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CHAPTER HIGHLIGHTS

Dynamics
Dynamics is the branch of mechanics dealing with the 
motion of a particle or a system of particles under the action 
of a force. Dynamics is broadly divided into two categories:

 1. Kinematics
 2. Kinetics

Kinematics is the study of motion of a body without any 
reference to the forces or other factors which causes the 
motion. Kinematics relates displacement, velocity and 
acceleration of a particle of system of particles.

Kinetics studies the force which causes the motion. 
It relates the force and the mass of a body and hence the 
motion of the body. So in fact, the motion of a particle or 
body is largely covered and interpreted by Kinematics and 
Kinetics.

Types of Motion
The rate of change of position is motion. The type of motion 
is explained by the type of path traced by it. If the path 
traced is a straight line, the motion is said to be rectilinear 
motion or translation.

If the path traced by the motion (or path traversed by 
the particle) is a curve, it is known as curvilinear motion. 
When the curve becomes a circle, then it is known as cir-
cular motion.

The two types of motion, i.e., rectilinear and curvilinear 
motions, explained above can be together termed as the gen-
eral plane motion.

Rectilinear Motion: Displacement, 
Distance, Velocity and Acceleration
 1. Displacement and distance:

A B

x x
x

  Let the particle be at the position A at any point of time 
t. Let the position of the particle be at B at time t + dt 
(dt > 0). Then the particle is said to move from A to 
B. The change in position is the displacement x. It is 
the shortest distance between A and B. Distance is the 
length of the path described by the particle from point 
A to point B.

y

z
x

R

P Q

  Let a body start from a point P and move towards a 
point Q and then turn and reach a point R. During this 
course of motion, the total displacement is denoted by 
x. The distance traversed is given by y + z.

When the motion of a particle is considered along a line 
segment, both distance and displacement are the same in 
magnitudes.

NOTE

Rectilinear Motion

Chapter 4
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  Motion can also be defined as the change in the posi-
tion of a body with respect to a given object. The posi-
tion of a point P at any time t is expressed in terms of 
the distance x from a fixed origin O on the reference 
x-axis, y-axis or z-axis and can be taken as positive or 
negative as per the usual sign convention.

P + x
−x

P1

X1

X2

P2

X

• • • •
O

 2. Average velocity: The average velocity vav of a point 
P, in the time interval between t + Dt and t, i.e., in 
the time interval Dt, during which its position changes 

from x to x + Dx is defined by v
x

t
av =

D
D

.

P1PO

x

• • •

t t + Dt 

Dt 

 3. Instantaneous velocity and speed: The instantane-
ous velocity v of a point P at time t is the limiting 
value of the average velocity as the increment of time 
approaches zero as a limit. Mathematically it can be 
expressed as:

v
x

t

dx

dtt
= =

→
Limit
D

D
D0

  The velocity v is positive if the displacement x is 
increasing and the particle is moving in a positive direc-
tion. The unit of velocity is metre per second (m/s).

   If s is the distance covered by a moving particle at 

time t, then speed =
ds

dt
.  The unit of speed is the same 

as that of the velocity.

 4. Average acceleration: The average acceleration a av
 of 

a point P, in the time interval between t + Dt and t, 
i.e., in the time interval Dt, during which its velocity 

changes from v to v + Dv is defined by a
v

t
av =

D
D

.

 5. Instantaneous acceleration: The instantaneous accel-
eration of a point P is the limiting value of the average 
acceleration as the increment of time approaches zero. 
Mathematically it can be expressed as:

a
v

t

v

dtt
= =

→
Limit
D

D
D0

d

  Then,

a
dv

dt

d x

dt
= =

2

2

  Now,

a
dv

dt

dv

dx

dx

dt

dv

dx
v= = × = ×

Acceleration is positive when velocity is increasing. A posi-
tive acceleration means that the particle is either moving 
further in a positive direction or is slowing down in the 
negative direction.

Retardation or deceleration of a body in motion is 
the negative acceleration, i.e., retarding acceleration. 
Acceleration is the rate of increase in the velocity and 
deceleration is the rate of decrease in the velocity.

Uniform Motion
When a particle moves with a constant velocity so that its accel-
eration is zero, then the motion is termed as uniform motion.

Uniformly Accelerated Motion
When a particle moves with a constant acceleration, then 
the motion is termed as a uniformly accelerated motion.

Motion at a Uniform Acceleration
Let the uniform acceleration be ‘a’. Then

v = u + at

And,

v2 = u2 + 2as

s = ut +
1

2
at2

sn = u + a n -⎛
⎝⎜

⎞
⎠⎟

1

2

Where,
v – Velocity at any time instant t (secs)
u – Initial velocity
s – Distance travelled during the time t (secs)
sn – Distance travelled at the nth second

For motion under constant retardation or deceleration, 
assign negative sign for acceleration (a).

NOTE

Vertical Motion Under Gravity
A body in motion above the ground will be under influence 
of the gravitational force of attraction (g). If the body moves 
upwards then it is subjected to gravitational retardation, i.e., 
a = -g. Then, the equations for the upward motion of a body 
under gravity will be

v = u - gt

v2 = u2 – 2gs

s = ut - 
1

2
 gt2

sn = u – g n -⎛
⎝⎜

⎞
⎠⎟

1

2
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If the body moves downwards then it is subjected to gravi-
tational attraction and hence an acceleration, i.e., a = g. 
Then, the equations for the downward motion of a body 
under gravity will be

 v = u + gt
 v2 = u2 + 2gs

s = ut + 
1

2
 gt2

sn = u + g(n – 
1

2
)

1. For a body that is just dropped, a = g and u = 0.
2.  The final vertical velocity of a body thrown upwards as 

it reaches the maximum height, will be zero, i.e., v = 0.

NOTES

Motion Curves
These are the graphical representation of displacement, 
velocity and acceleration against time.

t

dt
dv

v

dt
ds

s

a

a

v

s

Considering the general case of acceleration not being a 
constant, the above graphical representation is made. 

The slope of the displacement-time curve → Velocity

The slope of the velocity-time curve → Acceleration

The area under the velocity-time curve → Displacement

The area under the acceleration-time curve → Velocity

Solved Examples

Example 1: A particle has two velocities v1 and v2. Its 
resultant is v1 in magnitude. When the velocity v1 is doubled, 
the new resultant is
(A) Perpendicular to v2 (B) Parallel to v2
(C) Equal to v2 (D) Equal to 2 v2

Solution:
Applying the principle of vector, the magnitude of the 
resultant between 

� �
v v1 2+

Given that 
� � �
v v v1 2 1+ =

Squring both side,

                       
� � �
v v v1 2

2
1
2+ =

    ∴ + ⋅ + =( ) ( ) .
� � � � � �
v v v v v v1 2 1 2 1 1

� � � � � � � �
v v v v v v v v1 1 1 2 2 2 1 12⋅ + ⋅ + ⋅ = ⋅

             2 01 2 2 2
� � � �
v v v v⋅ + ⋅ =

                ( ) .2 01 2 2
� � �
v v v+ ⋅ =

Dot product zero means the new resultant between 2v1 and 
v2 is at right angles to v2.

Example 2: If the two ends of a train, moving with a 
constant acceleration, pass a certain point with velocities u 
and v respectively, the velocity with which the middle point 
of the train passes through the same point is

(A) u v+
2

 (B) 
u v

u v

2 2+
+

(C) u - v (D) u v2 2

2

+

Solution:
We have the relation v2 = u2 + 2as (1)

If v is the velocity with which the mid point of the train 
crosses the point, we have

  v2 = u2 + 2 a
s

2
 (2)

Eliminating s from (1) and (2), 
We have,

v2 - u2 = as

And,

v2 - u2 = 2as

Now,

v u

v u

2 2

2 2

1

2

-
-

=

∴ 2v2 - 2u2 = v2 - u2

Or,                                       2v2 = v2 + u2

Now,                                     v
v u2

2 2

2
=

+

                  
∴ =

+
v

v u2 2

2
.

Direction for examples 3 and 4: The motion of a particle 
is defined as s = 2t3 – 6t2 + 15, where s is in metres and t is 
in seconds. 

Example 3: The acceleration when the velocity is zero is

(A) 2 2m/s  (B) 8 m/s2

(C) 6 m/s2  (D) 4 m/s2

Solution:
    s = 2t3 – 6t2 + 15

ds

dt
t t= 6 122 –

  
a

ds

dt
t= = -

2

2
12 12
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When velocity is zero, 6t2 – 12t = 0,

∴ t = 2 sec

Then acceleration is, a = 12 × 2 – 12 = 12 m/s2

Example 4: The minimum velocity is 

(A) -2 m/s  (B) 6 m/s

(C) -6 m/s  (D) 2 m/s

Solution:

Velocity is minimum when 
dv

dt
= 0,  i.e., when 12t – 12 = 0,

∴ t = 1 sec

(Velocity)min = = = -6 12 6 12 62t t– – m/s

Example 5: The velocity of a particle along the x-axis is 
given by v = 5x3/2 where x is in metres and v is in m/s.

The acceleration when x = 2m is 

(A) 300 2m/s  (B) 200 2m/s

(C) 180 2m/s  (D) 150 2m/s

Solution:

Given v = 5x3/2, differentiating with respect to t, we have

dv

dt
x

dx

dt
= × ⎛

⎝⎜
⎞
⎠⎟

-5
3

2
3 2 1/

= =
15

2
1 2x

dx

dt
but

dx

dt
v/ ,

∴ = × =a x x x
15

2
5

75

2
1 2 3 2 2/ /

When m/sx a= = × =2
75

2
4 150 2, .

Example 6: A particle is moving in a straight line starting 
from rest. Its acceleration is given by the expression a = 
50 – 36t2, where t is in seconds. The velocity of the particle 
when it has travelled 52 m can be 
(A) 2 3. m/s  (B) 4 m/s

(C) 6 7. m/s  (D) 8 m/s

Solution:

Given,

a = 50 – 36t2

So, 
dv

dt
 = 50 – 36t2

Or, dv = 50dt – 36t2 dt
Integrating the above equation, we have

v t
t

C t t C= - + = - +50 36
3

50 12
3

3

When t = 0, v = 0
∴ C = 0
∴ v = 50t – 12t3

ds

dt
t t= -50 12 3

Integrating, s
t t

C= - +50
2

12
4

2 4

1

= 25t2 – 3t4 + C1
When t = 0, s = 0
∴ C1 = 0
s = 25t2 – 3t4

Here we can find the time when s = 52 m.
∴ 25t2 – 3t4 = 52
Let t2 = u, then 25u – 3u2 = 52

3u2 - 25u + 52 = 0

                     
u =

± -25 625 624

6

                     
u =

±
=

25 1

6

26

6

24

6
or

Case 1: when t2 24

6
4= =

                     ∴ t = 2 sec 
v = 50t – 12t3

= 50 × 2 - 12 × 8
= - =100 96 4 m/s

Case 2: when t2 26

6
4 333= = .

∴ t = 2.08 sec

The value of the velocity calculated with this t value is not 
available in the options provided.

Example 7: A body dropped from a certain height covers 
5

9
th of the total height in the last second, the height from 

which the body is dropped is
(A) 36.8 m (B) 40.3 m
(C) 44.1 m (D) 50.6 m

Solution:
Let ‘h’ be the height and let ‘n’ be the time taken for the 
fall. Then,

s u a n= + -⎛
⎝⎜

⎞
⎠⎟

1

2

5

9
0

1

2
h g n= + -⎛

⎝⎜
⎞
⎠⎟

  
5

9

1

2
h g n= -⎛

⎝⎜
⎞
⎠⎟  (1)

Also, h = un + 1

2
 an2

  h = 0 + 1

2
 gn2 (2)
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Putting (2) in (1), 

5

9

1

2

1

2
2× = -⎛

⎝⎜
⎞
⎠⎟gn g n

∴ 5n2 – 18n + 9 = 0
5n2 – 15n – 3n + 9 = 0
5n(n - 3) – 3(n - 3) = 0
∴ (5n – 3)(n – 3) = 0

∴ = = >n n n
3

5
3 1or but ,

∴ n = 3

∴ h = 
1

2
 gn2

 = 
1

2
 × 9.81 × 9 = 44.1 m.

Example 8: A stone falls past a window 2 m high in a time 
of 0.2 seconds. The height above the window from where 
the stone has been dropped is 
(A) 4.15 m (B) 5.23 m 
(C) 5.87 m (D) 6.32 m

Solution:

window

A

h

The stone is dropped from A. Let the body reach the top of 
the window with a velocity of u m/s. Then, 

u2 = 02 + 2gh
u2 = 2gh (1)

Falling with an initial velocity u, it covers the window 2 m 
high in 0.5 seconds. 

s = ut + 
1

2
 at2 

2 = u × 0.2 + 
1

2
 × 9.81 × 0.22

2 = 0.2u + 
1

2
 × 9.81 × 0.04

2 = 0.2u + 9.81 × 0.02
u = 9.019 m/s 

From (1), u2 = 2gh,

∴
×

=h
9 019

2 9 81
4 145

2.

.
. .m

Example 9: A ball is projected vertically upwards with a 
velocity of 49 m/s. If another ball is projected in the same 
manner after 2 seconds, and if both meet t seconds after the 
second ball is projected, then t is equal to 
(A) 3 s (B) 10 s
(C) 5 s (D) 6 s

Solution:
Let both the balls meet T seconds after the first ball is pro-
jected. Therefore when the balls meet, for the first ball,

h = 49 × T – 
1

2
 gT2

For the second ball, 

h = 49 × (T - 2) – 
1

2
 g(T - 2)2

Equating, 49T – 
1

2
 gT2 = 49 (T - 2) – 

1

2
 g(T - 2)2

∴ T = 11.99 sec

∴ t = T – 2 = 9.99 sec ≈ 10 sec

Example 10: Two bodies are moving uniformly towards 
each other. The distance between them decreases at a rate 
of 6 m/s. If both the bodies move in the same direction with 
the same speeds, then the distance between them increases 
at a rate of 4 m/s. The respective speeds of the bodies are 
(A) 3 m/s and 1 m/s (B) 5 m/s and 1 m/s
(C) 4 m/s and 2 m/s (D) 3 m/s and 5 m/s

Solution:
Let u and v be the velocities of the bodies. From the state-
ment of the problem, 

u + v = 6
u – v = 4

∴ u = 5 m/s and v = 1 m/s.

Example 11: Two cars are moving in the same direction 
each with a speed of 45 km/h. The distance separating 
them is 10 km. Another vehicle coming from the opposite 
direction meets these two cars in an interval of 6 minutes. 
The speed of the vehicle is 
(A) 45 km/h (B) 50 km/h
(C) 55 km/h (D) 60 km/h

Solution:
The distance between the cars moves with a velocity of 45 
km/h. If the speed of the vehicle is u, then its velocity rela-
tive to the moving distance is 45 + u m/s.

It takes 6 minutes to cover the distance of 10 km. 

∴ + × =( )45
6

60
10u

∴ 45 + u = 100
u = 55 km/h.

Motion under Variable Acceleration
In practical conditions a body may very often move with 
variable acceleration. The rate of change of velocity will not 
remain constant. We know that acceleration,

a
dv

dt

dv

ds

ds

dt
= = ⋅

Or        a v
dv

ds
= ⋅

Also when displacement can be expressed as a third degree 
or higher degree equation in time, the acceleration becomes 
a variable with respect to time.
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For example, if s = 4t3 + 3t2 + 5t + 1

ds

dt
t t= + +12 6 52

 

d s

dt
t

2

2
24 6= +

The velocity and displacement are evaluated by integration. 

Example 12: A body is starting from rest and moving 
along a straight line whose acceleration is given by f = 
10 – 0.006x2 where x is the displacement in m and f is the 
acceleration in m/s2. The distance travelled by it when it 
comes to rest is

(A) 70.7 m (B) 68.3 m
(C) 62.6 m (D) 58.5 m

Solution:

Given that f = 10 – 0.006x2

 
dv

dt
x= -10 0 006 2.

dv

dx

dx

dt
x⋅ = -10 0 006 2.

 
v

dv

dx
x⋅ = -10 0 066 2.

vdv = (10 – 0.006x2)dx integrating

v

v
x

x
C

2 3

10 0 006
3

= - +.

when x = 0, v = 0

∴ C = 0

v
x

x2 3

2
10 0 006

3
= - .

v2 = 20x – 0.004x3

when v = 0; 20x – 0.004x3 = 0
∴ 0.004x2 = 20 (note that the solution of x = 0 is also pos-
sible for the above equation, but the value of x > 0 is sought 
for) ∴ x = 70.7 m.

Direction for examples 13 and 14: An electric train starting 
from rest has an acceleration f in m/s2. which vary with time 
as shown in the table below:

t(secs) 0 6 12 18

f 2

m
s

 
   12 10 9.5 8

Example 13: The velocity at the end of the first 6 seconds is

(A) 18 m/s  (B) 27 m/s

(C) 43 m/s  (D) 66 m/s

Solution:
During the first 6 seconds, the average acceleration 

=
+

=
12 10

2
11 2m/s

∴ Increase in velocity during this interval of 6 seconds 

= average acceleration × 6 = 66 m/s

∴ Velocity at the end of 6 second = .66 m/s

Example 14: The distance travelled during these six 
seconds is
(A) 242 m (B) 218 m
(C) 198 m (D) 124 m

Solution:
Average velocity during this interval

=
+

=
0 66

2
33 m/s

∴ Distance travelled during this interval = 33 × 6 = 198 m.

Example 15: At any instant, the acceleration of a train 

starting from rest is given by f
u

=
+

10

1
 where u is the 

velocity of the train in m/s.  The distance at which the train 
will attain a velocity of 54 km/h is
(A) 123.7 m (B) 185.4 m
(C) 214.4 m  (D) 228.2 m

Solution:

It is given f
u

=
+

10

1

u
du

dx u
⋅ =

+
10

1

u(u + 1)du = 10dx

Integrating we have, 
u u

x c
3 2

3 2
10+ = +

when x = 0, u = 0.
∴ c = 0

u u
x

3 2

3 2
10+ =

when u = 54 km/h = 54 × 5/18 = 15 m/s

15

3

15

2
10

3 2

+ = x

1125 + 112.5 = 10x

                    ∴ x = 123.7 m.

Example 16: The motion of a particle is given by the 
equation a = t3 – 3t2 + 5, where ‘a’ is acceleration in m/
s2 and t is time in seconds. It is seen that the velocity and 
displacement of the particle at ‘t’ = 1 sec are 6.25 m/s and 
8.3 m respectively. Then the displacement at time t = 2 sec is 
(A) 17.3 m (B) 15.6 m
(C) 14.8 m (D) 12.6 m
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Solution:
Given a = t3 – 3t2 + 5

dv

dt
t t= +3 23 5–

Integrating, v
t t

t c= - + +
4 3

4
3

3
5 at  t = 1 sec, v = 6.25 m/s 

i.e.,

      6 25
1

4
1 5. = - + + c

= 4.25 + c
∴ c = 2

∴ = - + +v
t

t t
4

3

4
5 2

ds

dt

t
t t= - + +

4
3

4
5 2

Integrating, s
t t t

t c= - + ⋅ + +
5 4 2

20 4
5

2
2 , at t = 1, s = 8.3 m

8 3
1

20

1

4

5

2
2. ,= - + + + c

  
8 3

1

20
4 25. . ,= + + c

c = 8.3 – 4.25 – 0.05 = 4.05 – 0.05 = 4

s
t t t

t= - + ⋅ + +
5 4 2

20 4
5

2
2 4

s at t = 2 sec is 

s = - + + +
32

20

16

4
10 4 4

 
= + =

32

20
14 15 6. .m

Example 17: In the figure shown, AB is the diameter ‘d’ of 
the circle and AC is the chord of the same circle?

A

B
C

a

Making an angle α with AB. Two particles are dropped from 
rest one along AB and the other along AC. If t1 is the time 
taken by the particle to slide along AB and t2 is the time 
taken to slide along AC, then t1: t2 is 

(A) 1:cosa  (B) 1:seca
(C) 1:1 (D) 1:15

Solution:
Let AB = l, AC = l cosα 

Consider sliding along AC, acceleration is gcosα 
We have,

s ut at= +
1

2
2

Now,

l g tcos cosα α= +0
1

2 2
2

          ∴ = =t t
l

g

l

g2
2

2
2 2

or

Consider sliding along AB, 

I gt= +0
1

2 1
2

 
t

l

g
1

2
=

 ∴ t1:t2 = 1:1.

Relative Velocity
The motion of one body with respect to another moving 
body is known as relative motion.

Take the case of two bodies P and Q moving along the 
same straight line. The position of the bodies is specified 
with reference to an origin O.

xP and xQ are measured from the origin O. The difference 
xQ - xP defines the relative position of Q with respect to P. 
It is denoted as 

xQ/P = xQ - xP

∴ xQ = xP + xQ/P

Consider the rate of change of displacement, then 

xxx
P QQ

xQ

xP

vQ/P = vQ - vP

∴ vQ = vP + vQ/P

Similar relations hold good for acceleration also, i.e.,

∴ aQ = aP + aQ/P

Working rule: Let two particles A and B move with veloci-
ties v1 m/s and v2 m/s respectively in directions as shown in 
the following figure.

vA = v1

vB = v2 m/sec 

If we want to find out the velocity of A relative to B, the 
velocity of B is to be made zero. For that we provide veloc-
ity v2 in the reverse direction of OB and find the vector sum 
with v1 = OA. 
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D

C
V O B

A

v

v1 v11

The vector OD
� ���

 gives both the magnitude and direction of 
the velocity of A relative to B. 

Another method is to resolve their velocities into their 
components with sign. Then evaluate the relative velocity 
in the x-direction and in the y-direction. Find their result-
ant vector. This vector will be the relative velocity, both in 
magnitude and in direction. 

Example 18: Two boats start from a point at the same 
time. The boat A has a velocity of 30 km/h and move in 
the direction N 30° W. The boat moves in the south west 
direction with a velocity of 40 km/h. The distance between 
the boats after half an hour is
(A) 27.9 km (B) 32.3 km
(C) 36.7 km (D) 42.3 km

Solution:

Method 1:

O

N

E

S

W

40 km/h

30 km/h 

45°

30°

Resolving along the x-axis, 
( ) ( sin )v iA x = - °30 30

�
for A and 

( ) ( cos ) ,v i BB x = - °40 45
�

for  where 
�
i is a  unit vector along 

the x-axis. 

(vA/B)x = (vA)x - (vB)x

= ° °–( sin ) – (– cos )30 30 40 45
� �
i i

= ⎛
⎝⎜

⎞
⎠⎟

-
40

2
15
�
i

= 13 28.
�
i km/h

Similarly, (vA/B)y = (vA)y - (vB)y

= ° - - °( cos ) ( sin ) ,30 30 40 45
� �
j j

Where 
�
j  is a unit vector along the y-axis.

=
⎛

⎝⎜
⎞

⎠⎟
=+

40

2
30

3

2
54 26

� �
j j. km/h

   
vA B/ . . .= =+54 26 13 282 2 55 86 km/h

The relative distance after half an hour = × =55 86
1

2
27 9. . km.

Method II:

O

N

E

B

B′
A

C

W

40 km/h

30 km/h 

45°

30°

The vector OC
� ���

 is the resultant velocity vector. Velocity of 
B is reversed and considered. Therefore the resultant is the 
velocity of A relative to B.

 OC
� ���

= + + × × × °40 30 2 40 30 752 2 cos

=  m/s1600 900 40 60 0 258 55 86+ + × × =. .

Relative distance after half and hour

= × =55 86
1

2
27 9. . km.

Example 19: A vessel which can steam in still water with 
a velocity of 48 km/h is steaming with its bow pointing due 
east. It is carried by a current which flows northward with a 
speed of 14 km/h. The distance it would travel in 12 minutes is
(A) 14 km (B) 12 km
(C) 10 km (D) 8 km

Solution:
N

E

14 km/h

14 km/h 
48 km/h

To find the velocity of the steamer relative to the flow, the 
flow velocity is reversed and vector sum is found. 

Relative velocity = km/h48 14 502 2+ =

Distance after 12 minutes = ×50
12

60
= 10 km.

Example 20: A man keeps his boat at right angles to the 
current and rows across a stream 0.25 km broad. He reaches 
the opposite bank 0.125 km below the point opposite to the 
starting point. If the speed of the boat in rowing alone is 
6 km/ph, the speed of the current is 
(A) 5 km/h (B) 4 km/h
(C) 3 km/h (D) 2 km/h

Solution:
The speed responsible for reaching the opposite side is the 
rowing velocity 6 km/h. Due to the velocity of the current 
by the time the boat can cross the stream with its absolute 
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velocity, the boat flows down 0.125 km due to the speed of 
the current. 

Time for crossing = =
0 25

6
0 04166

.
. hr

Let the stream velocity be v m/s. 

∴ Resultant speed = +v2 26

0.125 km

0.25 km

O

A

The distance covered by the boat within this time is 

OA = +0 25 0 1252 2. .

∴ × + = +0 04166 6 0 25 0 1252 2 2 2. . .v

∴ v = 3 km/h.

Example 21: A boat of weight 45 kg is initially at rest. A 
boy of 32 kg is standing on it. If he jumps horizontally with 
a speed of 2 m/s relative to the boat, the speed of the boat is
(A) 2 m/s  (B) 3.42 m/s
(C) 4.92 m/s (D) 5.36 m/s

Solution:
Given vA/B = 2 m/s
It is relative velocity of the boy with respect to the boat. 

vA/B = vA - vB

2 = vA - vB

∴ vA = 2 + vB

By conservation of momentum, 

      0 = 32 (2 + vB) – 45 vB = 64 – 13 vB

∴ vB = 4.92 m/s.

Example 22: A stream of water flows with velocity of  
1.5 km/h. A swimmer swims in still water with a velocity 
of 2.5 km/h. If the breadth of the stream is 0.5 km, the 
direction in which the swimmer should swim so that he can 
cross the stream perpendicularly is 
(A) 26° with the vertical
(B) 29.4° with the vertical 
(C) 32.5° with the vertical 
(D) 36.8° with the vertical 

Solution:

0.5 km

1.5 km/h

1.5 km/h

2.5 km/h 

O

A

q

The swimmer must swim in the direction OA with velocity 
2.5 m/s so that he can cross the stream at right angles. 

From geometry 2.5 sinθ = 1.5

∴ = =sinθ 1 5

2 5
0 6

.

.
.

 θ = 36.8°.

Example 23: An aeroplane is flying in a horizontal 
direction with a velocity of 1800 km/h. At a height of 1960 
metres, when it is above a point A on the ground, a body is 
dropped from it. If the body strikes the ground at point B, 
then the distance AB is 
(A) 18 km (B) 15 km
(C) 10 km (D) 8 km

Solution:
The time taken by the body to fall down the distance 
1960 m is

h gt=
1

2
2

1960
1

2
9 8 2= . t

2 1960

9 8
2×

=
.

t

400 = t2; t = 20 sec

AB v t= × =
×

× =
1800

60 60
20 10 km

Example 24: Two ships leave the port at the same time. The 
first ship A steams north-west at 32 km/h and the second 
ship B 40° south of west at 24 km/h. The time after which 
they will be 160 km apart is
(A) 2.15 hrs (B) 2.86 hrs 
(C) 3.46 hrs (D) 4.19 hrs

Solution:
Let us find the velocity of the second ship relative to the first. 
For that consider the velocity of the first ship in the reverse 
direction and evaluate the vector sum of the velocities.

Resultant or velocity of B relative to A is

= + + × × °24 32 2 32 24 952 2 cos

 = =1466 38 3. km/h

O

N

E

SB

A

W

24 km/h 

32 km/h 

45°

40°
95°

Time for two ships to be 160 km apart = =
160

38 3
4 19

.
. hrs.
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Example 25: A particle is accelerated from (1, 2, 3), where 
it is at rest, according to the equation a ti t j= +6 24 2

� �
–  

10 2
�
km/s ,  where 

� � �
i j k, and  are unit vectors along the x, y 

and z axes. The magnitude of the displacement after the 
lapse of 1 second is 

(A) 5 m (B) 30 m

(C) 6 m (D) 47 m

Solution:

It is given that a ti t j k= - +6 24 102
� � �

–∴ = + +v t i t j t k c3 8 102 3
� � �

when t = 0, v = 0
               ∴ c = 0

∴ = +–v t i t j tk3 8 102 3
� � �

dx

dt
t i t j tk= - +3 8 102 3
� � �

x
t

i
t

j
t

k C= - + +3
3

8
4

10
2

3 4 2� � �

x t i t j t k C= - + +3 4 22 5
� � �

when t = 0, position of the particle is at (1, 2, 3) i.e., at t = 0, 

x i j k= + +1 2 3
� � �

 ∴ = + +C i j k1 2 3
� � �

∴ = - + + + +x t i t j t k i j k3 4 22 5 1 2 3
� � � � � �

= + - - + +( ) ( ) ( )t i t j t k3 4 21 2 2 3 5
� � �

When t = 1,

x i k= +2 8
� �

∴ Displacement vector 

= + - + + = - +2 8 1 2 3 1 2 5
� � � � � � � �
i k i j k i j k( )

Magnitude of the displacement vector 

= + + =1 4 25 30 m.

Example 26: If a particle, moving with uniform accelera-
tion, travels the distances of 8 and 9 cms in the 5th sec and 
9th sec respectively, then its acceleration will be
(A) 1 cm/s2 (B) 5 cm/s2

(C) 25 cm/s2 (D) 0.5 cm/s2

Solution:

s in the nth sec = + -u
a

n
2

2 1( )

  8
2

2 5 1 4 5= + × - = +u
a

u a( ) .  (1)

  9
2

2 9 1 8 5= + × - = +u
a

u a( ) .  (2)

Subtracting Eq. (1) from Eq. (2),

1 = 4a or a = 0.25 cm/s2.

Example 27: The acceleration due to gravity on a planet is 
200 cm/s2. If it is safe to jump from a height of 2 m on earth, 
then the corresponding safe height on the planet is
(A) 2 m (B) 9.8 m
(C) 10 m (D) 8 m

Solution:
Let hse and hsp denote the safe heights on the earth and the 
planet.

On the earth, v2 = 2ghse = 2 × 9.8 × 2
= 39.2 m2/s2

On the planet, v2 = 2 × 2 × hsp
For a safe jump the final velocity (v) should be same on 

earth and the planet, hence, 2 × 2 × hsp = 39.2
∴ hsp = 9.8 m.

Example 28: A ball weighing 500 gm is thrown vertically 
upwards with a velocity of 980 cm/s. The time that the ball 
will take to return back to earth would be
(A) 1 s (B) 2 s
(C) 3 s (D) 4 s

Solution:
For the upward journey, u = u0 – gt

0 = 980 × 10-2 - 9.8 t
⇒ t = 1 s

v2 - u2 = 2gs ⇒ 0 – 9.82 = -2 × 9.8 s
s = 4.9 m

For the downward journey,

 
s ut gt= +

1

2
2

4 9 0
1

2
9 8 2. .= + × t

 t = 1 s

Total time taken to return back to earth = 1 + 1 = 2 s.

Kinetics of a Particle
Kinetics can be used to predict a particle’s motion, given 
a set of forces (acting upon the particle) or to determine 
the forces necessary to produce a particular motion of the 
particle. Kinetics of the rectilinear motion of a particle are 
governed mainly by Newton’s three laws of motion. 

Newton’s first law: Every body continues in its state of rest 
or of uniform motion in a straight line, unless it is com-
pelled to change that state by forces impressed upon it. This 
law is sometimes called as the law of inertia.

From Newton’s first law, it follows that any change in the 
velocity of a particle is the result of a force. The question, 
of the relationship between this change in the velocity of the 
particle and the force that produces it, is answered by the 
second law of motion which is as follows.

Newton’s second law: The acceleration of a given particle 
is proportional to the force applied to it and takes place in 
the direction of the straight line in which the force acts.
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Newton’s third law: Every action there is always an equal 
and opposite reaction, or the forces of two bodies on each 
other are always equal and directed in opposite directions.

General Equation of Motion for a Particle
From Newton’s second law, the relationship between the 
acceleration ‘a’ produced in a body of mass ‘m’ (mass is 
always assumed to be invariant with time) by a resultant, 
‘F’, of all the forces acting on the body can be derived as 
follows: F = ma, which is the general equation of motion 
for a particle.

For a stationary body lying on a surface (body with no 
motion), there is a force (F) exerted by the body on the 
surface which is equal to the weight of the body (W), i.e., 
F = W = mg, where ‘m’ is the mass of the body and ‘g’ is 
the acceleration due to gravity. There is an equal and oppo-
site force exerted by the surface on the body (consequence 
of Newton’s third law). Note that the weight of a body is 
obtained by multiplying the mass of the body by the accel-
eration due to gravity. 

Differential Equation of Rectilinear Motion
The general equation of motion for a particle can be applied 
directly to the case of the rectilinear translation of a rigid 
body, since all the particles of the rigid body have the same 
velocity and acceleration (same motion) where the particles 
move in parallel straight lines. Here, the rigid body is con-
sidered as a particle concentrated at the center of gravity of 
the rigid body. 

Whenever such a body or particle moves under the action 
of a force applied at its center of gravity and having a fixed 
line of action, acceleration of the body is produced in the 
same direction, and if any initial velocity of the body is also 
directed along this line, then the motion corresponding to 
this case is known as rectilinear translation. 

If the line of motion of a particle is taken to be along 
the x-axis (i.e., displacement at a time t is denoted by x), 

��x
d x

dt
=

2

2
 represents the acceleration and F represents the 

resultant force acting, then the differential equation of the 
rectilinear motion of the particle is given by F mx= ��.

Two types of problems that can be solved by the above 
equation are: (a) Determination of the force necessary to 
produce a given motion of the particle where the displace-
ment x is given as a function of time t, (b) Determination of 
the motion of a particle given a force F acting on the parti-
cle, i.e., to determine a function relating x and t such that the 
above equation is satisfied.

Motion of a Particle Acted upon  
by a Constant Force
A particle, acted upon by a force of constant magnitude 
and direction, will move rectilinearly in the direction of the 

force subjected to a constant acceleration. Let us consider 
a particle moving along the x-axis (see figure) where the 
initial (at t = 0) displacement and velocity of the particle is 
x0 and �x0  respectively.

O

C

X

X0

X

F D

If F is the magnitude of the constant force acting on the 
particle, then from the differential equation of rectilinear 

motion, ��x
F

m
a= = ,  where a is the constant acceleration pro-

duced in the particle due to the constant force. The equation 

��x a=  can be written as 
d x

dt
a

( )
.

�
=

Integration of the above equation with the initial value 
condition, at t x x= =0 0� � ,  gives:

� �x x at= +0  
Which is the general velocity-time equation for the recti-
linear motion of a particle under the action of a constant 
force F producing the constant acceleration a in the parti-

cle. With �x
dx

dt
= ,  equation (1) can be rewritten as follows: 

dx

dt
x at= +�0 .

Integration of the above equation with the initial value 

condition, at t = 0, x = x0, gives: x x x t at= + +0 0
21

2
� , which 

is the general displacement-time equation for the rectilinear 
motion of a particle under the action of a constant force F 
producing the constant acceleration a in the particle. 

Freely falling body
The force acting on a freely falling body is the weight of the 
body (assuming no friction in the motion) and therefore the 
acceleration produced in the body is the acceleration due to 
gravity, i.e., F = W = mg and ∴ a = g. Hence, the velocity-
time and displacement-time equations for a freely falling 
body are respectively as follows:

� �x x gt= +0

x x x t gt= + +0 0
21

2
�

If the freely falling body starts to fall from a resting position, 
i.e., it has an initial velocity of zero ( ( ) )�x 0 0=  and if the ori-
gin of displacement of the body is taken to coincide with the 
initial position of the body, i.e., it has an initial displacement 
of zero (x0 = 0), then the above equations reduce to:

�x gt=

x gt=
1

2
2
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Force as a Function of Time
If the force acting on the particle is a function of time t, i.e., 
the acting force = F(t), then the acceleration a(t), velocity 
�x t( )  and displacement x(t) of the particle at time t (with ini-
tial time, t = 0) is given by the following respective equations.

 
a t

F t

m
( )

( )
=

�x t a t dt
t

( ) ( )= ∫
0

x t x t dt
t

( ) ( )= ∫ �
0

Dynamics of a Particle
D’Alembert’s Principle
Let ΣFi, where Fi denotes the ith force, be the resultant of 
a set of forces acting on a particle in the x-axis direction. 
From the 0 differential equation of the rectilinear motion of 
a particle, we have

∑ - =F mxi �� 0 or

 ∑ + - =F mxi ( )�� 0

From the above equation, it can be seen that if a fictitious 
force ( )-mx��  is added to the system of forces acting on 
the particle, then an equation resembling equilibrium is 
obtained. The force ( )-mx��  which has the same magnitude 
as mx��  but opposite in direction is called as the inertia force. 
Hence, it can be seen that if an inertia force is added to the 
system of forces acting on a particle, then the particle is 
brought into an equilibrium state called as dynamic equi-
librium. This is called as D’Alembert’s principle. The above 
equation thus represents the equation of dynamic equilib-
rium for the rectilinear translation of a rigid body.

Let us consider, now any system of particles connected 
between them and so constrained that each particle can 
have only a rectilinear motion. To exemplify such a system, 
the case of two weights W1 and W2 attached to the ends of 
a flexible but inextensible string overhanging a pulley, as 
shown in the figure below, is considered.

S

W1W2

m2

m2

m1

m1

S

X X

The inertia of the pulley and the friction on its axle are 
assumed to be negligible. If the motion of the system is 
assumed to be in the direction as shown by the arrow on 
the pulley, an upward acceleration x  of the weight W2 and 

a downward acceleration x  of the weight W1 is obtained. 
The inertia forces acting on the corresponding weights are 
shown in the above figure.

By adding the inertia forces to the real forces such as 
(W1 and W2 and the string reactions S), a system of forces in 
equilibrium is obtained for each particle. Hence, the entire 
system of forces can be concluded to be in equilibrium.

An equation of equilibrium can be written for the entire 
system (instead of separate equilibrium equations for the 
individual weights) by equating to zero the algebraic sum of 
moments of all the forces (including the inertia forces) with 
respect to the axis of the pulley or by using the principle 
of virtual work. In either case, the internal forces ‘S’ of the 
system need not be considered and the following equation 
of equilibrium can be obtained for the entire system.

W m x W m x or x
W W

W W
g2 2 1 1

1 2

1 2

+ = - =
-
+

⎛
⎝⎜

⎞
⎠⎟

�� �� ��

Momentum and Impulse
The differential equation of the rectilinear motion of a par-
ticle may be written as

m
dx

dt
F d mx Fdt

�
�= =or ( )  (1)

X

X

B C

D0
t

t

dt

It is assumed that the force ‘F’ is known as a function of 
time and is given by the force-time diagram as shown in the 
above figure. The right hand side of equation (1) is then rep-
resented by the area of the shaded elemental strip of height 
F and width dt in the force-time diagram. This quantity is 
called as the impulse of the force F in the time interval dt. 
The expression mx�  on the left hand side of the equation is 
called as the momentum of the particle. The equation states 
that the differential change of the momentum of the par-
ticle during the time interval dt is equal to the impulse of 
the acting force during the same time interval. Impulse and 
momentum have the same dimensions of the product of 
mass and velocity.

Integrating equation (1), we get mx mx Fdt
t

� �- = ∫0

0

,

where �x0  is the velocity of the particle at time t = 0.
Thus the total change in the momentum of a particle 

during a finite time interval is equal to the impulse of the 
acting force during the same time interval. This impulse is 
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represented by the area OBCD of the force-time diagram. 
The equation of momentum-impulse is particularly useful 
when dealing with a system of particles, since in such cases 
the calculation of the impulse can often be eliminated. As 
a specific example, consider the case of a gun and shell as 
shown in the figure below, which may be considered 

V1 V2

 F  F

as a system of two particles. During the extremely short 
interval of explosion, the forces ‘F’ acting on the shell and 
gun and representing the gas pressure in the barrel are vary-
ing in an unknown manner and a calculation of the impulses 
of these forces would be extremely difficult. 

However, the relation between the velocity of the shell 
and velocity of recoil of the gun can be obtained without 
calculation of the impulse. Since the forces ‘F’ are in the 
nature of action and reaction between the shell and gun, 
they must at all times be equal and opposite, and hence their 
impulses for the interval of explosion are equal and oppo-
site since the forces act exactly the same time ‘t’.

Let m1 and m2 be the masses of the shell and gun respec-
tively. If the initial velocities of the shell and gun are assumed 
to be zero and if the external forces are neglected, then

m v m v
v

v

m

m
1 1 2 2

2

1

1

2

= =, .,i.e

The velocities of the shell and gun after discharge are in 
opposite directions and inversely proportional to the cor-
responding masses. Internal forces in a system of parti-
cles always appear as pairs of equal and opposite forces 
and need not be considered when applying the equation of 
momentum and impulse. Thus it may be stated that, for a 
system of particles on which no external forces are applied, 
the momentum of the system remains unchanged, since the 
total impulse is zero. This is sometimes called as the princi-
ple of conservation of momentum.

Moment and Couple
Moment or moment of a force is the turning effect caused by 
the force. It is the force acting at a perpendicular distance d

Moment of a force = Force × Perpendicular distance.

•
F

x

Moment = F × x.

Couple
Tow equal and opposite forces with separate lines of action 
present in a system of forces constitute a couple. Both forces 

create their own moment of force. The net moment of the 
couple is independent of the location of the point considered.

Moment of couple = Force × Perpendicular distance 
between the forces.

 

F

F

x

Moment of couple = F . x

 • Moment is the measure of the turning effect produced by a 
force about a point. Couple consists of two forces, equal and 
opposite, acting in two different but parallel lines of action.

 • Moment of a couple is independent of the location of the 
pivot or point considered.

Work and Energy
The differential equation of the rectilinear motion of a par-
ticle can be written in the following form:

m
dx

dt
F

�
=

Multiplying both sides of the above equation by �x  and with 
suitable modifications, the above equation can be written as 
follows:

d
mx

Fdx
�2

2

⎛
⎝⎜

⎞
⎠⎟

=  (2)

It is assumed that the force F is known as a function of 
the displacement x of the particle and is represented by the 
below force-displacement diagram. 

X

X0

B C

DA

h

dx

The right hand side of equation (2) is represented by the 
area of the elemental strip of the height h and width dx in 
the above figure. This quantity represents the work done 
by the force F on the infinitesimal displacement dx, and 
the expression in the parenthesis on the left hand side of 
equation (2) is called the as kinetic energy of the particle. 
Equation (2) thus states that the differential change in the 
kinetic energy of a moving particle is equal to the work 
done by the acting force on the corresponding infinitesimal 
displacement dx. Work and kinetic energy have the same 
dimensions of the product of force and length. They are usu-
ally expressed in the unit of Joules (J).
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Integrating equation (2), with the assumption that the 
velocity of the particle is �xo when the displacement is x0, 
we have

mx mx
Fdx

x

x� �2
0

2

2 2
0

- = ∫  (3)

The definite integral on the right hand side of the above 
equation is represented by the area ABCD of the force-dis-
placement diagram. This is the total work of the force F 
on the finite displacement of the particle from x0 to x. The 
work of a force is considered positive if the force acts in the 
direction of the displacement and negative if it acts in the 
opposite direction. The total change in the kinetic energy of 
a particle during a displacement from x0 to x is equal to the 
work of the acting force on the displacement.

The equation of work and energy is especially useful 
in cases where the acting force is a function of displace-
ment and where the velocity of the particle as a function of 
displacement is of interest. For example, the velocity with 
which a weight W falling from a height h strikes the ground 
is to be determined. In this case, the acting force F = W and 
the total work is Wh. Thus if the body starts from rest, the 
initial velocity �x0 0=  and hence equation (3) becomes 

mx
Wh

�2

2
=  (4)

Which yields �x v gh= = 2 .

Let the same body slide, without friction, along an 
inclined plane AB starting from an elevation h above point 
B as shown in the figure below.

W
Bα

A

W
 sinα

h

The equation of work and energy can be used to determine 
the velocity of the body when it reaches point B. Here only 
the component W sin a of the gravity force does work on 
the displacement and the component perpendicular to the 
inclined plane is at all times balanced by the reaction of 
the plane. In short, the resultant of all the forces acting 
on the body is F = Wsinα in the direction of motion, and 

this force acts through the distance 
h

sin
.

α
⎛
⎝⎜

⎞
⎠⎟

 The work 

of the force acting on the body is = × =W
h

Whsin
sin

α
α

and hence velocity at the point B (derived from equation 
( )), .4 2v gh=  Hence, the velocity is the same as that 
gained in a free fall through the height h.

If (is the coefficient of friction between the block and the 
inclined plane, then the work of friction has to be consid-
ered in equation (3).

In such a case, the resultant acting force, in the direction 
of motion F = Wsinα - mWcosa.

Then through the displacement 
h

sin α
⎛
⎝⎜

⎞
⎠⎟

 between the 

points A and B, the work done is = -Wh Whm αcot  Equation 
(3) would then yield 

v gh= -2 1( cot ( ))m α

When α π
=

2
, the above equation agrees with the velocity 

equation derived for a freely falling body and when m = 0, 
the above equation agrees with the velocity equation derived 
for the inclined plane motion of the body with no friction. 
Also from the above equation, it can be noted that to obtain 
a real value for the velocity, m α< tan ,  otherwise the block 
would not slide down.

Work done by Torque
Consider a light rod of length l pin joined at one end and is 
turned by an angle θ by the force F from the position A to 
B. Work done by the constant torque is the product of the 
torque and the angle turned by the rod.
∴ Work done = F . s.

= F . r . θ
= T . θ

B

F

S

Al

O

q

Work Energy Formulations
 • Kinetic energy of a body/particle in translation =

1

2
2mv .

 • Kinetic energy of a body/particle in rotation and rotating 

about a point =
1

2
2IW .

 • Work Energy principle for a body/particle in translation. 
Work done on body/particle between points 1 and 2 is 

W F dxx

x

x

1 2

1

2

- = ∑∫ .

(0,0)
•••

X2

X1

F1
F2t1

V1
V2

t2

Y

R

μR

X

W1 2

Change in kinetic energy from the positions 1 to 2 is 

( ) ( ).DK E m v v⋅ = --1 2 2
2

1
21

2
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∴ = = ( )∑∫W F dx m v vx

x

x

1 2 2
2

1
21

2
1

2

– – .

Work energy principle for a body/particle in rotation.

IO

w2

w1

q = q2

q = q1

IO
1

2

O•

•

(q1 − q2)

Work done from 1 to 2 is given by.

W M dO1 2

1

2

- = ∑∫ θ
θ

θ

.

Change in kinetic energy from 1 to 2 is 

KE IO1 2 1
2

2
21

2
– = -( )ω ω
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1.  Work done by a force is zero if either displacement 
is zero or the force acts normal to the displacement 
for example, gravity force does no work when a body 
moves horizontally.

2.  Work done by a force is positive if the direction of 
force and the direction of displacement are same. For 
example, work done by force of gravity is positive 
when a body moves from a higher elevation to a lower 
elevation. A position work can be said as the work 
done by a force and negative work as the work done 
against a force.

3.  Work is a scalar quantity and has magnitude but no 
direction.

4.  Work done by a force depends on the path over which the 
force moves except in the case of conservative forces. 
Forces due to gravity, spring force are conservative forc-
es, where as friction force is a non-conservative force.

NOTES

Example 29: If a bucket of water weighing 15 N is pulled 
up from a well of 25 m depth by a rope weighing 1.5 N/m, 
then the work done is 
(A) 843.75 Nm (B) 500 Nm
(C) 575 Nm (D) 600 Nm

Solution:
The work done to pull the rope

= × -∫ 1 5 25
0

25

. ( )h dh  (h is the tip of the rope from the bottom 

of the well)

= × =1 5
25

2
468 75

2

. . Nm

Total work done = Work done to pull the bucket + work 
done to pull the rope

= 15 × 25 + 468.75 = 843.75 Nm. 

Example 30: A uniform chain of length 10 m and mass 
100 kg is lying on a smooth table such that one third of its 
length is hanging vertically down over the edge of the table. 
If g is the acceleration due to gravity, then the work required 
to pull the hanging part of the chain is
(A) 50g (B) 55.55g (C) 100g (D) 150g

Solution:
Work done = potential energy change in the raising of the 

centre of mass over the distance
L

6
.

= =
× ×

= =
m

g
L g g

3 6

100 10

18

1000

18
55 55. .g

Alternate method:
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Ideal Systems: Conservation of Energy

m2

m3

m1

x1

O

a

The method of work and energy for a single particle can 
be extended to apply to a system of connected particles as 
shown in the above figure. In doing so, it is to be noted that 
the attention is limited to ideal systems with one degree of 
freedom. That is, it is assumed that the system has friction-
less constraints and inextensible connections and that its 
configuration can be completely specified by one coordi-
nate such as x1 in the below figure. In the case shown in 
the above figure, for example, the assumptions involve a 
smooth inclined plane, frictionless bearings, inextensible 
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strings and neglecting entirely the rotational inertia of the 
pulleys. Then the system may be regarded simply as three 
particles, m1, m2 and m3, each of which performs a rectilin-
ear motion. From kinematics, the displacements and veloci-
ties of all the three masses can be expressed in terms of one 
variable, say the coordinate x1 of the particle m1.

During motion of the system, an infinitesimal interval 
of time dt is considered during which the system changes 
its configuration slightly and each particle is displaced by a 
length of dxi , along its line of motion. If Fi  is the resultant 
force acting on any particle mi, then the total increment of 
work of all the forces during such a displacement, 

dU F dxi i= ∑  (5)

For the system of particles, it can be shown that 

dT = dU  (6)

Where T m x Ti i= ∑1

2
2( ),�  is the total kinetic energy of the 

system of particles with the mass and velocity of the ith 
particle being mi and �xi  respectively. Equation (6) states 
that the differential change in the total kinetic energy of the 
system when it changes its configuration slightly is equal to 
the corresponding increment of work of all forces.

Consider any two configurations of the system denoted 
by the subscripts A and B, then from equation (6) we have 

dT dU or
T

T

x

x

A

B

A

B

=∫ ∫

T T dUB A

x

x

A

B

- = ∫  (7)

This is the equation of work and energy for a system of 
particles. It states that the total change in the kinetic energy 
of the system when it moves from configuration A to con-
figuration B is equal to the corresponding work of all the 
forces acting upon it. In the case of an ideal system, the 
reactive forces will produce no work and work of all the 
internal forces which occur in equal and opposite pairs will 
cancel out each other. Thus for such systems, only the work 
of active external forces are to be considered on the right 
hand side of equation (7). 

The potential energy of a system in any configuration (A 
or B) is defined as the work which will be done by the acting 
forces if the system moves from that configuration (A or B) 
back to a certain base or reference configuration (O). If VA 
and VB are the potential energies of the system in configura-
tions A and B respectively, then

V dU V dUA

A

B

B

= =∫ ∫
0 0

and

If a particle of weight w is at an elevation x above a cho-
sen datum plane, then the potential energy of the particle, 
V = mx. Similarly for a system of particles at an elevation, 
the potential energy of the system,V w x Wxi i c= ∑ = ,

NOTE

Where wi and xi are the weight and elevation above a chosen 
datum plane for the ith particle, W is the total weight of the 
system and xc is the elevation of the center of gravity of the 
system above the chosen datum plane.

For the system of particles moving from the configura-
tion A to the configuration B, it can be shown that TB + VB 
= TA + VA.

Law of Conservation of Energy
That is, as the system moves from one configuration to 
another, the total energy (kinetic + potential) remains 
constant. Kinetic energy may be transformed into potential 
energy and vice versa but the system as a whole can neither 
gain nor lose energy. This is the law of conservation of energy 
as it applies to a system of particles with ideal constraints. 
Such systems are sometimes called conservative systems.

Impact
The impact between two moving bodies refers to the col-
lision of the two bodies that occurs in a very small time 
interval and during which the bodies exert a very large force 
(active and reactive force) on each other. The magnitudes of 
the forces and the duration of impact depend on the shapes 
of the bodies, their velocities, and their elastic properties.

Consider the impact of two spheres of masses m1 and 
m2 as shown in the below figure. Let the spheres have the 
respective velocities of u 1 and u2, where u1 > u2, before 
impact and the respective velocities of v1 and v2 after impact.

Before impact

x

m1 u1 u2

After impact

x

m1 u1 u2m2

It is assumed that these velocities are directed along the line 
joining the centers of the two spheres and are considered to 
be positive if they are in the positive direction of the x-axis. 
This is called the case of direct central impact. Two equal 
and opposite forces, i.e., action and reaction, are produced 
at the point of contact during impact. In accordance with 
the law of conservation of momentum, such forces cannot 
change the momentum of the system of two balls and hence, 

m u m u m v m v1 1 2 2 1 1 2 2+ = +  (8)
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Elastic Impact
In an elastic impact, the momentum and kinetic energy is 
conserved. If the kinetic energy is conserved during impact, 
then 

1

2

1

2

1

2

1

2
1 1

2
2 2

2
1 1

2
2 2

2m u m u m v m v+ = +  (9)

Since momentum is conserved, equation (8) is also applica-
ble in this type of impact. From equations (8) and (9), it can 
be shown that 

v1 - v2 = - (u1 - u2) (10)

This equation represents a combination of the law of con-
servation of momentum and conservation of energy. It 
states that for an elastic impact the relative velocity after 
impact has the same magnitude as that before impact but 
with reversed sign. 

For two bodies of equal masses undergoing an elastic 
impact, from equations (8) and (10) it can be shown that they 
will exchange their velocities, i.e., v1 = u2 and v2 = u1. If 
the second body was at rest before the impact, i.e., u2 = 0, 
then it would seem that the striking body stops, i.e., v1 = 
0, after having imparted its velocity to the other ball. This 
phenomenon can be observed in the case of a moving billiard 
ball which squarely strikes one that was at rest. Again, if the 
two balls were moving toward each other with equal speeds 
before impact, an exchange of velocities will simply mean 
that they rebound from one another with the same speed with 
which they collided. As another special case, we assume that 
m2 = ∞ while m1 remains finite and further u2 = 0. This will 
represent the case of an elastic impact of a ball against a flat 
immovable obstruction, such as the dropping of a ball on a 
cement floor. In this case, it is obtained that v1 = -u1, i.e., the 
striking ball rebounds with the same speed with which it hits 
the obstruction.

Plastic or Inelastic Impact
In a plastic or inelastic impact, the momentum is conserved 
but the kinetic energy is not (part of the kinetic energy is 
converted to a different form of energy). In a perfectly plas-
tic impact, the colliding bodies will stick to each other after 
collision and will move with a common velocity. If v is the 
common velocity of two colliding bodies after a perfectly 
plastic impact, then from equation (8), we have

v
m u m u

m m
=

+
+

1 1 2 2

1 2

Newton’s experimental law of colliding bodies: Newton pro-
posed an experimental law that describes how the impact of 
moving bodies was related to their velocities and found that:

Speed of separation

Speed of approach
e=

e = coefficient of restitution 
e satisfies the condition 0 ≤ e ≤ 1.
If e = 1 ⇒ the collision is perfectly elastic.
If e = 0 ⇒ the collision is inelastic 
If 0 < e < 1 ⇒ the collision is said to be elastic.

Energy loss due to impact: The energy lost in impact 
when e ≠ 1, i.e., when the collision is not perfectly elastic 
is given by 

Loss in kinetic energy =
+

- -
1

2
11 2

1 2
1 2

2 2m m

m m
u u e( ) ( ).

∴ When e = 1 the loss is zero.

Coefficient of restitution: It is defined as the ratio of the 
relative velocity of the impacting bodies after impact to 
their relative velocity before impact. The coefficient of res-
titution ‘e’ is given by the following equation.

e
v v

u u
=

-
-

( )

( )
2 1

1 2

Example 31: A bullet travelling with a velocity of 800 m/s 
and weighing 0.25 N strikes a wooden block of weight 50 
Nresting on a horizontal floor. The coefficient of friction 
between floor and the block is 0.5. Determine the distance 
through which the block is displaced from its initial position. 

Solution: Velocity of the bullet before impact, va = 800 m/s
Velocity of the block before impact, vb = 0 m/s

Mass of the bullet, 
.

m
g

a =
0 25

kg

Mass of the block, m
g

b =
50

kg

The bullet after striking the block remains buried in the 
block and both move with a common velocity v.

Applying the principle of conservation of momentum,

mava + mbvb = (ma + mb)v

0 25
800

50
0

0 25 50. .

g g g g
v× + × = +

⎛
⎝⎜

⎞
⎠⎟

v = 3.98 m/s

To find the distance travelled by the block, apply the prini-
ciple of work and energy. Kinetic energy lost by the block 
with the bullet buried = Work done to overcome the fric-
tional force

If s is the distance travelled by the block, then 

1

2
 (ma + mb)v

2 = mR s

                        = mg(ma + mb) s (∴ R = g(ma + mb))

∴ =
× ×

=s
3 98

2 9 81 0 5
1 61

2.

. .
. m
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Example 32: Three spherical balls of masses 3 kg, 9 kg 
and 12 kg are moving in the same direction with velocities 
12 m/s, 4 m/s and 2 m/s respectively. If the ball of mass 3 kg 
impinges with the ball of mass 9 kg which in turn impinges 
with the ball of mass 12 kg. Prove that the balls of masses 3 
kg and 9 kg will be brought to rest by the impacts. Assume 
the balls to be perfectly elastic.

12 m/s
4 m/s

2 m/s

3 kg 9 kg 12 kg

Solution: For perfectly elastic balls, e = 1
ma = 3 kg, mb = 9 kg, mc = 12 kg

Impact of balls A and B: Conservation of momentum 
gives, 

mava + mbvb = mav′a + mbv′b
3 × 12 + 9 × 4 = 3v′a + 9v′b (1)

e
v v

v v
b a

b a

= - ′ - ′
-

v′b - v′a = e(va - vb) = 1 × (12 - 4) = 8 (2)

Solving Eqs. (1) and (2), we get v′b = 8 m/s and v′a = 0 m/s, 
i.e., the ball of mass 3 kg is brought to rest.

Impact of balls B and C: Consider now the impact of the 
ball B, of mass 9 kg and moving with the initial velocity of 
8 m/s, with the ball C, of mass 12 kg and moving with the 
velocity of 2 m/s.

Conservation of momentum gives

mbvb + mcvc = mbv′b + mcv′c
9 × 8 + 12 × 2 = 9v′b + 12v′c (3)

e
v v

v v
c b

c b

= - ′ - ′
-

 v′c - v′b = e(vb – vc)

                      = 1 × (8 - 2) = 6 (4)

Solving Eqs. (3) and (4), we get v′c = 6 m/s and v′b = 0 m/s, 
i.e., the ball of mass 9 kg is brought to rest.

Direction for questions 33 and 34: The blocks 1 and 2, hav-
ing a weight of 1 kg each and the respective velocities of 10 
m/s and 4 m/s, undergo a perfect inelastic collision.

Example 33: The final velocity of the blocks is 
(A) 7 m/sec (B) 6 m/sec
(C) 3 m/sec (D) 4 m/sec

Solution:

V
M V M V

m m
= =

+
+

=
× + ×

+
1 1 2 2

1 2

1 10 4 1

1 1
7 m/s.

Example 34: The energy converted into heat as a result of 
the collision is
(A) 40 J (B) 9 J
(C) 50 J (D) 54 J

Solution:
The original kinetic energy was,

K1
1

2
1 100

1

2
1 16 58= × × + × × = J

The final kinetic energy is, 

K2
1

2
2 49 49= × × = J

Loss of Kinetic energy = 58 - 49 = 9 J (converted to heat 
energy).

Exercises

Practice Problems 1
Direction for questions 1 to 10: Select the correct alterna-
tive from the given choices.

 1. A car starts with an acceleration of 2 m/s2. Another car 
starts from the same point after 5 seconds and chases 
the first car with a uniform velocity of 20 m/s. The time 
at which the second car, after it starts, will overtake the 
first car is 

 (A) 5 sec (B) 7 sec 
 (C) 9 sec (D) 11 sec

 2. A body is moving with uniform acceleration. In the 4th 
second of its travel it covers 20 m and 30 m in the 8th 
second. The distance travelled at the 10th second is 

 (A) 24 m (B) 35 m
 (C) 43 m  (D) 52 m

 3.  A block is made to slide down an inclined plane which 
is smooth. It starts sliding from rest and takes a time of 
t to reach the bottom of the plane. An identical body is 
freely dropped from the same point. The time the body 
takes to reach the bottom of the plane is

 (A) t (B) 
t

2

 (C) 
t

3
 (D) 

t

4

 4. A stone is dropped into a well. The sound of the splash 
is heard 3.63 seconds later. Assume the velocity of the 
sound to be 331 m/s. The depth of the surface of water 
from the ground is

 (A) 46.38 m  (B) 51.36 m
 (C) 58.39 m (D) 64.62 m
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 5. A motor cycle starts from rest from point A, 2 seconds 
after a car, speeding at a constant velocity of 120 km/h, 
passes that point. The motor cycle accelerates at a rate 
of 6 m/s2 until the motor cycle attains a maximum 
speed of 150 km/h. The distance from the starting 
point to the point at which the motor cycle overtakes 
the car is 

 (A) 912 m (B) 1024 m
 (C) 1286 m (D) 1356 m

 6. A rail road coal car of tare weight mo is moving at a 
constant speed v while being loaded with coal at a con-
stant rate of w per second. The force necessary to sus-
tain the constant speed, neglecting friction, is

 (A) w2v (B) wv 

 (C) 
w v2

2
 (D) w2v2

 7. A 10 kg shell is fired with a velocity of 800 m/s at an 
angle of 30° from an old 2000 kg gun. Assuming that 
barrel and frame can recoil freely, the reaction of the 
gun, if the shell leaves the barrel 10 milliseconds after 
firing, is 

 (A) 400 kN (B) 450 kN
 (C) 600 kN (D) 550 kN

 8. A baggage truck pulls two carts A and B. If the mass of 
the truck is 400 kg and the carts A and B carry 800 and 
400 kg respectively, and the truck develops a tractive 
force of 2 kN. The horizontal forces between the truck 
and the cart A and between the two carts, respectively, 
are

 (A) 1200 N and 400 N (B) 1000 N and 450 N 
 (C) 1500 N and 500 N (D) 500 N and 500 N

 9. A body of weight 200 N is placed on a rough horizontal 
plane. The coefficient of friction, if a horizontal force 
of 80 N just causes the body to slide over the horizontal 
plane, is 

 (A) 0.6 (B) 0.1
 (C) 0.2 (D) 0.4

 10. A body of weight 400 N is pulled up along an inclined 
plane having an inclination of 30° to the horizontal at 
a steady speed. The pulling force applied on the body 
is parallel to the inclined plane. The coefficient of fric-
tion between the body and the plane is 0.25. If the dis-
tance travelled by the body is 10 m along the plane, 
then the work done on the body is

 (A) 3412 J (B) 2866 J
 (C) 1002 J (D) 4956 J

Practice Problems 2
Direction for questions 1 to 10: Select the correct alterna-
tive from the given choices.

 1. A boat goes 30 km down the stream in 75 minutes and 
the same distance up the stream in 90 minutes. The 
speed of the stream is

 (A) 0.8 km/h (B) 1.2 km/h
 (C) 1.6 km/h (D) 2 km/h

 2. The motion of a body is explained by the equation: s = 
t3 – 3t2 – 9t + 12, where s is the displacement in metres 
at any time t in seconds. The acceleration of the particle 
when its velocity is zero is

 (A) 4.5 m/s2 (B) 6.2 m/s2

 (C) 8 m/s2 (D) 12 m/s2

Direction for questions 3 and 4: There are three marks 
along a straight road at a distance of 100 m. A vehicle 
starting from rest and accelerating uniformly passes the 
first mark (P) and takes 10 seconds to reach the second 
mark (Q). Further it takes 8 seconds to reach the third  
mark (R).

 3. The velocity of the car at Q is 
 (A) 11.38 m/s (B) 13.5 m/s
 (C) 14.8 m/s (D) 15.5 m/s

 4.  The distance of mark P from the starting point is 
 (A) 218 m (B) 183 m 
 (C) 156 m (D) 134 m

 5. An aircraft is flying at an elevation of 1500 m above 
the ground horizontally. The velocity is 100 km/h, 
horizontal and uniform. The aircraft releases a bomb 
at this elevation. If the target on the ground was just 
below the plane at the time of releasing the bomb, the 
distance away from the target, the bomb will hit the 
ground is 

 (A) 2.35 km (B) 3.42 km 
 (C) 4.86 km (D) 5.32 km

Direction for questions 6 and 7: A pile of mass 400 kg is 
driven by a distance of d into the ground by the blow of a 
hammer of mass 800 kg through a height of h onto the top 
of the pile. Assume the impact between the hammer and pile 
to be plastic.

h

d

d

M

3

2

1

Given M = 800 kg, m = 400 kg, h = 1.2 m, d = 10 cm.
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 6. The work done is

 (A) 5.28 kJ (B) 6.278 kJ

 (C) 7.126 kJ (D) 6.8 kJ

 7. The kinetic energy of the whole system in the position 
3 is

 (A) 0 J (B) 10 J

 (C) 100 J (D) 20 J

Direction for questions 8 and 9: A gun of mass 2000 kg 
fires horizontally a shell of mass 50 kg with a velocity of 
300 m/s.

 8. The velocity with which the gun will recoil is 
 (A) –7.5 m/s (B) –8.4 m/s
 (C) 9.2 m/s (D) 10 m/s

 9. The uniform force required to stop the gun in 0.6 m is
 (A) 55310 N (B) 46875 N
 (C) 55475 N (D) 82750 N

 10. A tennis ball is having a velocity of 40 m/s at an angle 
of 30° with the horizontal just after being struck by the 
player. The radius of curvature of its trajectory is 

 (A) 188.2 m (B) 198.6 m
 (C) 200 m (D) 168.2 m

 1. A 1 kg mass of clay, moving with a velocity of 10 
m/s, strikes a stationary wheel and sticks to it. The 
solid wheel has a mass of 20 kg and a radius of 1m. 
Assuming that the wheel and the ground are both 
rigid and that the wheel is set into pure rolling motion, 
the angular velocity of the wheel immediately after 
the impact is approximately [2005]

20 kg

10 m/s

1 m1 kg

+

 (A) Zero (B) 
1

3
rad/s

 (C) 
10

3
rad/s  (D) 

10

3
rad/s

 2. During inelastic collision of two particles, which one 
of the following is conserved? [2007]

 (A) Total linear momentum only
 (B) Total kinetic energy only
 (C) Both linear momentum and kinetic energy
 (D) Neither linear momentum nor kinetic energy

 3. A block of mass M is released from point P on rough 
inclined plane with inclination angle θ, shown in the 
figure below. The coefficient of friction is m. If m < tan 
θ, then the time taken by the block to reach another 
point Q on the inclined plane, where PQ = s, is

 [2007]

g
P

Qq

 (A) 
2s

g cos (tan )θ θ m-
 (B) 

2s

g cos (tan )θ θ m+

 (C) 
2s

g sin (tan )θ θ m-
 (D) 

2s

g sin (tan )θ θ m+

 4. Match the approaches given below to perform stated 
kinematics/dynamics analysis of machine. [2009]

Analysis Approach

(P) Continuous relative 
rotation

(1) D’ Alembert’s 
principle

(Q) Velocity and 
acceleration

(2) Grubler’s criterion

(R) Mobility (3) Grashoff’s law

(S) Dynamicstatic analysis (4) Kennedy’s theorem

 (A) P–1, Q–2, R–3, S–4 (B) P–3, Q–4, R–2, S–1

 (C) P–2, Q–3, R–4, S–1 (D) P–4, Q–2, R–1, S–3

 5. The coefficient of restitution of a perfectly plastic 
impact is [2011]

 (A) 0 (B) 1
 (C) 2 (D) ∞

 6. A truck accelerates up a 10° incline with a crate of 
100 kg. Value of static coefficient of friction between 
the crate and the truck surface is 0.3. The maximum 
value of acceleration (in m/s2) of the truck such that 
the crate does not slide down is  [2014]

 7. A mass m1 of 100 kg travelling with a uniform veloc-
ity of 5 m/s along a line collides with a stationary 
mass m2 of 1000 kg. After the collision, both the 
masses travel together with the same velocity. The 
coefficient of restitution is [2014]

 (A) 0.6 (B) 0.1
 (C) 0.01 (D) 0

Previous Years’ Questions
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 8. A swimmer can swim 10 km in 2 hours when swim-
ming along the flow of a river. While swimming 
against the flow, she takes 5 hours for the same dis-
tance. Her speed in still water (in km/h) is _____.
 [2015]

 9. A ball of mass 0.1 kg, initially at rest, is dropped from 
height of 1 m. Ball hits the ground and bounces off the 
ground. Upon impact with the ground, the velocity 
reduces by 20%. The height (in m) to which the ball 
will rise is _____. [2015]

10. A small ball of mass 1 kg moving with a velocity 
of 12 m/s undergoes a direct central impact with a 
stationary ball of mass 2 kg. The impact is perfectly 
elastic. The speed (in m/s) of 2 kg mass ball after the 
impact will be ______. [2015]

 11. The initial velocity of an object is 40 m/s. The accel-
eration a of the object is given by the following 
expression:

  a = –0.1v,

  where v is the instantaneous velocity of the object. 
The velocity of the object after 3 seconds will be 
_______. [2015]

 12. A bullet spins as the shot is fired from a gun. For this 
purpose, two helical slots as shown in the figure are 
cut in the barrel. Projections A and B on the bullet 
engage in each of the slots.

Gun Barrel

0.5 m

BulletA

B

  Helical slots are such that one turn of helix is com-
pleted over a distance of 0.5 m. If velocity of bullet 
when it exists the barrel is 20 m/s, it spinning speed in 
rad/s is _____. [2015]

 13. A point mass having mass M is moving with a veloc-
ity V at an angle θ to the wall as shown in the fig-
ure. The mass undergoes a perfectly elastic collision 
with the smooth wall and rebounds. The total change 
(final minus initial) in the momentum of the mass is:
 [2016]

θ

V

x, i
^

y, j
^

 (A) –2MV cos θ ĵ

 (B) 2MV sin θ ĵ

 (C) 2MV cos θ ĵ

 (D) –2MV sin θ ĵ

 14. An inextensible mass less string goes over a fric-
tionless pulley. Two weights of 100 N and 200 N are 
attached to the two ends of the string. The weights 
are released from rest, and start moving due to the 
gravity. The tension in the string (in N) is _______.
 [2016]

200 N

100 N

Answer Keys

Exercises
Practice Problems 1
 1. A 2. B 3. B 4. C 5. A 6. B 7. A 8. C 9. D 10. B

Practice Problems 2
 1. D 2. D 3. A 4. D 5. C 6. B 7. A 8. A 9. B 10. A

Previous Years’ Questions
 1. B 2. A 3. A 4. B 5. A 6. 1 to 1.3 7. D 8. 3.5 9. 0.64
10. 7.8 to 8.2  11. 29.5 to 29.7 12. 251 to 252 13. D 14. 133–134
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