imath} - 3\hat{\jmath} + 2\hat{k}) = 0$ and $\vec{r} = (3\hat{\imath} + \hat{\jmath} - 2\hat{k}) + t(\hat{\imath} - 3\hat{\jmath} + \hat{k}) = 0$	
Solution: Since, the plane is parallel to the given lines, the cross product of	
the vectors $2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\hat{i} - 3\hat{j} + \hat{k}$ will be a normal to the plane	
	1
The vector equation of the plane is $\vec{r} \cdot (3\hat{\imath} - 3\hat{k}) = (\hat{\imath} + 2\hat{\jmath} - \hat{k}) \cdot (3\hat{\imath} - 3\hat{k})$	1
or, \vec{r} . $(\hat{\imath} - \hat{k}) = 2$	

1

SECTION - C

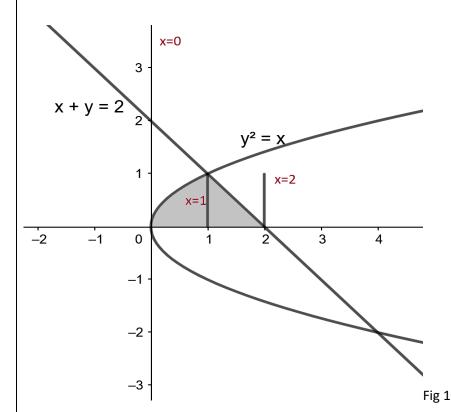
and the cartesian equation of the plane is x - z - 2 = 0

11. Evaluate:
$$\int_{-1}^{2} |x^3 - 3x^2 + 2x| dx$$

Solution: The given definite integral $= \int_{-1}^{2} |x(x-1)(x-2)| dx$
 $= \int_{-1}^{0} |x(x-1)(x-2)| dx + \int_{0}^{1} |x(x-1)(x-2)| dx + \int_{1}^{2} |x(x-1)(x-2)| dx$
 $= -\int_{-1}^{0} (x^3 - 3x^2 + 2x) dx + \int_{0}^{1} (x^3 - 3x^2 + 2x) dx - \int_{1}^{2} (x^3 - 3x^2 + 2x) dx$
 $= -\left[\frac{x^4}{4} - x^3 + x^2\right]_{-1}^{0} + \left[\frac{x^4}{4} - x^3 + x^2\right]_{0}^{1} - \left[\frac{x^4}{4} - x^3 + x^2\right]_{1}^{2}$
 $= \frac{9}{4} + \frac{1}{4} + \frac{1}{4} = \frac{11}{4}$

Using integration, find the area of the region in the first quadrant enclosed by 12. the line x + y = 2, the parabola $y^2 = x$ and the x-axis. Solution: Solving x + y = 2 and $y^2 = x$ simultaneously, we get the points of

intersection as (1, 1) and (4, -2).



1

The required area = the shaded area = $\int_0^1 \sqrt{x} \, dx + \int_1^2 (2-x) dx$ $= \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^1 + \left[2x - \frac{x^2}{2} \right]_1^2$ $=\frac{2}{3}+\frac{1}{2}=\frac{7}{6}$ square units

1

1

OR

Solution: Solving $y = \sqrt{3}x$ and $x^2 + y^2 = 4$, we get the points of intersection as $(1, \sqrt{3})$ and $(-1, -\sqrt{3})$

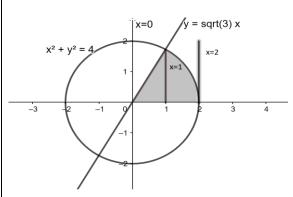


Fig 2

	The required area – the shaded area – $\int_{-1}^{1} \sqrt{2} x dx + \int_{-1}^{2} \sqrt{4 - x^2} dx$	
	The required area = the shaded area = $\int_0^1 \sqrt{3}x dx + \int_1^2 \sqrt{4 - x^2} dx$	1
	$ = \frac{\sqrt{3}}{2} [x^2]_0^1 + \frac{1}{2} [x\sqrt{4 - x^2} + 4\sin^{-1}\frac{x}{2}]_1^2 $	
	$=\frac{\sqrt{3}}{2} + \frac{1}{2} \left[2\pi - \sqrt{3} - 2\frac{\pi}{3} \right]$	
	$=\frac{2\pi}{3}$ square units	1
13.	Find the foot of the perpendicular from the point (1, 2, 0) upon the plane	
10.	x - 3y + 2z = 9. Hence, find the distance of the point $(1, 2, 0)$ from the given	
	plane.	
	Solution: The equation of the line perpendicular to the plane and passing through the point (1, 2, 0) is	
	$\begin{vmatrix} x-1 & y-2 & z \end{vmatrix}$	1
	$\frac{1}{1} = \frac{1}{-3} = \frac{1}{2}$ The coordinates of the foot of the perpendicular are $(\mu + 1, -3\mu + 2, 2\mu)$ for	1/2
	some μ	/2
	These coordinates will satisfy the equation of the plane. Hence, we have	
		1
	The foot of the perpendicular is (2, -1, 2).	1/2
	Hence, the required distance = $\sqrt{(1-2)^2 + (2+1)^2 + (0-2)^2} = \sqrt{14} \text{ units}$	1

CASE-BASED/DATA-BASED

Fig 3

An insurance company believes that people can be divided into two classes: those who are accident prone and those who are not. The company's statistics show that an accident-prone person will have an accident at sometime within a fixed one-year period with probability 0.6, whereas this probability is 0.2 for a person who is not accident prone. The company knows that 20 percent of the population is accident prone.

Based on the given information, answer the following questions.

(i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy?	
(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?	
Solution: Let E ₁ = The policy holder is accident prone. E ₂ = The policy holder is not accident prone. E = The new policy holder has an accident within a year of purchasing a policy. (i) $P(E) = P(E_1) \times P(E/E_1) + P(E_2) \times P(E/E_2)$ $= \frac{20}{100} \times \frac{6}{10} + \frac{80}{100} \times \frac{2}{10} = \frac{7}{25}$	1 1
(ii) By Bayes' Theorem, $P(E_1/E) = \frac{P(E_1) \times P(E/E_1)}{P(E)}$ $= \frac{\frac{20}{100} \times \frac{6}{10}}{\frac{280}{7}} = \frac{3}{7}$	1 1
