
Chapter 1

Process Life Cycle

 Introduction

 Process vs program

 Software component and elements

 Information gathering

 Requirement analysis

 Feasibility study

 Data fl ow diagram

 Process specifi cation

 Input/output design

 Software process life cycle

 Software process model

LEARNING OBJECTIVES

IntroductIon
A system can be defi ned as an orderly grouping of interdepend-
ent components linked together according to a plan to achieve a
specifi c objective.

Example: Telephone system, transportation system, accounting
system, etc.

Process versus ProGram
A software process gives all steps used to create a software appli-
cation, from the customer’s requirements to the fi nished product.

 • The software process determines the organization and fl exibil-
ity of the project.

 • There are several different software processes and each describes
their own solution to develop a valid software.

 • Software programs are written programs or rules with associated
documentation pertaining to the operation of a computer system.

software comPonents and elements

Software Component
It is a software element that can be independently deployed and
composed without modifi cation according to a composition
standard.

 • A component model implementation is the dedicated set of exe-
cutable software elements required to support the execution of
components.

 • A component has clearly defi ned interfaces.

 • An interface standard is the mandatory requirement enforced to
enable software elements to directly interact with other software
elements.

 • An interface standard declares, when an interface comprises.

Standard An object or measure serving as a basis to which others
should conform, by which the quality of others is judged.

Software Element
A sequence of abstract program statements that describe computa-
tions, which has to be performed by a machine.

Interface
It describes the behavior of a component that is obtained by con-
sidering only the interactions of that interface and by hiding all
other interactions.

 • An abstraction of the behavior consists of subset of the interac-
tions of one component together with a set of constraints.

Interaction
It is defi ned as action between 2 or more software elements.

Composition It is a combination of 2 or more software compo-
nents, the newly formed component, behaviour will be at a diff er-
ent level of abstraction.

The characteristics of new component is determined the compo-
nents combined and the way in which they are combined.

8.80 | Unit 8 • Networks, Information Systems, Software Engineering and Web Technology

InformatIon GatherInG

Complete and accurate information is essential in building
computer-based systems. Information about the organiza-
tion, the staff who uses the system and the workflow should
be gathered.

Information about the organization’s policies, goals,
objectives and structure explains the kind of environment
the computer-based system should produce.

Information about the people who run the present sys-
tem, their job functions and information requirements, the
relationships of their jobs to the existing system and the
interpersonal network that holds the user groups together
are required for determining the importance of the exist-
ing system for the organization and also for planning the
proposed system.

Workflow focuses on what happens to the data through
various points in a system and can be shown by a data flow
diagram or a system flow chart.

Information can be gathered by studying documents,
forms and files of existing system. Onsite observation of
the system is also an effective method for gathering infor-
mation. It is the process of recognizing and noting people,
objects and occurrences to obtain information. Interview is
one of the most often and oldest method for gathering infor-
mation. Interview has the advantage of identifying relations
or verifying information and also capture information face
to face with the concerned person. Questionnaire is another
method for gathering information and is an inexpensive
mean for gathering data which can be tabulated and ana-
lyzed quickly. Visiting companies that have developed simi-
lar systems, reading journals and other computer related
books, which specify how others have solved similar prob-
lems is also another means of information gathering.

requIrement analysIs

Requirement analysis results in specification of software’s
operational characteristics, indicates software’s interface
with other system elements and establishes constraints that
the software must meet.

During requirement analysis, the primary focus should
be on what not how. It should define what user interaction
occurs in a particular circumstance, what objects does the
system manipulate, what functions must the system per-
form, what behaviours does the system exhibit, what inter-
faces are defined and what constraints applied.

The requirement analysis model must achieve three pri-
mary objectives:

 1. To describe what the customer requires.
 2. To establish a basis for the creation of a software

design
 3. To define a set of requirements that can be validated

once the software is built.

Requirement Negotiation
Requirement negotiation is required to have a win-win
result. The customer should get product which satisfies
most of his/her needs, and software team should develop a
product within a budget, working in real-time environment
and within deadlines.

Boehm has defined negotiation activities at the begin-
ning of each software process iteration.

 • Identify the key stake holder’s system or subsystem.
 • Determine the ‘win conditions’ of the stake holder.
 • Negotiate the ‘win conditions’ of stake holder and estab-

lish them into win-win condition.

Requirement Elicitation
Requirement elicitation is gathering the requirements from
stakeholders, customers, etc. The question and answer for-
mat is suitable for the first encounter with users and the
remaining phases are replaced with requirement elicitation.
As we can’t get all the requirements by having questions and
answers session, requirement elicitation practices should be
implemented, which includes interviews, workshops, user
scenarios, etc.
The approaches that are followed for eliciting the require-
ments are:
 1. Collaborative requirement gathering
 2. Quality function deployment
 3. User scenarios
 4. Elicitation work products

Functional Requirements
Functional requirements are primary actions that must take
place in software in accepting and processing the input and
in processing and generating the output.

Functional requirements capture the intended behaviour
of the system, which could be expressed as service task (or)
functions of the system.

These are core functionalities of the system. It also
includes exact sequence of operations, input validation, map-
ping of outputs to inputs and error handling and recovery.
These requirements are implemented in system design.

Non-functional Requirements
Non-functional requirements are expected requirements of
a user. These define operational constraints based on the
user characteristics.

Non-functional requirements are product, business and
external-based. These requirements define how a software
system has to be. It also defines the quality of product, type
of reliability and usability of the system. Implementation
requirements depend on organization, and delivery require-
ments are defined in the non-functional requirements.

Non-functional requirements are implemented in
system-architecture.

Chapter 1 • Process Life Cycle | 8.81

Measuring Requirements
The requirements are the major component of project. The
metrics for the requirement activities are:
 1. Product size
 2. Requirement quality
 3. Requirement status
 4. Requirement change (request for changes)
 5. Effort

Product size refers to the count of functional and non-func-
tional requirements. It tracks, whether these requirements
are implemented as a function of time.

Requirement quality refers to the inspection of specifi-
cation of requirements, counting the defects, missing of
requirements incompleteness, ambiguities, etc.

Requirements status is monitoring of requirements over
time, gives out project status. The status could be proposed,
approved, implemented, verified deferred, deleted, rejected.

Requirement management handles the addition, modify
and deletion of requirement, track the change of require-
ment which affects multiple requirements of different level.

Effort is the time taken to record requirements activi-
ties which includes development and management of
requirements.

Types of Requirements
These are the services that a software system has to provide
and constraints under which it must operate.

User requirements
 • Written for customers.
 • These statements will be given in natural language and

diagrams of the services that the system provides and
operational constraints.

System requirements
 • Written as a contract between contractor and client.
 • A structured document with detailed descriptions of the

system services.

Software specification
 • Written for developers.
 • A detailed description of software that can act as basis for

a design (or) implementation.

Functional requirements
The system should provide statements of services, how the
system should react to particular inputs and how the system
should behave in particular situations.

Non-functional requirements
Functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.

 1. Product requirements: It specifies, that the delivered
product must behave in a particular way.

 Example: Execution speed, reliability
 2. Organizational requirements: These are consequences

of organizational policies and procedures.
 Example: Process standards, implementation

requirements
 3. External requirements: These arise from factors

which are external to the system and its development
process.

 Example: Interoperability requirements

Non-functional
requirements

Organizational
requirements

External
requirements

Product
requirements

Delivery
requirements

Ethical
requirements

Portability
requirements

Implementation
requirements

Inter
operability

requirements

Reliability
requirements

Standards
requirements

Safety
requirements Efficiency

requirements
Privacy

requirements Space
requirements

Performance
requirements

Usability
requirements

Domain requirements
These come from the application domain of the system that
reflects the characteristics of the domain.
 • These could be functional or non-functional.

feasIbIlIty analysIs
Feasibility study is a test of a system proposal according to
its workability, impact on the organization, ability to meet
user needs, and effective use of resources.

The objective of a feasibility study is not to solve the prob-
lem but to acquire a sense of its scope. Costs and benefits
are estimated with greater accuracy at this stage. Feasibility
analysis helps to identify the best solution to the end user.
The key considerations involved in feasibility analysis are:

8.82 | Unit 8 • Networks, Information Systems, Software Engineering and Web Technology

 1. Economic feasibility
 2. Technical feasibility
 3. Behavioral feasibility

Economic analysis is the most frequently used method
for evaluating the eff ectiveness of a candidate system. Also
known as cost/benefi t analysis, economic analysis deter-
mines the benefi ts and savings that are expected from the
candidate system and compares them with the costs. If ben-
efi ts outweigh costs, then decision is made to design and
implement the system, else alterations are made if it has a
chance of being approved.

Technical feasibility is concerned with hardware and
software requirements to implement the system. Technical
analysis centres around the existing computer system (hard-
ware, software, etc.) identifi es, to what extent it can support
the proposed addition. Additional hardware and software
(OS, databases) requirements are identifi ed and checks
whether fi nancial considerations/constraints can accommo-
date these technical enhancements.

Behavioural analysis makes an estimate of how strong
a user staff is likely to react towards the development of
a computerized system. Computer installations usually
changes employee job status, and also there may be transfer,
training period, etc. Thus the introduction of a new system
requires special eff ort to educate, sell and train the staff on
new ways of conducting business.

data flow dIaGrams (dfd)
DFD also called bubble chart, clarifi es system requirements
and identifi es major transformations that will become pro-
grams in system design. It functionally decomposes the
requirements specifi cation down to the lowest level of detail.

The four DFD symbols are:

1. (or) Source/Destination of data

2. (or) Data fl ow

 3. (or) (or) Process

4. (or) (or) Data store

The fi rst symbol defi nes a source or destination of sys-
tem data. The second symbol specifi es data fl ow direction.
It can be considered as a pipeline through which the infor-
mation fl ows. The third symbol represents a process that
transforms incoming data fl ows into outgoing data fl ows,
and the fourth symbol is used to represent storage of data.

In short, DFD takes an input-process-output view of a sys-
tem. That is, data objects fl ow into the software is transformed
by processing elements and resultant data objects fl ow out of
the software. Data objects are represented by labelled arrows
and transformations are represented by circles (also called

bubbles). The DFD is presented in a hierarchical fashion.
That is, the fi rst data fl ow model sometimes called level 0
DFD or context diagram represents the system as a whole.
Subsequent data fl ow diagrams refi ne the context diagram,
providing increase in detail with each subsequent level.

Process sPecIfIcatIon (PsPec)
The process specifi cation (PSPEC) is used to describe all
fl ow model processes that appear at the fi nal level of refi ne-
ment. The content of the process specifi cation can include
narrative text, a program design language (PDL) description
of the process algorithm, mathematical equations, tables or
UML activity diagrams.

By providing a PSPEC to accompany each transforma-
tion (bubble) in the fl ow model, a ‘mini-spec’ can be created
that serves as a guide for design of the software component
that will implement the transformation.

InPut/outPut desIGn

Input Design
The most common cause of errors in data processing is
inaccurate input data. Errors occurred during data entry can
be controlled by input design.

Input design is the process of converting user-originated
inputs to a computer-based format.

Input data is collected and organized into groups of simi-
lar data. The goal of designing input data is to make data
entry easy, logical and free from errors.

Source data is captured initially on original paper or a
source document. A source document should be logical and
easy to understand. Each area in the form should be clearly
identifi ed and should specify to the user what to write and
where to write.

Source documents may enter into the system from punch
cards, diskettes, optical character recognition (OCR) reader,
Magnetic ink character recognition (MICR) reader, barcode
reader, etc. Touch screen or voice input can be used for
online data entry, for example, ATM.

There are three major approaches for entering data into
the computer—menus, formatted forms and prompts.

A menu is a selection list that simplifi es computer data
access or entry. The user can choose what to enter from
a list of options. Though a menu limits a user choice of
responses, it reduces the chances of errors in data entry.

A formatted form is a preprinted form or a template that
requests the user to enter data in appropriate locations (fi ll-
in the blank type form). The form is displayed on the screen
and the user can fi ll information by positioning the cursor in
appropriate text boxes.

In prompt, the system displays one inquiry at a time, ask-
ing the user for a response, for example, asking for user-id
and password.

Chapter 1 • Process Life Cycle | 8.83

Output Design
Computer output is the most important and direct source
of information to the user. Efficient and intelligible output
design will improve system’s relationships with the user and
helps in decision making.

The devices available for providing computer-based
output are printer, CRT screen display, audio response
(speaker), plotters, etc.

The task of output preparation is very critical, regaining
skill and ability to align user requirements with the capabili-
ties of the system in operation.

software Process lIfe cycle
A software process can be defined as a frame work of the
activities, actions and tasks that are required to build quality
software.

All these activities, actions and tasks reside within a
frame work or model that defines their relationship with the
process and with one another.

A generic process frame work for software engineering
encompasses five activities:

Communication Proper communication and collaboration
with the customer is made in this activity to understand the
objectives for the project and also to gather requirements
that help to define software features and functions.

Planning This activity develops a software project plan
which defines the software engineering work by specifying
the technical tasks to be conducted, the risks that may occur,
the resources that will require, the work products to produce
and the work schedule.

Modelling A software engineer creates models to better
understand software requirements and the design that will
achieve those requirements.

Construction This activity combines code generation and
testing required to uncover errors in the code.

Deployment In this activity, the software (as a complete
product or as a partial increment) is delivered to the cus-
tomer. The customer evaluates the delivered product and
provides feedback based on evaluation.

Another important aspect of the software process called
process flow describes how the frame work activities and
the actions and tasks that occur within each framework
activity are organized with respect to sequence and time.

Process Quality and Improvement
Quality refers to characteristic or attribute of something.
Process quality factors are portability, usability, reusability,
correctness and maintainability. The process quality is the
implementation of the following steps firstly initiates the
process and design the solutions, implement these solutions
with the impact demonstration.

Linear process flow executes each of the five framework
activities in sequence, beginning with communication and
ends with deployment.

Communication Planning

Modelling Construction Deployment

Iterative process flow repeats one or more of the activities
before proceeding to the next activity.

Communication Planning Modelling

DeploymentConstruction

Evolutionary process flow executes the activities in a cir-
cular manner. Each circuit through the five activities leads
to a more complete version of the software.

Planning

Communication

Increment
released

Deployment

Construction

Modelling

Parallel process flow executes one or more activities in
parallel with other activities.

Communication Planning

Modelling

Construction Deployment

Time

The Unified Process
The unified process (UP) is an attempt to draw on the best
features and characteristics of conventional software pro-
cess models. It recognizes the importance of customer com-
munication and streamlined methods for describing the
customer’s view of a system. It helps the architect focus on
the right goals, such as understandability, reliance to future
changes, and reuse. It suggests a process flow that is itera-
tive and incremental, providing the evolutionary feel that is
essential in modern software development.

8.84 | Unit 8 • Networks, Information Systems, Software Engineering and Web Technology

Planning

Communication

Deployment

Software

Release

Inception Elaboration

Production

Construction

Construction

Transition

Modelling

Figure 1 Phases of the unified process

The unified process is an incremental model in which five
phases are defined:

 1. Inception phase: Encompasses both customer
communication and planning activities and
emphasizes the development and refinement of use
cases as a primary model.

 2. Elaboration Phase: Encompasses the customer
communication and modelling activities focusing
on the creation of analysis and design models with
an emphasis on class definitions and architectural
representations.

 3. Construction phase: Refines and translates the design
model into implemented software components.

 4. Transition phase: Transfers the software from
the developer to the end user for beta testing and
acceptance.

 5. Production phase: Ongoing monitoring and support
are conducted. Defect reports and requests for
changes are also submitted and revaluated.

software Process models

The Waterfall Model
The waterfall model also called classic life cycle, follows
a systematic sequential approach to software development.

Communication

Project initiation
requirements-

gathering

Planning

Estimating
scheduling

tracking

Modelling

Analysis
design

Construction

Code test

Deployment

Delivery support
feed back

It begins with customer specification of requirements and
progresses through planning, modelling, construction and
deployment, culminating in on-going support of the com-
pleted software.

The waterfall model is the oldest paradigm for software
engineering. The problems encountered when this model is
applied are:

 1. Real projects rarely follow the sequential flow that the
model proposes.

 2. This model requires the requirements explicitly which
the customer cannot state all the requirements as it is
difficult.

 3. A working version of the program will not be available
until late in the project time span. If a major blunder
is undetected until the working program is reviewed, it
can be disastrous.

Incremental Process Model
 1. Communication
 2. Planning
 3. Modelling (analysis, design)
 4. Construction (code, test)
 5. Deployment (delivery, feedback)

-
-
-
-

1

1

1 2 3 4 5

2 3

2 3 4 5

Increment-n

Increment-2

4 5

Delivery of 2nd
increment

Increment-1

Delivery of 1st
increment

Calender time →

S
of

tw
ar

e
fu

nc
tio

na
lit

y/
fe

at
ur

es
→

Incremental development is particularly useful when
staffing is unavailable for a complete implementation by
the business deadline that has been established for the
project.

Spiral Model
Spiral model is an evolutionary software process model.
Using spiral model, software is developed in a series of
evolutionary releases. During early iterations, the release
might be a model or prototype. Later iterations produce
more complete versions of the system.

Chapter 1 • Process Life Cycle | 8.85

Start

Estimation
scheduling

 risk analysis

Planning

Communication

Deployment
Delivery
feedback Construction

Code test

Modelling
Analysis
design

The spiral development model is a risk-driven process
model generator that is used to guide multi stakeholder con-
current engineering of software intensive systems.

The spiral model is a realistic approach to the develop-
ment of large scale systems and software. It uses prototyping
as a risk reduction mechanism but, more importantly, enables
the developer to apply the prototyping approach at any stage
in the evolution of the product. At demands a direct consid-
eration of technical risks at all stages of the project.

Conceptual Modelling
Conceptual modelling refers to abstraction of a model
which fits for the purpose. The purpose of this modelling is
to make model valid credible, feasible and useful.

The main objective of conceptual modelling is improvis-
ing the understanding of an individual with respect to the
system, an approach which will convey the system details
among the stakeholders.

For the extraction of system specifications when a soft-
ware is developed, some of the failures could occur in future
due to lack of requirements [unclear requirements (or)
changing requirements] This could be traced with the help
of conceptual modelling.

Prototyping Model
Prototyping model is used when the user is not sure about
the addition of requirements in the product. It is also imple-
mented when the developer is not sure about the algorithm
efficiency, operation system adaptability, etc. Prototyping
paradigm provides the approaches.

The prototyping model is implemented as follows:

1. Communication

4. Deployment
delivery and
feedback

2. Quick plan
and design

3. Prototype
construction

Prototyping model starts with communication in which
software objectives is defined requirement, identification
are done. In quick design, all the software aspects are repre-
sented quick design leads to prototype construction.

This prototype model is deployed, in which require-
ments are evaluated and refined by customer.

The iteration is done until customer gets satisfied with
the needs at the same time developer will come to know
what are the needs to be done.

Disadvantages

 1. Developer may compromise at implementation, as
prototyping works quickly. Un-ideal implementation
issues may become an integral part of the system.

 2. Customer just sees the working version of the
software, he could not able to consider the quality of
software and long-term maintenance.

Though there are some problems with prototyping, but it
is effective paradigm for the software engineering when a
software is developed using prototyping, both developer
and customer should agree on the prototype.

It is more advantageous when the customer and user are
not sure what they want it maintains a template of the older
software.

Role of metrics and measurement
in software development
The software attributes that were present in process, project
and product levels are called measurement.

The metric refers to the attributes that are included in
the project.

A software engineer gets the measurements and devel-
ops the metrics.

Measurement is done in two ways:

 1. Direct measure
 2. Indirect measure

Direct measure includes the lines of code, (least, moder-
ate, worst) execution speed and size of the memory.

Indirect measure is done with the help of functional
points. It measures quality, maintainability, efficiency and
reliability.

Metric is used to control the cost, schedule, project qual-
ity. It means metric provides information for the control of
process development.

Effort distribution with phases
Software development is done in phases. It includes analy-
sis, design, coding and testing.

Design and testing plays major role in development,
while coding is having least preference.

40% of the efforts were done on development and 60%
of efforts are on the maintenance.

8.86 | Unit 8 • Networks, Information Systems, Software Engineering and Web Technology

Distribution of the efforts on the development is shown
below:

Coding Testing

Analysis Design

16%

16%

8%

Analysis
design

4%

Maintenance includes removal of bug and corrective
maintenance, adaptive maintenance and enhancement.
Distribution of efforts in maintenance is shown below:

12%
16%

32%

Bugremoval Adaptive Enhancements

exercIses

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. Which of the following statements is true?
 (A) The first step to the system study project is to an-

nounce the study project.
 (B) During the system study analysis determine manager’s

information needs by asking questions.
 (C) During the system study, flowcharts are drawn us-

ing general symbols.
 (D) All the above
 2. Which of the following statement(s) is true regarding

the spiral model of software development?
 (A) In the spiral model of software development, the pri-

mary determinant in selecting activities in each inter-
action is risk.

 (B) The spiral model is a risk driven process model gen-
erator that is to guide multi-stakeholder. Concurrent
engineering of software intensive systems.

 (C) Using the spiral model, software is developed in a
series of evolutionary releases.

 (D) All the above
 3. Which of the following is a step in feasibility analysis?
 (A) Form a project team and appoint a project head.
 (B) Determine and evaluate performance and cost

effectiveness of each candidate system.
 (C) Weigh system performance and cost data.
 (D) All the above
 4. Which of the following statement(s) is true?
 (A) The risk driven nature of the spiral model allows it

to accommodate any mixture of specification ori-
ented or some other approach.

 (B) Each cycle of spiral is completed by review which
covers all the products developed during that cycle,
including plans for the next cycle.

 (C) Spiral model works for development as well as
enhancement project.

 (D) All the above

 5. Data flow diagram, regular expression and transition
table can be combined to provide

 (A) decision table for functional specification of sys-
tem software.

 (B) finite state automata for functional specification of
system software.

 (C) event table for functional specification of system
software.

 (D) None of these

 6. Which of the following statements are true about soft-
ware configuration management tool?

 (A) It keeps track of the schedule based on the mile
stones reached.

 (B) It manages man power distribution by changing
the structure of the project.

 (C) It maintains different versions of the configurable
items.

 (D) All the above

 7. The cost incurred on a project was `250,000 and bene-
fits were `30,000 per month. The payback period using
simple pay back method is

 (A) 8 months (B) 8.3 months
 (C) 12 months (D) 1.2 months

 8. Which of the following phase has the maximum effort
distribution?

 (A) Testing (B) Information gathering
 (C) Requirement analysis (D) Coding

 9. Which of the following statement is true regarding cost
benefit analysis?

 (A) It evaluates tangible and non-tangible factors.
 (B) It estimates the hardware and software costs.
 (C) It compares the cost with the benefits of introduc-

ing a computer-based system.
 (D) All the statements are true.
 10. A project is considered economically feasible if the fol-

lowing factor holds good.
 (A) Return on investment (ROI)
 (B) Total cost of ownership (TCO)

Chapter 1 • Process Life Cycle | 8.87

 (C) Gross domestic product (GDP)
 (D) Net present value (NPV)
 11. At the end of the feasibility study the system analyst
 (A) meets the users for a discussion.
 (B) gives system proposal to management.
 (C) gives a feasibility report to management.
 (D) gives a software requirement specification (SRS).

 12. In a data flow diagram, data flows cannot take place
between

 (A) two data stores
 (B) two external entities
 (C) a data store and an external entity
 (D) Both (A) and (B)

 13. Consider the decision table shown below. It is

R1 R2 R3 R4

C1 Y Y Y N

C2 Y N Y Y

C3 Y Y

A1 X X

A2 X X

 (A) an ambiguous decision table.
 (B) a complete decision table.
 (C) an incomplete decision table.
 (D) Both (A) and (B)

 14. Which of the following requirement specifications can
be validated?

 (S1): If the system fails during any operation, there
should not be any loss of data.

 (S2): Checking the hardware compatibility.
 (S3): Defining a data interface.
 (S4): Specification of response time for various functions.
 (A) S1 and S2 (B) S2, S3 and S4
 (C) S1, S3 and S4 (D) S1 and S4

 15. Which of the following are true?
 (i) A DFD should have loops.
 (ii) A DFD should not have crossing lines.
 (iii) Leveled DFD is easier to understand.
 (iv) Context diagrams are not used in DFDs.
 (A) (ii) and (i) (B) (i) and (iv)
 (C) (ii) and (iii) (D) (iii) and (iv)

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. Questionnaire consists of
 (A) Forms (B) Documents
 (C) Qualitative data (D) Quantitative data
 2. The method to obtain qualitative information is
 (A) Background information
 (B) Questionnaires
 (C) Interviewing technique
 (D) Journals and reports on similar systems

 3. Which among the following is a functional requirement?
 (A) Description of all input data and their sources
 (B) Capacity requirements
 (C) Operating system available on the system
 (D) Maintaining a log of activities
 4. The advantage of use case during requirement analysis

phase is, it
 (A) focuses on external behaviour only.
 (B) focuses on internal behaviour only.
 (C) focuses on additional behaviour.
 (D) focuses on internal and external behaviour.

 5. Operational feasibility refers to
 (A) technology needed is available and if available

whether it is usable
 (B) the proposed solution can fit in with existing

operations
 (C) the money spent is recovered by savings
 (D) superior quality of products

 6. Software engineering is the application of
 (A) Systematic approach of the development
 (B) Quantifiable approach of the development
 (C) Discipline approach of the development
 (D) All of these

 7. The data flow model of an application mainly shows:
 (A) The underlying data and the relationship among them
 (B) Processing requirement and the flow of data
 (C) Decision and control information
 (D) Communication network structure

 8. DFD completeness is
 (A) The process of discovering discrepancies between

two or more sets of DFDs or discrepancies within a
single DFD.

 (B) The extent to which all necessary components of
a data flow diagram have been included and fully
decomposed.

 (C) The conversation of inputs and outputs to a DFD
process when that process is decomposed to a low-
er level.

 (D) An iterative process of breaking the description of a
system down into a finer and finer details, which cre-
ates a set of charts in which one on a given chart is
explained in greater detail on another chart.

 9. The requirement analysis is performed in
 (A) System design phase
 (B) System development phase
 (C) System analysis phase
 (D) System investigation phase

8.88 | Unit 8 • Networks, Information Systems, Software Engineering and Web Technology

 10. In data flow diagram, an originator or receiver of data is
usually designed by

 (A) square box (B) circle
 (C) rectangle (D) arrow
 11. A feasibility document should contain all the following

except
 (A) project name
 (B) problem description
 (C) feasible alternative
 (D) data flow diagrams

 12. SRS document is _______ between customers and
developers.

 (A) legal contract
 (B) standard
 (C) request proposal
 (D) None of the above

 13. According to Brooks, adding more people to an already
late software project makes it

 (A) late
 (B) fast
 (C) does not impact schedule
 (D) None of the above

 14. The following is a quality metric:
 (A) Correctness
 (B) Maintainability
 (C) Usability
 (D) All of the above
 15. Feasibility study should focus on
 (A) Technical feasibility
 (B) Economic feasibility
 (C) Operational feasibility
 (D) All of the above

PrevIous years’ questIons

 1. What is the appropriate pairing of items in the two
columns listing various activities encountered in a
software life cycle? [2010]

P
Requirements

capture
1 Module development

and integration

Q Design 2 Domain analysis

R Implementation
3 Structural and behavioural

modelling

S Maintenance 4 Performance tuning

 (A) P–3, Q–2, R–4, S–1
 (B) P–2, Q–3, R–1, S–4
 (C) P–3, Q–2, R–1, S–4
 (D) P–2, Q–3, R–4, S–1

 2. Which one of the following is NOT desired in a good
SRS document? [2011]

 (A) Functional requirements
 (B) Non-functional requirements
 (C) Goals of implementation
 (D) Algorithms for software implementation

answer Keys

exercIses

Practice Problems 1
 1. D 2. D 3. D 4. D 5. B 6. C 7. B 8. A 9. B 10. A
 11. C 12. D 13. C 14. B 15. C

Practice Problems 2
 1. D 2. C 3. A 4. A 5. B 6. D 7. B 8. B 9. C 10. A
 11. D 12. A 13. A 14. D 15. D

Previous Years’ Questions
 1. B 2. D

	Unit 8: Networks, Information Systems, Software Engineering and Web Technology
	Part B: Information Systems
	Chapter 1: Process Life Cycle
	IntroductIon
	Process Versus Program
	Software Components and Elements
	Information Gathering
	Requirement Analysis
	Feasibility Analysis
	Data Flow DIagrams (DFD)
	Processs PecIfIcatIon (PSPEC)
	Input/Output Design
	Software Process Life Cycle
	Software Process Models
	Exercises
	Previous Years’ Questions
	Answer Keys

