# **CBSE Class 11 Mathematics**

#### **Important Questions**

### **Chapter 11**

#### **Conic Sections**

## **1 Marks Questions**

1. Find the equation of a circle with centre (P,Q) & touching the y axis

$$(A)x^2 + y^2 + 2Qy + Q^2 = 0$$

$$(B)x^{2} + y^{2} - 2px + 2Qy + Q^{2} = 0$$

$$(C)x^2 + y^2 - 2px + 2Qy + Q^2 = 0$$

(D) none of these

**Ans.** 
$$x^2 + y^2 - 2px + 2Qy + Q^2 = 0$$

2. Find the equations of the directrix & the axis of the parabola  $\Rightarrow 3x^2 = 8y$ 

$$(A)3y-4=0, x=0$$

$$(B)3x-4=0, y=0$$

$$(C)3y-4x=0$$

(D)none of these

Ans. 
$$3y - 4 = 0, x = 0$$

3. Find the coordinates of the foci of the ellipse  $\Rightarrow x^2 + 4y^2 = 100$ 

$$(A)F(\pm 5\sqrt{3},0)$$

$$(B)F(\pm 3\sqrt{5},0)$$

$$(C)F(\pm 4\sqrt{5},0)$$

(D)none of these

Ans. 
$$F(\pm 5\sqrt{3}, 0)$$

4. Find the eccentricity of the hyperbola:  $3x^2 - 2y^2 = 6$ 

$$(A)e = \sqrt{\frac{5}{2}}$$
  $(B)e = \frac{\sqrt{5}}{2}$   $(C)e = \frac{\sqrt{2}}{5}$   $(D)$ none of these

Ans. 
$$e = \sqrt{\frac{5}{2}}$$

5. Find the equation of a circle with centre (b, a) & touching x – axis?

$$(A)x^{2} + y^{2} - 2bx + 2ay + b^{2} = 0$$

$$(B)x^{2} + y^{2} + 2bx - 2ay + b^{2} = 0$$

$$(C)x^2 + y^2 - 2bx - 2ay + b^2 = 0$$

(D) none of these

**Ans.** 
$$x^2 + y^2 - 2bx - 2ay + b^2 = 0$$

6. Find the lengths of axes of  $3x^2 - 2y^2 = 6$ ?

$$(A)2\sqrt{2} \& 2\sqrt{5}$$
 units

(B) 
$$2\sqrt{2} \& 2\sqrt{3}$$
 units

$$(C)2\sqrt{5} & 2\sqrt{2} \text{ units}$$

(D)none of these

**Ans.**  $2\sqrt{2}$  Units &  $2\sqrt{3}$  units

7. Find the length of the latus rectum of  $3x^2 + 2y^2 = 18$ ?

$$(A)$$
2 units  $(B)$ 3 units  $(C)$ 4 units  $(D)$ none of these

Ans.4 units

8. Find the length of the latus rectum of the parabola  $3y^2 = 8x$ 

$$(A)\frac{4}{3}$$
 units  $(B)\frac{8}{3}$  units  $(C)\frac{2}{3}$  units  $(D)$  none of these

Ans.  $\frac{8}{3}$  units

9.The equation  $x^2 + y^2 - 12x + 8y - 72 = 0$  represent a circle find its centre

$$(A)(-6,-4)$$
  $(B)(6,-4)$   $(C)(6,4)$   $(D)(-6,4)$ 

Ans. (6, -4)

10. Find the equation of the parabola with focus F(4,0) & directrix x=-4

$$(A) y^2 = 32x (B) y^2 = -16x (C) y^2 = 8x (D) y^2 = 16x$$

**Ans.**  $y^2 = 16x$ 

11. Find the coordinates of the foci of  $\frac{x^2}{8} + \frac{y^2}{4} = 1$ 

- $(A)F_1(2,0)&F_2(-2,0)$
- $(B)F_1(-2,0)\&F_2(2,0)$
- $(C)F_1(-2,0)\&F_2(-2,0)$
- (D) none of these

Ans.  $F_1(-2,0) \& F_2(2,0)$ 

12. Find the coordinates of the vertices of  $x^2 - y^2 = 1$ 

- (A)A(-1,0),B(-1,0)
- (B)A(-1,0),B(1,0)
- (C)A(1,0),B(-1,0)
- (D) none of these

Ans. A(-1,0), B(1,0)

13. Find the coordinates of the vertices of  $x^2 - y^2 = 1$ 

- (A) A(-1,0) & B(5,0)
- (B) A(-5,0) & B(-1,0)
- (C)A(-1,0) & B(-5,0)
- (D) none of these

Ans. A(-1,0) & B(5,0)

**14.Find the eccentricity of ellipse**  $4x^2 + 9y^2 = 1$ 

(A) 
$$e = \frac{\sqrt{5}}{3}$$
 (B)  $e = \frac{-\sqrt{5}}{3}$  (C)  $e = \frac{\sqrt{3}}{5}$  (D)  $e = \frac{3}{\sqrt{5}}$ 

Ans. 
$$e = \frac{\sqrt{5}}{3}$$

15. Find the length of the latus rectum of  $9x^2 + y^2 = 36$ 

$$(A)\frac{1}{3}$$
 units  $(B)\frac{1}{5}$  units  $(C)1\frac{1}{3}$  units  $(D)\frac{1}{6}$  units

Ans. 
$$1\frac{1}{3}$$
 units

**16.Find the length of minor axis of**  $x^2 + 4y^2 = 100$ 

Ans. 10units

17. Find the centre of the circles  $x^2 + (y-1)^2 = 2$ 

$$(A) (1,0) (B) (0,1) (C) (1,2) (D)$$
 None of these

Ans. (0,1)

18. Find the radius of circles  $x^2 + (y-1)^2 = 2$ 

$$(A)\sqrt{2}$$
  $(B)$  2  $(C)$  2 $\sqrt{2}$   $(D)$  None of these

Ans.  $\sqrt{2}$ 

19. Find the length of latcus rectum of  $x^2 = -22y$ 

(A)11 (B) – 22 (C)22 (D) None of these

**Ans.**22

20. Find the length of latcus rectum of  $25x^2 + 4y^2 = 100$ 

$$(A)\frac{3}{5}$$
 units  $(B)\frac{1}{5}$  units  $(C)\frac{8}{5}$  units  $(D)$  None of these

Ans.  $\frac{8}{5}$  Units

#### **CBSE Class 12 Mathematics**

#### **Important Questions**

#### **Chapter 11**

#### **Conic Sections**

#### **4 Marks Questions**

1.Show that the equation  $x^2 + y^2 - 6x + 4y - 36 = 0$  represent a circle, also find its centre & radius?

**Ans.** This is of the form  $x^2 + y^2 + 2gx + 2Fy + c = 0$ ,

where 
$$2g = -6$$
,  $2f = 4 & c = -36$ 

$$\therefore q = -3, f = 2 \& c = -36$$

So, centre of the circle = (-g, -f) = (3, -2)

&

Radius of the circle =  $\sqrt{q^2 + f^2 - c} = \sqrt{9 + 4 + 36}$ 

= 7 units

2. Find the equation of an ellipse whose foci are  $(\pm 8, 0)$  & the eccentricity is  $\frac{1}{4}$ ?

**Ans.** Let the required equation of the ellipse be  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , where  $a^2 > b^2$ 

let the foci be  $(\pm c, 0), c = 8$ 

&

$$e = \frac{c}{a} \Leftrightarrow a = \frac{c}{e} = \frac{8}{\frac{1}{4}} = 32$$

Now 
$$c^2 = a^2 - b^2 \Leftrightarrow b^2 = a^2 - c^2 = 1024 - 64 = 960$$

$$\therefore a^2 = 1024 \& b^2 = 960$$

Hence equation is 
$$\frac{x^2}{1024} + \frac{y^2}{960} = 1$$

3. Find the equation of an ellipse whose vertices are  $(0,\pm 10)$  &  $e=\frac{4}{5}$ 

Ans. Let equation be 
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

& its vertices are  $(0, \pm a)$  & a = 10

Let 
$$c^2 = a^2 - b^2$$

Then 
$$e = \frac{c}{a} \implies c = ae = 10 \times \frac{4}{5} = 8$$

Now 
$$c^2 = a^2 - b^2 \Leftrightarrow b^2 = (a^2 - c^2) = 100 - 64 = 36$$

$$a^2 = (10)^2 = 100 \& b^2 = 36$$

Hence the equation is 
$$\frac{x^2}{36} + \frac{y^2}{100} = 1$$

4.Find the equation of hyperbola whose length of latus rectum is 36 & foci are  $\left(0.\pm12\right)$ 

**Ans.** Clearly C = 12

Length of cat us rectum =  $36 \Leftrightarrow \frac{2b^2}{a} = 36$ 

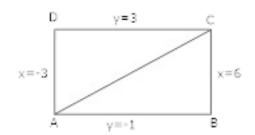
$$\Rightarrow b^2 = 18a$$

Now  $c^2 = a^2 + b^2 \Leftrightarrow a^2 = c^2 - b^2 = 144 - 18a$ 

$$a^2 + 18a - 144 = 0$$

 $(a+24)(a-6)=0 \Leftrightarrow a=6$  [: a is non negative]

This  $a^2 = 6^2 = 36$  &  $b^2 = 108$ 


Hence,  $\frac{x^2}{36} + \frac{y^2}{108} = 1$ 

5. Find the equation of a circle drawn on the diagonal of the rectangle as its diameter, whose sides are x = 6, x = -3, y = 3 & y = -1

**Ans.** Let ABCD be the given rectangle &

$$AD = x = -3$$
,  $BC = x = 6$ ,  $AB = y = -1$  &  $CD = y = -3$ 

Then A(-3,-1) & c(6,3)



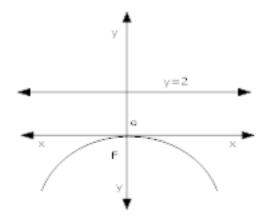
So the equation of the circle with AC as diameter is given as

$$(x+3)(x-6) + (y+1)(y-3) = 0$$

$$\Rightarrow x^2 + v^2 - 3x - 2v - 21 = 0$$

 $6. Find \ the \ coordinates \ of \ the \ focus \ \& \ vertex, \ the \ equations \ of \ the \ diretrix \ \& \ the \ axis \ \&$ 

length of latus rectum of the parabola x = -8y


Ans. 
$$x^2 = -8y$$

$$x^2 = -4ay$$

So, 
$$4a = 8 \Leftrightarrow a = 2$$

So it is case of downward parabola

o, foci is 
$$F(0,-a)$$
 ie  $F(0,-2)$ 



Its vertex is 0(0,0)

So, 
$$y = a = 2$$

Its axis is y – axis, whose equation is x = 0 length of lotus centum

$$= 4a = 4 \times 2 = 8$$
 units.

7. Show that the equation  $6x^2 + 6y^2 + 24x - 36y - 18 = 0$  represents a circle. Also find its centre & radius.

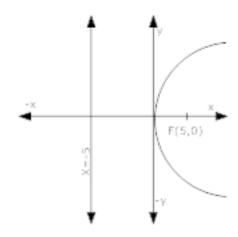
**Ans.** 
$$6x^2 + 6y^2 + 24x - 36y + 18 = 0$$

So 
$$x^2 + y^2 + 4x - 6y + 3 = 0$$

Where, 
$$2g = 4$$
,  $2f = -6 \& C = 3$ 

$$g = 2, f = -3 & C = 3$$

Hence, centre of circle =  $(-g_{\bullet}-f)$  = (-2.3)


&

Radius of circle 
$$= \sqrt{4+9+9} = \sqrt{20}$$

$$=2\sqrt{5}$$
 units

8. Find the equation of the parabola with focus at F(5,0) & directrix is x=-5

**Ans.**Focus F(5.0) lies to the right hand side of the origin



So, it is right hand parabola.

Let the required equation be

$$y^2 = 4ax \& a = 5$$

So, 
$$y^2 = 20x$$

9. Find the equation of the hyperbola with centre at the origin, length of the transverse axis 18 & one focus at (0,4)

Ans.Let its equation be 
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Clearly, C = 4.

length of the transverse axis =  $\$ \Leftrightarrow 2a = 1\$$ 

a = 9

Also, 
$$C^2 = (a^2 + b^2)$$

$$b^2 = c^2 - a^2 = 16 - 81 = -65$$

So, 
$$a^2 = 81$$
 &  $b^2 = -65$ 

So, equation is 
$$\frac{y^2}{81} + \frac{x^2}{65} = 1$$

10. Find the equation of an ellipse whose vertices are  $(0,\pm13)$  & the foci are  $(0,\pm5)$ 

**Ans.**Let the equation be  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ 

& a = 13

Let its foci be  $(0,\pm c)$ , then c=5

$$b^2 = a^2 - c^2 = 169 - 25 = 144$$

So, 
$$a^2 = 169$$
 &  $b^2 = 144$ 

So, equation be 
$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$

11.Find the equation of the ellipse whose foci are  $(0,\pm 3)$  & length of whose major axis is 10

**Ans.** Let the required equation be  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ 

Let 
$$c^2 = a^2 - b^2$$

Its foci are 
$$(0,\pm c)$$
 &  $c=3$ 

Also, a = length of the semi-major axis = 
$$\frac{1}{2} \times 10 = 5$$

Now, 
$$c^2 = a^2 - b^2 \Rightarrow b^2 = a^2 - c^2 = 25 - 3 = 16$$
.

Then, 
$$a^2 = 25$$
 &  $b^2 = 16$ 

Hence the required equation is 
$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$
.

# 12.Find the equation of the hyperbola with centre at the origin, length of the transverse axis 8 & one focus at (0,6)

**Ans.** Let its equation by 
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

& length of the transverse axis 
$$= 8 \Rightarrow 2a = 8 \Rightarrow a = 4$$

Also, 
$$c^2 = a^2 + b^2 \iff b^2 = c^2 - a^2 \implies 36 - 16 = 20$$

So, 
$$a^2 = 16$$
 &  $b^2 = 20$ 

Hence, the required equation is 
$$\frac{y^2}{16} - \frac{x^2}{20} = 1$$

# 13.Find the equation of the hyperbola whose foci are at $(0,\pm B)$ & the length of whose conjugate axis is $2\sqrt{11}$

**Ans.** Let it equation be 
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Let it foci be  $(0,\pm C)$ 

$$C = 8$$

Length of conjugate axis  $= 2\sqrt{11}$ 

$$\Rightarrow 2b = 2\sqrt{11} \Rightarrow b = \sqrt{11} \Rightarrow b^2 = 11$$

Also, 
$$C^2 = (a^2 + b^2) = (c^2 - b^2) = 64 - 11 = 53$$

$$a^2 = 53$$

Hence, required equation is  $\frac{y^2}{53} - \frac{x^2}{11} = 1$ 

14.Find the equation of the hyperbola whose vertices are  $(0,\pm 3)$  & foci are  $(0,\pm 8)$ 

**Ans.** The vertices are  $(0 \pm a)$ 

But it is given that the vertices are (0  $\pm$  3)

$$\therefore a = 3$$

Let its foci be  $(0,\pm c)$ 

But it is given that the foci are  $(0,\pm 8)$ 

Now 
$$b^2 = (c^2 - a^2) = 8^2 - 3^2 = 64 - 9 = 55$$

Then 
$$a^2 = 3^2 = 9 \& b^2 = 55$$

Hence the required equation is  $\frac{y^2}{9} - \frac{x^2}{55} = 1$ 

15. Find the equation of the ellipse for which  $e = \frac{4}{5}$  & whose vertices are  $(0, \pm 10)$ .

**Ans.** Its vertices are  $(0,\pm a)$  & therefore a =10

Let 
$$c^2 = (a^2 - b^2)$$

Then, 
$$e = \frac{c}{a} \Rightarrow c = ae = \left[10 \times \frac{4}{5}\right] = 8$$

Now, 
$$c^2 = (a^2 - b^2) \Rightarrow b^2 = (a^2 - c^2) = (100 - 64) = 36$$

$$a^2 = (10)^2 = 100 \& b^2 = 36$$

Hence the required equation is  $\frac{x^2}{36} + \frac{y^2}{100} = 1$ 

16.Find the equation of the ellipse, the ends of whose major axis are  $(\pm 7,0)$  & the ends of whose minor axis are  $(0,\pm 2)$ 

**Ans.** Its vertices are  $(\pm a, 0)$  & therefore, a = 5 ends of the minor axis are c(0, -5) & D(0, 5)

 $\therefore CD = 25$  i.e length of minor axis = 25 units

$$\therefore 2b = 25 \Rightarrow \frac{25}{2} = 12.5$$

Now, 
$$a = 5 \& b = 12.5 \implies a^2 = 25 \& b^2 = 156.25$$

Hence, the required equation  $\frac{x^2}{25} + \frac{y^2}{156.25} = 1$ 

16. Find the equation of the parabola with vertex at the origin & y+5 = 0 as its directrix. Also, find its focus

**Ans.** Let the vertex of the parabola be o(0,0)

Now 
$$y+5=0 \Rightarrow y=-5$$

Then the directrix is a line parallel

To the x axis at a distance of 5 unite below the x axis so the focus is F(0,5)

Hence the equation of the parabola is

$$x^2 = 4ay$$
 Where a = 5i.e,  $x^2 = 20y$ 

17. Find the equation of a circle, the end points of one of whose diameters are A(2,-3) & B(-3,5).

**Ans.** Let the end points of one of whose diameters are  $(x_1, y_1) \& (x_2, y_2)$  is given by

$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$$

Hence 
$$x_1 = 2$$
,  $y_1 = -3$  &  $x_2 = -3$ ,  $y_2 = 5$ 

The required equation of the circle is

$$(x-2)(x+3)+(y+3)(y-5)=0$$

$$\Rightarrow x^2 + y^2 + x - 2y - 21 = 0$$

18. Find the equation of ellipse whose vertices are  $(0,\pm13)$  & the foci are  $(0,\pm5)$ 

**Ans.** Let the required equation be  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 15$ .

Its vertices are  $(0 \pm a)$  & therefore a = 13

Let its foci be  $(0 \pm C)$  then C = 5

$$b^2 = a^2 - c^2 = 169 - 25 = 144$$

This 
$$b^2 = 144 \& \alpha^2 = 169$$

Hence, the required equation is  $\frac{x^2}{144} + \frac{y^2}{169} = 1$ 

19. Find the equation of the hyperbola whose foci are  $(\pm 5,0)$  & the transverse axis is of length 8.

**Ans.** Let the required equation be  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

Length of its Trans verse axis =2a

$$\therefore 2a = 8 \Leftrightarrow a = 4 \Leftrightarrow a^2 = 16$$

Let its foci be  $(\pm C, 0)$ 

Then C = 5

$$b^2 = (c^2 - a^2) = 5^2 - 4^2 = 9$$

This 
$$a^2 = 16 \& b^2 = 9$$

Hence, the required equation is  $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 

20. Find the equation of a circle, the end points of one of whose diameters are A(-3,2) & B(5,-3).

**Ans.** Let the equation be  $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$ 

Hence 
$$x_1 = -3$$
,  $y_1 = 2 & x_2 = 5$ ,  $y_2 = -3$ 

So 
$$(x+3)(x-5)+(y-2)(y+3)=0$$

$$x^{2}-2x-15+y^{2}+y-6=0$$
$$x^{2}+y^{2}-2x+y-21=0$$

21.If eccentricity is  $\frac{1}{5}$  & foci are  $(\pm 7, 0)$  find the equation of an ellipse.

Ans. Let the required equation of the ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Let its foci be  $(\pm C, 0)$ . Then C = 7

Also,

$$e = \frac{c}{a} \Leftrightarrow a = \frac{c}{e} = \frac{7}{\frac{1}{5}} = 35$$

Now 
$$c^2 = (a^2 - b^2)$$

$$b^2 = a^2 - c^2 = (35)^2 - 49 = 1225 - 49 = 1176$$

$$a^2 = 1225 \& b^2 = 1176$$

Hence the required equation is  $\frac{x^2}{1225} + \frac{y^2}{1176} = 1$ 

22.Find the equation of the hyperbola where foci are  $(\pm 5,0)$  & the transverse axis is of length

**Ans.** Let the required equation be  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

Length of its transverse axis = 2a

$$\therefore 2a = 8 \Leftrightarrow a = \frac{8}{2} = 4$$

$$a^2 = 16$$

Let its foci be  $(\pm C, 0)$ 

Then C = 5

$$b^2 = c^2 - a^2 = 25 - 16 = 9$$

Hence the required equation is  $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 

23. Find the length of axes & coordinates of the vertices of the hyperbola  $\frac{x^2}{49} - \frac{y^2}{64} = 1$ 

**Ans.** The equation of the given hyperbola is  $\frac{x^2}{49} - \frac{y^2}{64} = 1$ 

Comparing the given equation with  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ , we get

$$a^2 = 49 \& b^2 = 64$$
  

$$\therefore C^2 = (a^2 + b^2) = 49 + 64 = 113$$

Length of transverse axis =  $2a = 2 \times 7 = 14$  units

Length of conjugate axis =  $2b = 2 \times 8 = 16$  units

The coordinators of the vertices are A(-a,0) & B(a-0) ie A(-7,0) & B(7,0)

24. Find the lengths of axes & length of lat us rectum of the hyperbola,  $\frac{y^2}{9} - \frac{x^2}{16} = 1$ 

**Ans.** The given equation is  $\frac{y^2}{9} - \frac{x^2}{16} = 1$  means hyperbola

Comparing the given equation with  $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ , we get

$$a^2 = 9 \& b^2 = 16$$

Length of transverse axis =  $2a = 2 \times 3 = 6$  units

Length of conjugate axis  $= 2b = 2 \times 4 = 8$  units

The coordinates of the vertices are A(0,-a) & B(0,a) i.e A(0,-3) & B(0,3)

25. Find the eccentricity of the hyperbola of  $\frac{y^2}{9} - \frac{x^2}{16} = 1$ 

Ans. As in above question

$$a = 3 \& b = 4$$

&

$$c^2 = a^2 + b^2 = 9 + 16 = 25$$

So, 
$$c = 5$$

Then 
$$e = \frac{c}{a} = \frac{5}{3}$$

26.Find the equation of the hyperbola with centre at the origin, length of the trans verse axis 6 & one focus at (0,4)

**Ans.** Let its equation be  $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ 

Clearly c = 4

Length of transverse axis =  $6 \Leftrightarrow 2a = 6 \Leftrightarrow a = 3$ .

Also, 
$$c^2 = a^2 + b^2 \Leftrightarrow b^2 = c^2 - a^2 = 4^2 - 3^2 = 16 - 9 = 7$$

Then 
$$a^2 = 3^2 = 9$$
 &  $b^2 = 7$ 

Hence, the required equation is  $\frac{y^2}{9} - \frac{x^2}{7} = 1$ 

27.Find the equation of the ellipse, the ends of whose major axis are  $(\pm 3,0)$  & at the ends of whose minor axis are  $(0,\pm 4)$ 

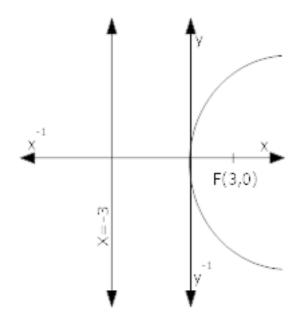
**Ans.** Let the required equation be  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 

Its vertices are  $(\pm a, 0)$  & a = 3

Ends of minor axis are C(0,-4) & D(0,4)

 $\therefore CD =$ 8 i.e length of the minor axis = 8 units

Now, 
$$2b = 8 \Leftrightarrow b = 4$$


$$\therefore a = 3 \& b = 4$$

Hence the required equation is  $\frac{x^2}{9} + \frac{y^2}{16} = 1$ 

28. Find the equation of the parabola with focus at F(4,0) & directrix x=-3

**Ans.** Focus F(4,0) lies on the axis hand side of the origin so, it is a right handed parabola. Let the required equation be  $y^2 = 4ax$ .

Hence, the required equation is  $y^2 = 16x$ 



29.If y = 2x is a chord of the circle  $x^2 + y^2 - 10x = 0$ , find the equation of the circle with this chord as a diameter

**Ans.** 
$$y = 2x$$
 &  $x^2 + y^2 - 10x = 0$ 

Putting 
$$y = 2x$$
 in  $x^2 + y^2 - 10x = 0$  we get

$$5x^2 - 10x = 0 \Leftrightarrow 5x(x-2) = 0 \Leftrightarrow x = 0 \text{ or } x = 2$$

Now, 
$$x = 0 \Rightarrow y = 0$$
 &  $x = 2 \Rightarrow y = 4$ 

 $\dot{}$  the points of intersection of the given chord & the given circle are

$$A(0,0)$$
 &  $B(2,4)$ 

... the required equation of the circle with AB as diameter is

$$(x-0)(x-2)+(y-0)(y-4)=0$$

$$\Rightarrow x^2 + y^2 - 2x - 4y = 0$$

#### **CBSE Class 12 Mathematics**

#### **Important Questions**

#### Chapter 11

#### **Conic Sections**

#### **6 Marks Questions**

1. Find the length of major & minor axis- coordinate's of vertices & the foci, the eccentricity & length of latus rectum of the ellipse  $16x^2 + y^2 = 16$ 

Ans. 
$$16x^2 + v^2 = 16$$

Dividing by 16,

$$x^2 + \frac{y^2}{16} = 1$$

So 
$$b^2 = 1$$
 &  $a^2 = 16$  &  $b = 1$  &  $a = 4$ 

&

$$c = \sqrt{a^2 - b^2} = \sqrt{16 - 1}$$

$$=\sqrt{15}$$

Thus 
$$a = 4$$
,  $b = 1$  &  $c = \sqrt{15}$ 

(i) Length of major axis  $= 2a = 2 \times 4 = 8$  units

Length of minor axis =  $2b = 2 \times 1 = 2$  units

(ii) Coordinates of the vertices are A(-a,0) & B(a,0) ie A(-4,0) & B(4,0)

(iii) Coordinates of foci are 
$$F_1(-c,0)$$
 &  $F_2(c,0)$  ie  $F_1(-\sqrt{15},0)$  &  $F_2(\sqrt{15},0)$ 

(iv) Eccentricity, 
$$e = \frac{c}{a} = \frac{\sqrt{15}}{4}$$

(v)Length of latus rectum 
$$=$$
  $\frac{2b^2}{a} = \frac{2}{4} = \frac{1}{2}$  units

2. Find the lengths of the axis , the coordinates of the vertices & the foci the eccentricity & length of the lat us rectum of the hyperbola  $25x^2 - 9y^2 = 225$ 

Ans. 
$$25x^2 - 9y^2 = 225 \Rightarrow \frac{x^2}{9} - \frac{y^2}{25} = 1$$

So, 
$$a^2 = 9$$
 &  $b^2 = 25$ 

$$c = \sqrt{a^2 + b^2} = \sqrt{9 + 25} = \sqrt{34}$$

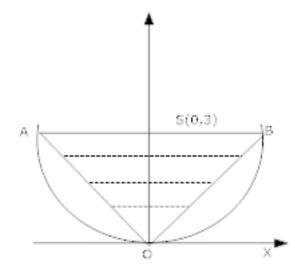
(i) Length of transverse axis =  $2a = 2 \times 3 = 6$  units

Length of conjugate axis =  $2b = 2 \times 5 = 10$  units

- (ii) The coordinates of vertices are A(-a,0) & B(a,0) ie A(-3,0) & B(3,0)
- (iii) The coordinates of foci are

$$F_1(-c,0)$$
 &  $F_2(c,0)$  ie  $F_1(-\sqrt{34},0)$  &  $F_2(\sqrt{34},0)$ 

(iv) Eccentricity, 
$$e = \frac{c}{a} = \frac{\sqrt{34}}{3}$$


(v) Length of the lat us rectum 
$$=\frac{2b^2}{a} = \frac{50}{3}$$
 units

3. Find the area of the triangle formed by the lines joining the vertex of the parabola  $x^2 = 12y$  to the ends of its latus rectum.

**Ans.** The vertex of the parabola  $x^2 = 12y$  ie o(0,0).

| 0  | 0 | 1  |
|----|---|----|
| 6  | 3 | 1  |
| -6 | 3 | 1. |

Comparing  $x^2 = 12y$  with  $x^2 = 4ay$ , we get a = 3 the coordinates of its focus S are (0,3).



Clearly, the ends of its latus rectum are : A(-2a,a) & B(2a,a)

Ie 
$$A(-6,3)$$
 &  $B(6,3)$ 

$$\therefore \text{ area of } \triangle OBA = \frac{1}{2}$$

$$= \frac{1}{2} \left[ 1 \times \left( 18 + 18 \right) \right]$$

=18 units.

4. A man running in a race course notes that the sum of the distances of the two flag posts from him is always 12 m & the distance between the flag posts is 10 m. find the equation of the path traced by the man.

**Ans.** We know that on ellipse is the locus of a point that moves in such a way that the sum of its distances from two fixed points (caked foci) is constant.

So, the path is ellipse.

Let the equation of the ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$
where  $b^2 = a^2 (1 - c^2)$ 

Clearly, 
$$2a = 12$$
 &  $2ae = 10$ 

$$\Rightarrow a = b \& e = \frac{5}{6}$$

$$\Rightarrow b^2 = a^2 (1 - e^2) = 36 \left( 1 - \frac{25}{36} \right)$$

$$\Rightarrow b^2 = 11$$

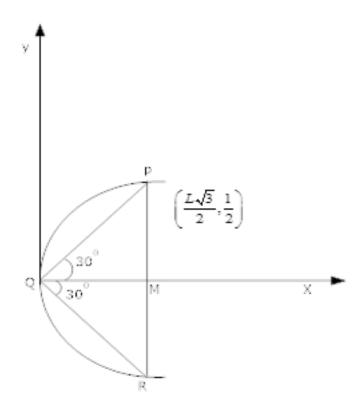
Hence, the required equation is  $\frac{x^2}{36} + \frac{y^2}{11} = 1$ 

5. An equilateral triangle is inscribed in the parabola  $y^2 = 4ax$  so that one angular point of the triangle is at the vertex of the parabola. Find the length of each side of the triangle.

**Ans.** Let  $\Delta PQR$  be an equilateral triangle inscribed in the parabola  $y^2 = 4ax$ 

Let 
$$QP = QP = QR = PR = C$$

Let ABC at the x – axis at M.


Then, 
$$\angle \angle PQM = \angle RQWM = 30^{\circ}$$

$$\therefore \frac{QM}{QP} = \cos 30^{\circ} \Rightarrow QM = \angle \cos 30^{\circ}$$

$$\Rightarrow \frac{L\sqrt{3}}{2}$$

$$\Rightarrow \frac{PM}{QP} = \sin 30^{\circ} \Rightarrow PM = \angle \sin 30^{\circ}$$

$$\Rightarrow \frac{L}{2}$$



: the coordinates of are 
$$\left[\frac{L\sqrt{3}}{2}, \frac{L}{2}\right]$$

Since P lies on the parabola  $y^2 = 4 ax$ , we have

$$l^2 = 4a \times \frac{L\sqrt{3}}{2} \Rightarrow l = 8a\sqrt{3}$$

Hence length of each side of the triangle is  $8a\sqrt{3}$  units.

6. Find the equation of the hyperbola whose foci are at  $(0,\pm\sqrt{10})$  & which passes through the points (2,3)

**Ans.** Let it equation be  $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \dots (i)$ 

Let its foci be  $(0,\pm C)$ 

But the foci are  $(0, \pm \sqrt{10})$ 

$$\therefore C = \sqrt{10} \Leftrightarrow C^2 = 10 \Leftrightarrow (a^2 + b^2) = 10.....(ii)$$

Since (i) passes through (2,3), we have  $\frac{9}{a^2} - \frac{4}{b^2} = 1$ 

Now

$$\frac{9}{a^2} - \frac{4}{b^2} = 1 \Leftrightarrow \frac{9}{a^2} - \frac{4}{(10 - a^2)} = 1 \dots (iii)$$

$$\Rightarrow 9(10-a^2)-4a^2=a^2(10-a^2)$$

$$\Rightarrow a^2 - 23a^2 + 90 = 0$$

$$\Rightarrow (a^2 - 18)(a^2 - 5) = 0 \Leftrightarrow a^2 = 5$$

[:  $a^2 = 18 \Rightarrow b^2 = -8$ , which is not possible]

Then 
$$a^2 = 5$$
 &  $b^2 = 5$ 

Hence, the required equation is  $\frac{y^2}{5} - \frac{x^2}{5} = 1$ ,

i.e. 
$$y^2 - x^2 = 5$$

7. Find the equation of the curve formed by the set of all these points the sum of whose distance from the points A(4,0,0) & B(-4,0,0) is 10 units.

**Ans.** Let P(x, y, z) be an arbitrary point on the given curve

Then PA + PB = 10

$$\Rightarrow \sqrt{(x-4)^2 + y^2 + z^2} + \sqrt{(x+4)^2 + y^2 + z^2} = 10$$

$$= \sqrt{(x+4)^2 + y^2 + z^2} = 10 - \sqrt{(x-4)^2 + y^2 + z^2} \dots (i)$$

Squaring both sides

$$\Rightarrow (x+4)^{2} + y^{2} + z^{2} = 100 - (x-4)^{2} + y^{2} + z^{2} - 20\sqrt{(x-4)^{2} + y^{2} + z^{2}}$$

$$\Rightarrow 16x = 100 - 20\sqrt{(x-4)^{2} + y^{2} + z^{2}}$$

$$\Rightarrow 5\sqrt{(x-4)^{2} + y^{2} + z^{2}} = 25 - 4x$$

$$\Rightarrow 25\left[(x-4)^{2} + y^{2} + z^{2}\right] = 625 + 16x^{2} - 200x$$

$$\Rightarrow 9x^{2} + 25y^{2} + 25z^{2} - 225 = 0$$

Hence, the required equation of the curve is

$$9x^2 + 25x^2 + 25z^2 - 225 = 0$$

8. Find the equation of the hyperbola whose foci are at  $(0, \pm \sqrt{10})$  & which passes through the point (2,3).

Ans. Let its equation be 
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \dots (i)$$

Let its foci be  $(0,\pm c)$ 

But, the foci are  $\left(0,\pm\sqrt{10}\right)$ 

$$\therefore C = \sqrt{10} \Leftrightarrow C^2 = 10$$

& 
$$a^2 + b^2 = 10.....(ii)$$

Since (i) passes through (2,3), we have

$$\frac{9}{a^2} - \frac{4}{b^2} = 1$$

Now

$$\frac{9}{a^2} + \frac{4}{b^2} = 1 \Leftrightarrow \frac{9}{a^2} - \frac{4}{(10 - a^2)} = 1$$

$$\Rightarrow a^4 - 23a^2 + 90 = 0$$

$$\Rightarrow (a^2 - 18)(a^2 - 5) = 0$$

$$\Rightarrow \alpha^2 = 5$$

Then 
$$a^2 = 5 = b^2$$

Hence, the required equation is  $\frac{y^2}{5} - \frac{x^2}{5} = 1$ 

i.e. 
$$y^2 - x^2 = 5$$

9. Find the equation of the ellipse with centre at the origin, major axis on the y – axis & passing through the points (3,2) & (1,6)

**Ans.**Let the required equation be  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.....(i)$ 

Since (3, 2) lies on (i) we have  $\frac{9}{b^2} + \frac{4}{a^2} = 1 \dots (ii)$ 

Also, since (1, 6) lies on (i), we have  $\frac{1}{b^2} + \frac{36}{a^2} = 1 \dots (iii)$ 

Putting  $\frac{1}{b^2} = u$  &  $\frac{1}{a^2} = v$  these equations become:

$$9u + 4v = 1....(iv) & u + 36v = 1....(v)$$

On multiplying (v) by 9 & subtracting (iv) from it we get

$$320v = 8 \Leftrightarrow v = \frac{8}{320} = \frac{1}{40} \Leftrightarrow \frac{1}{a^2} = \frac{1}{40} \Leftrightarrow a^2 = 40$$

Putting  $v = \frac{1}{40}$  in (v) we get

$$u + \left[36 \times \frac{1}{40}\right] = 1 \Leftrightarrow u = \left[1 - \frac{9}{10}\right] = \frac{1}{10} \Leftrightarrow \frac{1}{b^2} = \frac{1}{10} \Leftrightarrow b^2 = 10$$

Then, 
$$b^2 = 10$$
 &  $a^2 = 40$ 

Hence the required equation is  $\frac{x^2}{10} + \frac{y^2}{40} = 1$ 

10. Prove that the standard equation of an ellipse is  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 

Where a & b are the lengths of the semi major axis & the semi-major axis respectively & a > b.

**Ans.** Let the equation of the given curve be  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  & let

P(x, y) be an arbitrary point on this curve

Then,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 \left[ 1 - \frac{x^2}{a^2} \right]$$

$$\Rightarrow y^2 = \frac{b^2 \left[a^2 - x^2\right]}{a^2} \dots (i)$$

Also, let 
$$(a^2 - b^2) = c^2$$
.....(ii)

Let  $F_1(-c,0)$  &  $F_2(c,0)$  be two fixed points on the x-axis, than

$$PF_{1} = \sqrt{(x+c)^{2} + y^{2}}$$

$$= \sqrt{(x+c)^{2} + \frac{b^{2}(a^{2} - x^{2})}{a^{2}}} \text{ using } (i)$$

$$= \sqrt{(x+c)^{2} + \frac{(a^{2}-c^{2})(a^{2}-x^{2})}{a^{2}}} \text{ using } (ii)$$

$$= \sqrt{a^2 + 2cx + \frac{c^2x^2}{a^2}}$$

$$=\sqrt{\left|a+\frac{cx}{a}\right|^2}=\left|a+\frac{cx}{a}\right|$$

Similarly, 
$$PF_2 = \left[ a - \frac{cx}{a} \right]$$

$$\therefore PF_1 + PF_2 = \left[ a + \frac{cx}{a} + a - \frac{cx}{a} \right]$$

$$\Rightarrow PF_1 + PF_2 = 2a$$

This shows that the given curve is an ellipse

Hence the equation of the ellipse is  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$