
Chapter 1

Lexical Analysis and Parsing

LanGuaGe processinG system

Language Processors
Interpreter
It is a computer program that executes instructions written in a 
programming language. It either executes the source code directly 
or translates source code into some effi cient intermediate represen-
tation and immediately executes this.

Interpreter Output
Source program

Input

Example: Early versions of Lisp programming language, BASIC.

Translator
A software system that converts the source code from one form of 
the language to another form of language is called as translator. 
There are 2 types of translators namely (1) Compiler (2) Assembler.

Compiler converts source code of high level language into low 
level language.

Assembler converts assembly language code into binary code.

Compilers
A compiler is a software that translates code written in high-level 
language (i.e., source language) into target language.

Example: source languages like C, Java, . . . etc. Compilers are 
user friendly.

The target language is like machine language, which is effi cient 
for hardware.

Compiler

Error messages

Low level
program

(target program)

High level
program

(source program)

Passes
The number of iterations to scan the source code, till to get the 
executable code is called as a pass.

Compiler is two pass. Single pass requires more memory and 
multipass require less memory.

Analysis–synthesis model of compilation
There are two parts of compilation: 

Synthesis
(back end)

Analysis
(front end)

Compilation

Analysis It breaks up the source program into pieces and creates 
an intermediate representation of the source program. This is more 
language specifi c.

Synthesis It constructs the desired target program from the inter-
mediate representation. The target program will be more machine 
specifi c, dealing with registers and memory locations.

  Language processing system

  Lexical analysis

  Syntax analysis

  Context free grammars and ambiguity

  Types of parsing

  Top down parsing

  Bottom up parsing

  Confl icts

  Operator precedence grammar

  LR parser 

  Canonical LR parser(CLR)

LEARNING OBJECTIVES
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Front end vs back end of a compiler
The front end includes all analysis phases and intermediate 
code generator with part of code optimization.

Source
program

Tokens
Parser Syntax

tree 
3-

adress
code

Intermediate
code

generator 

Symbol
table

Lexical
analyzer

Error handler

The back end includes code optimization and code gen-
eration phases. The back end synthesizes the target program 
from intermediate code.

Context of a compiler
In addition to a compiler, several other programs may be 
required to create an executable target program, like pre-
processor to expand macros.

The target program created by a compiler may require 
further processing before it can be run.

The language processing system will be like this:

Source program with macros

Preprocessor

Compiler

Assembler

Loader/linker

Modified source program

Target assembly program

Relocatable machine code

Absolute machine code

Library files, relocatable
object files

Phases
Compilation process is partitioned into some subproceses 
called phases.

In order to translate a high level code to a machine code, 
we need to go phase by phase, with each phase doing a par-
ticular task and parsing out its output for the next phase.

Lexical analysis or scanning
It is the first phase of a compiler. The lexical analyzer reads the 
stream of characters making up the source program and groups 
the characters into meaningful sequences called lexemes.

Example:  Consider the statement: if (a < b)
In this sentence the tokens are if, (a, <, b,).
Number of tokens = 6
Identifiers: a, b
Keywords: if
Operators: <, ( , )

Syntax analyzer or Parser
•• Tokens are grouped hierarchically into nested collections 

with collective meaning.
•• A context free grammar (CFG) specifies the rules or 

productions for identifying constructs that are valid in 
a programming language. The output is a parse/syntax/ 
derivation tree.

Example:  Parse tree for –(id + id) using the following 
grammar:
E → E + E
E → E * E
E → –E		  (G

1
)

E → (E)
E → id

E

E

E

E E

−

+

)(

id id

Semantic analysis
•• It checks the source program for semantic errors.
•• Type checking is done in this phase, where the compiler 

checks that each operator has matching operands for 
semantic consistency with the language definition.

•• Gathers the type information for the next phases.

Example 1:  The bicycle rides the boy.
This statement has no meaning, but it is syntactically 
correct.

Example 2: 
int a;
bool b;
char c;
c = a + b;
We cannot add integer with a Boolean variable and assign it 
to a character variable.

Intermediate code generation
The intermediate representation should have two important 
properties:

	 (i)	 It should be easy to produce.
	(ii)	 Easy to translate into the target program

‘Three address code’ is one of the common forms of 
Intermediate code.

Three address code consists of a sequence of instruc-
tions, each of which has at most three operands.

Example: 
id

1
 = id

2
 + id

3
 × 10;

t1
: = inttoreal(10)
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t
2
:= id

3
 × t

1

t
3
:= id

2
 + t

2

id
1
 = t

3

Code optimization
The output of this phase will result in faster running 
machine code.

Example:  For the above intermediate code the optimized 
code will be
t
1
:= id

3
 × 10.0

id
1
: = id

2
 + t1

In this we eliminated t
2
 and t

3
 registers.

Code generation
•• In this phase, the target code is generated.
•• Generally the target code can be either a relocatable 

machine code or an assembly code.
•• Intermediate instructions are each translated into a 

sequence of machine instructions.
•• Assignment of registers will also be done.

Example:  MOVF		 id
3
, R

2

	   MULF		 ≠ 60.0, R
2

	   MOVF		 id
2
, R

1

	   ADDF		 R
2
, R

1

	   MOVF		 R
1,
 id

1

Symbol table management
A symbol table is a data structure containing a record for 
each variable name, with fields for the attributes of the 
name.

What is the use of a symbol table?
	 1.	 To record the identifiers used in the source program.
	 2.	 Its type and scope
	 3.	 If it is a procedure name then the number of argu-

ments, types of arguments, the method of parsing (by 
reference) and the type returned.

Error detection and reporting
	 (i)	 Lexical phase can detect errors where the characters 

remaining in the input ‘do not form any token’.
	(ii)	 Errors of the type, ‘violation of syntax’ of the language 

are detected by syntax analysis.
	(iii)	 Semantic phase tries to detect constructs that have the 

right syntactic structure but no meaning.

Example:  adding two array names etc.

Lexical Analysis
Lexical Analysis is the first phase in compiler design. The 
main task of the lexical analyzer is to read the input char-
acters of the source program, group them into lexemes, and 
produce as output a sequence of tokens for each lexeme 

in the source program. The stream of tokens is sent to the 
parser for syntax analysis.

There will be interaction with the symbol table as well.

Parser

Lexical
analyzer

Symbol tableError handler

Source program

Tokens
Get
next

tokens

Lexeme:  Sequence of characters in the source program 
that matches the pattern for a token. It is the smallest logical 
unit of a program.

Example:  10, x, y, <, >, =

Tokens:   These are the classes of similar lexemes.

Example:  Operators:	 <, >, =
	 Identifiers:	x, y
	 Constants:	 10
	 Keywords:	 if, else, int

Operations performed by lexical analyzer
	 1.	 Identification of lexemes and spelling check
	 2.	 Stripping out comments and white space (blank, new 

line, tab etc).
	 3.	 Correlating error messages generated by the compiler 

with the source program.
	 4.	 If the source program uses a macro-preprocessor, the 

expansion of macros may also be performed by lexical 
analyzer.

Example 1:  Take the following example from Fortran
	      DO 5 I = 1.25
	      Number of tokens = 5
	      The 1st lexeme is the keyword DO
	      Tokens are DO, 5, I, =, 1.25.

Example 2:  An example from C program
	      for (int i = 1; i < = 10; i + +)
	      �Here tokens are for, (, int, i, =, 1,;, i, < =, 10,;, 

i, ++,)
	      Number of tokens = 13

LEX compiler
Lexical analyzer divides the source code into tokens. To 
implement lexical analyzer we have two techniques namely 
hand code and the other one is LEX tool.

LEX is an automated tool which specifies lexical ana-
lyzer, from the rules given by the regular expression.

These rules are also called as pattern recognizing rules.
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Syntax Analysis
This is the 2nd phase of the compiler, checks the syntax and 
constructs the syntax/parse tree.

Input of parser is token and output is a parse/ syntax tree.

Constructing parse tree
Construction of derivation tree for a given input string by 
using the production of grammar is called parse tree.
Consider the grammar

S → E + E/E * E
E → id

The parse tree for the string 
ω = id + id * id is

E

S

E E

E

idid id

+

*

ω = id + id * id

Role of the parser
	 1.	 Construct a parse tree.
	 2.	 Error reporting and correcting (or) recovery. A parser 

can be modeled by using CFG (Context Free Grammar) 
recognized by using pushdown automata/table driven 
parser.

	 3.	 CFG will only check the correctness of sentence with 
respect to syntax not the meaning.

Token
Parser

Get next
token Syntax

errors
Lexical
errors

Lexical
analyzer

Parse
tree

Source
program

How to construct a parse tree?
Parse tree’s can be constructed in two ways.

	 (i)	 Top-down parser: It builds parse trees from the top 
(root) to the bottom (leaves).

	(ii)	 Bottom-up parser: It starts from the leaves and works 
up to the root.

In both cases, the input to the parser is scanned from left to 
right, one symbol at a time.

Parser generator
Parser generator is a tool which creates a parser.

Example:  compiler – compiler, YACC

The input of these parser generator is grammar we use and 
the output will be the parser code.

The parser generator is used for construction of the com-
pilers front end.

Scope of declarations
Declaration scope refers to the certain program text portion, 
in which rules are defined by the language.

Within the defined scope, entity can access legally to 
declared entities.

The scope of declaration contains immediate scope 
always. Immediate scope is a region of declarative portion 
with enclosure of declaration immediately.

Scope starts at the beginning of declaration and scope 
continues till the end of declaration. Whereas in the over 
loadable declaration, the immediate scope will begin, when 
the callable entity profile was determined.

The visible part refers text portion of declaration, which 
is visible from outside.

Syntax Error Handling
	 1.	 Reports the presence of errors clearly and accurately.
	 2.	 Recovers from each error quickly.
	 3.	 It should not slow down the processing of correct 

programs.

Error Recovery Strategies

Global
correction

Error
productions

Panic
mode

Phrase level

Panic mode  On discovering an error, the parser discards 
input symbols one at a time until one of the synchronizing 
tokens is found.

Phrase level  A parser may perform local correction on the 
remaining input. It may replace the prefix of the remaining 
input.

Error productions  Parser can generate appropriate error 
messages to indicate the erroneous construct that has been 
recognized in the input.

Global corrections  There are algorithms for choosing a 
minimal sequence of changes to obtain a globally least cost 
correction.

Context Free Grammars 
and Ambiguity
A grammar is a set of rules or productions which generates 
a collection of finite/infinite strings.
It is a 4-tuple defined as G = (V, T, P, S)
Where

V = set of variables
T = set of terminals
P = set of production rules
S = start symbol
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Example:  S → (S)/e
	   S → (S)� (1)
	   S → e� (2)

Here S is start symbol and the only variable.
(,), e is terminals.
(1) and (2) are production rules.

Sentential forms
s ⇒ a, Where a may contain non-terminals, then we say 
that a is a sentential form of G.

Sentence:  A sentence is a sentential form with no 
non-terminals.

Example:  –(id + id) is a sentence of the grammar (G
1
).

Derivations

Left most derivations Right most derivations
E ⇒ −E ⇒ −(E )
⇒ −(E + E )
⇒ −(id + E)
⇒ −(id + id)

E ⇒ −E ⇒ −(E )
⇒ −(E + E )
⇒ −(E + id)
⇒ −(id + id)

Right most derivations are also known as canonical 
derivations.

E

E

E

E E

−

+

)(

id id

Ambiguity
A grammar that produces more than one parse tree for some 
sentence is said to be ambiguous.

Or

A grammar that produces more than one left most or more 
than one right most derivations is ambiguous.

For example consider the following grammar:

String → String + String/String – String /0/1/2/…/9

9 – 5 + 2 has two parse trees as shown below

String

String String

StringString
2

59

−

+

Figure 1  Leftmost derivation

*

String String

StringString

String

25

9

−

+

Figure 2   Rightmost derivation

•• Ambiguity is problematic because the meaning of the 
program can be incorrect.

•• Ambiguity can be handled in several ways

	 1.	 Enforce associativity and precedence
	 2.	 Rewrite the grammar by eliminating left recursion and 

left factoring.

Removal of ambiguity
The grammar is said to be ambiguous if there exists more 
than one derivation tree for the given input string.

The ambiguity of grammar is undecidable; ambiguity of 
a grammar can be eliminated by rewriting the grammar.

Example:
E → E + E/id} → ambiguous grammar
E → E + T/T	 rewritten grammar
T → id  		 (unambiguous grammar)

Left recursion
Left recursion can take the parser into infinite loop so we 
need to remove left recursion.

Elimination of left recursion
A → Aa/b is a left recursive.

It can be replaced by a non-recursive grammar:

A → bA′
  A′ → aA′/e

In general
A → Aa

1
/Aa

2
/…/Aa

m
/b

1
/b

2
/…/b

n

We can replace A productions by 
A → b

1
 A′/b

2
 A′/–b

n
 A′ 

A′ → a
1
 A′/a

2
 A′/–a

m
 A′

Example 3:  Eliminate left recursion from
	      E → E + T/T
	      T → T * F/F
	      F → (E)/id

Solution  E → E + T/T it is in the form 
	   A → Aa/b
	   So, we can write it as E → TE′
			            E′ → +TE′/e
Similarly other productions are written as

T → FT ′
        T1 → × FT ′/∈

   F → (E)/id
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Example 4  Eliminate left recursion from the grammar 

S → (L)/a
 L → L, S/b

Solution:  S → (L)/a
	    L → bL′
	    L′ → SL′/∈

Left factoring
A grammar with common prefixes is called non-determin-
istic grammar. To make it deterministic we need to remove 
common prefixes. This process is called as Left Factoring.

The grammar: A → ab
1
/ab

2
 can be transformed into

	           A → a A′
	           A′ → b

1
/b

2

Example 5:  What is the resultant grammar after left 
factoring the following grammar?

S → iEtS/iEtSeS/a
E → b

Solution:  S → iEtSS ′/a
	    S ′ → eS/∈
	    E → b

Types of Parsing

Parsers

Topdown parsers
(predictive parser)

Bottom up parsers

Recursive descent
parsing

Non-recursive
descent
parsing

Operator
precedence

parsing

(LR parsers)

SLR LALRCLR

Topdown Parsing
A parse tree is constructed for the input starting from the 
root and creating the nodes of the parse tree in preorder. It 
simulates the left most derivation.

Backtracking Parsing
If we make a sequence of erroneous expansions and sub-
sequently discover a mismatch we undo the effects and roll 
back the input pointer.

This method is also known as brute force parsing.

Example: S → cAd
	     A → ab/a

Let the string w = cad is to generate:

S

Ac d

a b

The string generated from the above parse tree is cabd. 
but, w = cad, the third symbol is not matched.
So, report error and go back to A.
Now consider the other alternative for production A.

S

Ac d

a

String generated ‘cad’ and w = cad. Now, it is successful.
In this we have used back tracking. It is costly and time 

consuming approach. Thus an outdated one.

Predictive Parsers
By eliminating left recursion and by left factoring the gram-
mar, we can have parse tree without backtracking. To con-
struct a predictive parser, we must know, 

	 1.	 Current input symbol 
	 2.	 Non-terminal which is to be expanded

A procedure is associated with each non-terminal of the 
grammar.

Recursive descent parsing
In recursive descent parsing, we execute a set of recursive 
procedures to process the input.

The sequence of procedures called implicitly, defines a 
parse tree for the input.

Non-recursive predictive parsing
(table driven parsing)

•• It maintains a stack explicitly, rather than implicitly via 
recursive calls.

•• A table driven predictive parser has

→ An input buffer
→ A stack
→ A parsing table
→ Output stream

Predictive parsing
program  

Output
x

a + b $

y

z

$
Parsing table

M

Input
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Constructing a parsing table
To construct a parsing table, we have to learn about two 
functions:

	 1.	 FIRST ( )
	 2.	 FOLLOW ( )

FIRST(X)  To compute FIRST(X) for all grammar symbols 
X, apply the following rules until no more terminals or e can 
be added to any FIRST set.

	 1.	 If X is a terminal, then FIRST(X) is {X}.
	 2.	 If X → e is a production, then add e to FIRST(X).
	 3.	 If X is non-terminal and X → Y

1
Y

2
 – Y

k
 is a production, 

then place ‘a’ in FIRST(X) if for some i, a is an FIRST 
(Y

i
) and ∈ is in all of FIRST(Y

1
), …, FIRST(Y

i–1
); that 

is, Y
1
, …, Y

i
 
– 1

 ⇒ ∈. If ∈ is in FIRST (Y
j
) for all j = 1, 

2, …, k, then add ∈ to FIRST(X). For example, every-
thing in FIRST (Y

1
) is surely in FIRST(X). If Y

1
 does 

not derive ∈, then add nothing more to FIRST(X), but if  

Y
1
 ⇒ ∈, then add FIRST (Y

2
) and so on.

FOLLOW (A):  To compute FOLLOW (A) for all non-
terminals A, apply the following rules until nothing can be 
added to any FOLLOW set.

	 1.	 Place $ in FOLLOW(S), where S is the start symbol 
and $ is input right end marker.

	 2.	 If there is a production A → aBb, then everything in 
FIRST (b) except e is placed in FOLLOW (B).

	 3.	 If there is a production A → aB or a production 
A → aBb, where FIRST (b) contains e, then every-
thing in FOLLOW (A) is in FOLLOW (B).

Example:  Consider the grammar 

E → TE′
E′ → +TE′/e
T → FT ′
T ′ → *FT ′/e
F → (E)/id. Then
FIRST (E) = FIRST (T ) = FIRST (F ) = {(, id}
FIRST (E ′) = {+, e}
FIRST (T ′) = {*, e}
FOLLOW (E) = FOLLOW (E′) = {), $}
FOLLOW (T) = FOLLOW (T ′) = {+,), $}
FOLLOW (F) = {*, +,), $}

Steps for the construction of predictive 
parsing table
	 1.	 For each production A → a of the grammar, do steps 2 

and 3.
	 2.	 For each terminal a in FIRST (a), add A → a to M [A, a]
	 3.	 If e is in FIRST (a), add A → a to M [A, b] for each 

terminal b in FOLLOW (A). If e is in FIRST (a) and $ 
is in FOLLOW (A), add A → a to M [A, $]

	 4.	 Make each undefined entry of M be error.

*

*

By applying these rules to the above grammar, we will get 
the following parsing table.

Non-terminal

Input Symbol

id + * ( ) $

E E → TE ′ E → TE ′

E ′ E ′ → + TE ′ E ′ → e E ′ → e

T T → FT ′ T → FT ′

T ′ T ′ → e T ′ → * FT ′ T ′ → e T ′ → e

F F → id F → (E)

The parser is controlled by a program. The program con-
sider x, the symbol on top of the stack and ‘a’ the current 
input symbol.

	 1.	 If x = a = $, the parser halts and announces successful 
completion of parsing.

	 2.	 If x = a ≠ $, the parser pops x off the stack and advances 
the input pointer to the next input symbol.

	 3.	 If x is a non-terminal, the program consults entry M[x, 
a] of the parsing table M. This entry will be either an 
x-production of the grammar or an error entry. If M[x, 
a] = {x → UVW}, the parser replaces x on top of the 
stack by WVU with U on the top.

If M[x, a] = error, the parser calls an error recovery routine.
For example, consider the moves made by predictive 

parser on input id + id * id, which are shown below:

Matched Stack Input Action

E$ id+id*id$

TE′$ id+id*id$ Output E → TE′

FT′E′$ id+id*id$ Output T → FT′

idT′E′$ id+id*id$ Output F → id
id T′E′$ +id*id$ Match id

id E′$ +id*id$ Output T′→ e

id +TE′$ +id*id$ Output E′ → +TE′

id+ TE′$ id*id$ Match+

id+ FT′E′$ id*id$ Output T → FT′

id+ idT′E′$ id*id$ Output F → id

id+id T′E′$ *id$ Match id

id+id *FT′E′$ *id$ Output T′ → *FT′

id+id* FT′E′$ id$ Match*

id+id* idT′E′$ id$ OutputF → id

id+id*id T′E′$ $ Match id

id+id*id E′$ $ Output T′ → e

id+id*id $ $ Output E′ → e
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Bottom up Parsing
•• This parsing constructs the parse tree for an input string 

beginning at the leaves and working up towards the root.
•• General style of bottom-up parsing is shift-reduce parsing.

Shift–Reduce Parsing
Reduce a string to the start symbol of the grammar. It simu-
lates the reverse of right most derivation.

In every step a particular substring is matched (in left 
right fashion) to the right side of some production and then 
it is substituted by the non-terminal in the left hand side of 
the production.

For example consider the grammar

S → aABe
A → Abc/b
B → d

In bottomup parsing the string ‘abbcde’ is verified as

abbcde
aAbcde
aAde	   →  reverse order
aABe
S

Stack implementation of shift–reduce parser
The shift reduce parser consists of input buffer, Stack and 
parse table.

Input buffer consists of strings, with each cell containing 
only one input symbol.

Stack contains the grammar symbols, the grammar sym-
bols are inserted using shift operation and they are reduced 
using reduce operation after obtaining handle from the col-
lection of buffer symbols.

Parse table consists of 2 parts goto and action, which are 
constructed using terminal, non-terminals and compiler items.

Let us illustrate the above stack implementation.

→ Let the grammar be
     S → AA
      A → aA
      A → b

Let the input string ‘w’ be abab$
w = abab$

Stack Input String Action
  $           abab$ Shift

  $a             bab$ Shift

  $ab              ab$ Reduce (A → b)

  $aA              ab$ Reduce (A → aA)

  $A              ab$ Shift

  $Aa                b$ Shift

  $Aab                 $ Reduce (A → b)

  $AaA                 $ Reduce (A → aA)

  $AA                 $ Reduce (S → AA)

  $S                 $ Accept

Rightmost derivation
S ⇒ aABe ⇒ aAde ⇒ aAbcde ⇒ abbcde
For bottom up parsing, we are using right most derivation 
in reverse.

Handle of a string  Substring that matches the RHS of 
some production and whose reduction to the non-terminal 
on the LHS is a step along the reverse of some rightmost 
derivation.

S Ar r
rm

⇒ ⇒
∗

α αβ

Right sentential forms of a unambiguous grammar have 
one unique handle.

Example:  For grammar, S → aABe
A → Abc/b
B → d
S ⇒ aABe ⇒ aAde ⇒ aAbcde ⇒ abbcde

Note:  Handles are underlined.

Handle pruning  The process of discovering a handle and 
reducing it to the appropriate left hand side is called han-
dle pruning. Handle pruning forms the basis for a bottomup 
parsing.

To construct the rightmost derivation:

S = r
0
 ⇒ r

1
 ⇒ r

2
 ____ ⇒ r

n
 = w

Apply the following simple algorithm:
For i ← n to 1
Find the handle A

i
 → B

i
 in r

i

Replace B
i
 with A

i
 to generate r

i–1

Consider the cut of a parse tree of a certain right sentential 
form: 

A

S

ba w

Here A → b is a handle for abw.

Shift reduce parsing with a stack  There are 2 problems 
with this technique:

	 (i)	 To locate the handle
	(ii)	 Decide which production to use

General construction using a stack

	 1.	 ‘Shift’ input symbols onto the stack until a handle is 
found on top of it.

	 2.	 ‘Reduce’ the handle to the corresponding non-terminal.
	 3.	 ‘Accept’ when the input is consumed and only the start 

symbol is on the stack.
	 4.	 Errors – call an error reporting/recovery routine.
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Viable prefixes  The set of prefixes of a right sentential 
form that can appear on the stack of a shift reduce parser 
are called viable prefixes.

Conflicts

Shift/reduce
conflict

Conflicts

Reduce/reduce
conflict

Shift/reduce conflict
Example:  stmt → if expr then stmt | if expr then stmt else 
stmt | any other statement

If exp then stmt is on the stack, in this case we can’t tell 
whether it is a handle. i.e., ‘shift/reduce’ conflict.

Reduce/reduce conflict
Example:  S → aA/bB
	     A → c
	     B → c
	     W = ac it gives reduce/reduce conflict.

Operator Precedence Grammar
In operator grammar, no production rule can have:
•• e at the right side.
•• two adjacent non-terminals at the right side.

Example 1:  E → E + E /E – E/ id is operator grammar.

Example 2:  E → AB
	         A → a
	        B → b

Example 3:  E → E0E/id

	       
not operator 
grammar

Precedence relation  If 
a < b then b has higher precedence than a
a = b then b has same precedence as a
a > b then b has lower precedence than a

Common ways for determining the precedence relation 
between pair of terminals:

	 1.	 Traditional notations of associativity and precedence.
Example:  × has higher precedence than + × .> + (or) + <. ×

	 2.	 First construct an unambiguous grammar for the lan-
guage which reflects correct associativity and prec-
edence in its parse tree.

Operator precedence relations from 
associativity and precedence
Let us use $ to mark end of each string. Define $ <. b and b 
⋗ $ for all terminals b. Consider the grammar is:

E → E + E/E × E/id

not operator grammar

Let the operator precedence table for this grammar is:

id + × $

id ⋗ ⋗ ⋗
+ ⋖ ⋗ ⋖ ⋗
× ⋖ ⋗ ⋗ ⋗
$ ⋖ ⋖ ⋖ accept

	 1.	 Scan the string from left until ⋗ is encountered
	 2.	 Then scan backwards (to left) over any = until ⋖ is 

encountered.
	 3.	 The handle contains everything to the left of the first ⋗ 

and to the right of the ⋖ is encountered.

After inserting precedence relation is
$id + id * id $ is

$ ⋖ id ⋗ + ⋖ id ⋗ * ⋖ id ⋗ $

Precedence functions  Instead of storing the entire table of 
precedence relations table, we can encode it by precedence 
functions f and g, which map terminal symbols to integers:

	 1.	 f(a) ⋖ f(b) whenever a ⋖ b
	 2.	 f(a) ⋗ f(b) whenever a ≗ b
	 3.	 f(a) > f(b) whenever a ⋗ b

Finding precedence functions for a table
	 1.	 Create symbols f(a) and g(a) for each ‘a’ that is a ter-

minal or $.
	 2.	 Partition the created symbols into as many groups as 

possible in such away that a = b then f (a) and g (b) are 
in the same group

	 3.	 Create a directed graph
		  If a < b then place an edge from g(b) to f(a)
		  If a > b then place an edge from f(a) to g(b)
	 4.	 If the graph constructed has a cycle then no precedence 

function exists.
		  If there are no cycles, let f(a) be the length of the long-

est path being at the group of f(a).
		  Let g(a) be the length of the longest path from the 

group of g(a).

Disadvantages of operator 
precedence parsing
•• It can not handle unary minus.
•• Difficult to decide which language is recognized by 

grammar.

Advantages
	 1.	 Simple
	 2.	 Powerful enough for expressions in programming 

language.

Error cases
	 1.	 No relation holds between the terminal on the top of 

stack and the next input symbol.
	 2.	 A handle is found, but there is no production with this 

handle as the right side.



6.12  |  Unit 6  •  Compiler Design

Error recovery
	 1.	 Each empty entry is filled with a pointer to an error 

routine.
	 2.	 Based on the handle tries to recover from the situation.

To recover, we must modify (insert/change)

	 1.	 Stack or
	 2.	 Input or
	 3.	 Both

We must be careful that we don’t get into an infinite loop.

LR Parsers
•• In LR (K), L stands for Left to Right Scanning, R stands 

for Right most derivation, K stands for number of look 
ahead symbols.

•• LR parsers are table-driven, much like the non-recursive 
LL parsers. A grammar which is used in construction of 
LR parser is LR grammar. For a grammar to be LR it is 
sufficient that a left-to-right shift-reduce parser be able 
to recognize handles of right-sentential forms when they 
appear on the top of the stack.

•• The Time complexity for such parsers is O (n3)
•• LR parsers are faster than LL (1) parser.
•• LR parsing is attractive because

�� The most general non-backtracking shift reduce parser.
�� The class of grammars that can be passed using LR 

methods is a proper superset of predictive parsers. LL 
(1) grammars ⊂ LR (1) grammars.

�� LR parser can detect a syntactic error in the left to right 
scan of the input.

•• LR parsers can be implemented in 3 ways:

	 1.	 Simple LR (SLR): The easiest to implement but the 
least powerful of the three.

	 2.	 Canonical LR (CLR): most powerful and most 
expensive.

	 3.	 Look ahead LR (LALR): Intermediate between the 
remaining two. It works on most programming lan-
guage grammars.

Disadvantages of LR parser
	 1.	 Detecting a handle is an overhead, parse generator is 

used.
	 2.	 The main problem is finding the handle on the stack 

and it was replaced with the non-terminal with the left 
hand side of the production.

The LR parsing algorithm
•• It consists of an input, an output, a stack, a driver program 

and a parsing table that has two parts (action and goto).

•• The driver/parser program is same for all these LR pars-
ers, only the parsing table changes from parser to another.

Predictive parsing
program

Sm
xm
:
:
:

So

S1

x1

Stack
Input

Output

a1 a2 ai an... ... $

s
t
a
t
e
s

Action table
terminals and $

Goto table
non-terminals

4
different
actions

State
number

Stack:  To store the string of the form,

S
o
 x

1
 S

1
 … x

m
S

m
 where

S
m
: state

x
m
: grammar symbol

Each state symbol summarizes the information contained in 
the stack below it.

Parsing table:  Parsing table consists of two parts:

	 1.	 Action part 
	 2.	 Goto part

ACTION Part:

Let, S
m
 → top of the stack

          a
i
 → current symbol

Then action [S
m
, a

i
] which can have one of four values: 

	 1.	 Shift S, where S is a state
	 2.	 Reduce by a grammar production A → b
	 3.	 Accept
	 4.	 Error

GOTO Part:
If goto (S, A) = X where S → state, A → non-terminal, then 
GOTO maps state S and non-terminal A to state X.

Configuration
(S

o
 x

1
S

1
 x

2
S

2
 – x

m
S

m
, a

i
a

i+1
 – a

n
$)

The next move of the parser is based on action [S
m
, a

i
]

The configurations are as follows.

	 1.	 If action [S
m
, a

i
] = shift S

(S
o
 x

1
S

1
 x

2
S

2
--- x

m
S

m
, a

i
a

i+1
 --- a

n
$)

	 2.	 If action [S
m
, a

i
] = reduce A → b then

(S
o
 x

1
S

1
 x

2
S

2
--- x

m–r
S

m–r
, AS, a

i
a

i+1
 --- a

n
$)

		  Where S = goto [S
m–r

, A]

	 3.	 If action [S
m
, a

i
] = accept, parsing is complete.

	 4.	 If action [S
m
, a

i
] = error, it calls an error recovery 

routine.

Example:  Parsing table for the following grammar is 
shown below:
	 1.	 E → E + T			   2.  E → T
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	 3.	 T → T * F			   4.  T → F
	 5.	 F → (E)			   6.  F → id

Action Goto

State id + × ( ) $ E T F

0 S5 S4 1 2 3

1 S6 acc

2 r2 S7 r2 r2

3 r4 r4 r4 r4

4 S5 S4 8 2 3

5 r6 r6 r6 r6

6 S5 S4 9 3

7 S5 S4
10

8 S6 S1

9 r1 S7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Moves of LR parser on input string id*id+id is shown below:

Stack Input Action

0 id * id + id$ Shift 5

0id 5 * id + id$
reduce 6 means reduce with
6th production F → id and
goto [0, F ] = 3

0F 3 * id + id$
reduce 4 i.e T → F
goto [0, T ] = 2

0T 2 * id + id$ Shift 7

0T2 * 7 id + id$ Shift 5

0T2 * 7 id 5 + id$
reduce 6 i.e F → id
goto [7, F ] = 10

0T2 * 7 F 10 + id$ reduce 3 i.e T → T *F

0T 2 + id$ goto [0, T ] = 2

0E 1 + id$ reduce 2 i.e E → T & goto [0, E ] = 1

0E1 + 6 id$ Shift 6

0E1 + 6 id 5 $ Shift 5

0E1 + 6F 3 $ reduce 6 & goto [6, F ] = 3

0E1 + 6T 9 $ reduce 4 & goto [6, T ] = 9

0E1 $ reduce 1 & goto [0, E ] = 1

0E1 $ accept

Constructing SLR parsing table

LR (0) item: LR (0) item of a grammar G is a production of 
G with a dot at some position of the right side of production.

Example:  A → BCD
Possible LR (0) items are

A → .BCD
A → B.CD
A → BC.D
A → BCD.

A → B.CD means we have seen an input string derivable 
from B and hope to see a string derivable from CD.

The LR (0) items are constructed as a DFA from gram-
mar to recognize viable prefixes. 

The items can be viewed as the states of NFA.
The LR (0) item (or) canonical LR (0) collection, pro-

vides the basis for constructing SLR parser.

To construct LR (0) items, define
	 (a)	 An augmented grammar
	(b)	 closure and goto

Augmented grammar (G′)  If G is a grammar with start 
symbol S, G′ the augmented grammar for G, with new start 
symbol S ′ and production S′ → S.

Purpose of G′ is to indicate when to stop parsing and 
announce acceptance of the input.

Closure operation  Closure (I) includes

	 1.	 Intially, every item in I is added to closure (I)
	 2.	 If A → a.Bb is in closure (I) and b → g is a production 

then add B → .g to I.

Goto operation
Goto (I, x) is defined to be the closure of the set of all items 
[A → aX.b] such that [A → a.Xb] is in I.

 

 

Items

Kernel items: S ′ → .S
and all items whose
dots are not at the
left end  

Non-kernel items:
Which have their
dots at the left end.

Construction of sets of Items
Procedure items (G′)
Begin
C: = closure ({[S′ → .S]});
repeat
For each set of items I in C and each grammar symbol x
Such that goto (I, x) is not empty and not in C do add goto 
(I, x) to C;
Until no more sets of items can be added to C, end; 

Example:  LR (0) items for the grammar 
E′ → E
E → E + T/T
T → T * F/F
F → (E)/id

is given below:
I

0
: E′ → .E

E → .E + T

E → .T

T → .T * F
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T → .F

F → .(E)

F → .id

I
1
: got (I

0
, E)

E′ → E.

E → E. + T

I
2
: goto (I

0
, T)

E → T.

T → T. * F

I
3
: goto (I

0
, F)

T → F.

I
4
: goto (I

0
, ( )

F → (.E)

E → .E + T

E → .T

E → .T * F

T → .F

F → .(E)

F → .id

I
5
: goto (I

0
, id)

F → id.

I
6
: got (I

1
, +)

E → E+ .T

T → .T * F

T → .F

F → .(E)

F → .id

I
7
: goto (I

2
, *)

T → T* .F

F → .(E)

F → .id

I
8
: goto (I

4
, E)

F → (E.)

I
9
: goto (I

6
, T)

E → E+ T.

T → T.* F

I
10

: goto (I
7
, F)

T → T* F.

I
11

: goto (I
8
,))

F → (E).

For viable prefixes construct the DFA as follows:

I0 I1 I6 I9
to I3

to I4

F
(

to I5

to I7
*TE +

+

I2 I7 I10

to I4

to I5
id

id

(

to I7

*T F

I3
F

to I2

to I3
F

T

I4

I5

I8 I11

to I6

id
id

(
(

)E

SLR parsing table construction

	 1.	 Construct the canonical collection of sets of LR (0) 
items for G′.

	 2.	 Create the parsing action table as follows:

		  (a)	� If a is a terminal and [A → a.ab] is in I
i
, goto 

(I
i
, a) = I

j
 then action (i, a) to shift j. Here ‘a’ must 

be a terminal.
		  (b)	� If [A → a.] is in I

i
, then set action [i, a] to ‘reduce 

A → a’ for all a in FOLLOW (A);
		  (c)	 If [S′ → S.] is in I

i
 then set action [i, $] to ‘accept’.

	 3.	 Create the parsing goto table for all non-terminals A, if 
goto (I

i
, A) = I

j
 then goto [i, A] = j.

	 4.	 All entries not defined by steps 2 and 3 are made errors.
	 5.	 Initial state of the parser contains S′ → S.
		    The parsing table constructed using the above algo-

rithm is known as SLR (1) table for G.

Note:  Every SLR (1) grammar is unambiguous, but every 
unambiguous grammar is not a SLR grammar.

Example 6:  Construct SLR parsing table for the following 
grammar:

1.   S → L = R

2.   S → R

3.   L → * R

4.   L → id

5.  R → L

Solution:  For the construction of SLR parsing table, add  
S′ → S production.

S′ → S

  S → L = R

  S → R

  L → *R

  L → id

 R → L
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LR (0) items will be

I
0
: S′ → .S

S → .L = R

S → .R

L → .*R

L → .id

R → .L

I
1
: goto (I

0
, S)

S′ → S.

I
2
: goto (I

0
, L)

 S → L. = R

R → L.

I
3
: got (I

0
, R)

S → R.

I
4
: goto (I

0
, *)

L → *.R

R → .L

L → .*R

L → .id

I
5
: goto(I

0
, id)

L → id.

I
6
: goto(I

2
, =)

 S → L = .R

R → .L

L → .*R

L → .id

I
7
: goto(I

4
, R)

L → *R.

I
8
: goto(I

4
, L)

R → L.

I
9
: goto(I

6
, R)

S → L = R.

The DFA of LR(0) items will be

I0 I1
S

I4 I5

I7
R

*
* id

I2
L = R

I5
id

I3
R

I6 I9

I8
L

I8
L

I4
*

I5
id

States

Action Goto

= * id $ S L R

0 S4 S5 1 2 3

1 acc

2 S6,r5 r5

3

4 S4 S5 8 7

5

6 S4 S5 8 9

7

8

9

FOLLOW (S) = {$}
FOLLOW (L) = {=}
FOLLOW (R) = {$, =}
For action [2, =] = S

6
 and r

5

∴ Here we are getting shift – reduce conflict, so it is not 
SLR (1).

Canonical LR Parsing (CLR)
•• To avoid some of invalid reductions, the states need to 

carry more information.
•• Extra information input into a state by including a terminal 

symbol as a second component of an item.
•• The general form of an item

[A → a.b, a]
Where A → ab is a production.
a is terminal/right end marker ($). We will call it as LR 
(1) item.

LR (1) item
It is a combination of LR (0) items along with look ahead of 
the item. Here 1 refers to look ahead of the item.

Construction of the sets of LR (1) items  Function closure (I):
Begin
Repeat
For each item [A → a.Bb, a] in I,
Each production B → .g in G′,
And each terminal b in FIRST (b a)
Such that [B → .g, b] is not in I do
Add [B → .g, b] to I;
End; 
Until no more items can be added to I;

Example 7:  Construct CLR parsing table for the following 
grammar:

S′ → S
  S → CC
 C → cC/d



6.16  |  Unit 6  •  Compiler Design

Solution:  The initial set of items is

I
0
: S′ → .S, $

S → .CC, $
A → a.Bb, a

Here A = S, a = ∈, B = C, b = C and a = $
First (ba) is first (C$) = first (C) = {c, d}
So, add items [C → .cC, c]

      [C → .cC, d]

∴ Our first set I
0
: S′ → .S, $

		  S → .CC, $
		  C → .coca, c/d

		  C → .d, c/d.

I
1
: goto (I

0
, X) if X = S

S′ → S., $

I
2
 : goto (I

0
, C)

  S → C.C, $
C → .cC, $
C → .d, $
I

3
: goto (I

0
, c)

C → c.C, c/d
C → .cC, c/d
C → .d c/d

I
4
: goto (I

0
, d)

C → d., c/d

I
5
: goto (I

2
, C)

S → CC., $

I
6
: goto (I

2
, c)

C → c.C; $
C → ..cC, $
C → ..d, $

I
7
: goto (I

2
, d)

C → d. $

I
8
: goto (I

3
, C)

C → cC., c/d

I
9
: goto (I

6
, C)

C → cC., $

CLR table is:

States

Action Goto

c 1 $ S C

I0 S3 S4 1 2

I1 acc

I2 S6 S7 5

I3 S3 S4 8

I4 R3 r3

I5 r1

I6 S6 S7 9

I7 r3

I8 R2 r2

I9 r2

Consider the string derivation ‘dcd’:

S ⇒ CC ⇒ CcC ⇒ Ccd ⇒ dcd

Stack Input Action

0 dcd $ shift 4

0d4 Cd $ reduce 3 i.e. C → d

0C 2 Cd $ shift 6

0C 2C 6 D $ shift 7

0C2C 6d 7 $ reduce C → d

0C 2C 6C 9 $ reduce C → cC

0C 2C 5 $ reduce S → CC

0S1 $

Example 8:  Construct CLR parsing table for the grammar:
S → L = R
S → R
L → *R
L → id
R → L

Solution:  The canonical set of items is

I
0
: S′ → .S, $

S → .L = R, $
S → .R, $
L → .* R, =       [first (= R$) = {=}]
L → .id, =
R → .L, $

I
1
: got (I0, S)

S′ → S., $ 

I
2
: goto (I

0
, L)

S → L. = R, $
R → L., $

I
3
: goto (I

0
, R)

S → R., $

I
4
: got (I

0
, *)

L → *. R, =
R → .L, =
L → .* R, =	
L → .id, =	
I

5
: goto (I

0
, id)

L → id.,=
I

6
: goto (I7, L)

R → L., $

I
7
: goto (I

2
, =)

 S → L = .R, 
R → .L, $
 L → .*R, $
 L → .id, $

I
8
: goto (I

4
, R)

L → *R., =
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I
9
: goto (I

4
, L)

R → L., =

I
10

: got (I
7
, R)

S → L = R., $

I
11

: goto (I
7
, *)

L → *.R, $
R → .L, $
L → .*R, $
L → .id, $

I
12

: goto (I
7
, id)

L → id. , $

I
13

: goto (I
11

, R)
L → *R., $

I0 I1
S

I13
R

I2
L = L

I3
R

I5
id

I4 I8

I9

R

I7 I6

to I6

to I12

L

L

id

I10

I11

R

I12
id

*

*

*
*

We have to construct CLR parsing table based on the above 
diagram.

In this, we are going to have 13 states 
The shift –reduce conflict in the SLR parser is reduced 

here.

States id * = $ S L R

0 S5 S4 1 2 3

1 acc

2 S7 r5

3 r2

4 S5 S4 9 8

5 r4

6 r5

7 s12 s11 6 10

8 r3

9 r5

10 r1

11 S12 S11 13

12 r4

13 r3

Stack Input

0

0id 5

0L2

0L2 = 7

0L2 = 7! d12

0L2 = 7L6

0L 2= 7R10

0S1 (accept)

Id = id $

= id $

= id $

id $

$

$

$

$

Every SLR (1) grammar is LR (1) grammar. 
CLR (1) will have ‘more number of states’ than SLR Parser.

LALR Parsing Table
•• The tables obtained by it are considerably smaller than 

the canonical LR table.

•• LALR stands for Lookahead LR.

•• The number of states in SLR and LALR parsing tables for 
a grammar G are equal.

•• But LALR parsers recognize more grammars than SLR.

•• YACC creates a LALR parser for the given grammar.

•• YACC stands for ‘Yet another Compiler’.

•• An easy, but space-consuming LALR table construction 
is explained below:

	 1.	 Construct C = {I
0
, I

1
, –I

n
}, the collection of sets of LR 

(1) items.
	 2.	 Find all sets having the common core; replace these 

sets by their union
	 3.	 Let C′ = {J

O
, J

1
 --- J

m
} be the resulting sets of LR (1) 

items. If there is a parsing action conflict then the 
grammar is not a LALR (1).

	 4.	 Let k be the union of all sets of items having the same 
core. Then goto (J, X) = k

•• If there are no parsing action conflicts then the grammar 
is said to LALR (1) grammar.

•• The collection of items constructed is called LALR (1) 
collection.

Example 9:  Construct LALR parsing table for the 
following grammar:

S′ → S
  S → CC
 C → cC/d

Solution:  We already got LR (1) items and CLR parsing 
table for this grammar.
After merging I3 and I6 are replaced by I36.

I
36

: C → c.C, c/d/$
      C → .cC, c/d/$
      C → .d, c/d/$
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I
47

: By merging I
4
 and I

7

C → d. c/d/$

I
89

: I
8
 and I

9
 are replaced by I

89

C → cC., c/d/$

The LALR parsing table for this grammar is given below:

State

Action goto

c d $ S C

0 S36 S47 1 2

1 acc

2 S36 S47 5

36 S36 S47 89

47 r3 R3 r3

5 r1

89 r2 r2 r2

Example:  Consider the grammar:

S′ → S
  S → aAd
  S → bBd
  S → aBe
  S → bAe
  A → c
  B → c

Which generates strings acd, bcd, ace and bce

LR (1) items are

I
0
: S′ → .S, $

       S → .aAd, $

      S → .bBd, $

      S → .aBe, $

      S → .bAe, $

I
1
: goto (I

0
, S)

S′ → S., $ 

I
2
: goto (I

0
, a)

S → a.Ad, c

S → a.Be, c 

A → .c,d

B → .c,e

I
3
: goto (I

0
, b)

S → b.Bd, c
S → b.Ae, c
A → .c, e
B → .c, e

I
4
: goto (I

2
, A)

S → aA.d, c

I
5
: goto (I

2
, B)

S → aB.e, c

I
6
: goto (I

2
, c)

A → c., d 

B → c., e

I
7
: goto (I

3
, c)

A → c., e
B → c., d

I
8
: goto (I

4
, d)

S → aAd., c

I
9
: goto (I

5
, e)

S → aBe., c

If we union I
6
 and I

7

A → c., d/e
B → c., d/e

It generates reduce/reduce conflict.

Notes:
	 1.	 The merging of states with common cores can never 

produce a shift/reduce conflict, because shift action 
depends only on the core, not on the lookahead.

	 2.	 SLR and LALR tables for a grammar always have the 
same number of states (several hundreds) whereas 
CLR have thousands of states for the same grammar.

Comparison of parsing methods

Method Item
Goto and 
Closures

Grammar it 
Applies to

SLR (1) LR(0) item Different from 
LR(1)

SLR (1) ⊂ LR(1)

LR (1) LR(1) item LR(1) – Largest 
class of LR 
grammars

LALR(1) LR(1) item Same as LR(1) LALR(1) ⊂ LR(1)

CLR(1)
LALR(1)
SLR(1)
LR(0)

LL(1)

Every LR (0) is SLR (1) but vice versa is not true.

Difference between SLR, LALR 
and CLR parsers
Differences among SLR, LALR and CLR are discussed 
below in terms of size, efficiency, time and space.
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Table 1  Comparison of parsing methods

SI. No. Factors SLR Parser LALR Parser CLR Parser

1 Size Smaller Smaller Larger

2. Method It is based on FOLLOW 
function

This method is applicable 
to wider class than SLR

This is most powerful than 
SLR and LALR.

3. Syntactic features Less exposure compared 
to other LR parsers

Most of them are 
expressed

Less

4. Error detection Not immediate Not immediate Immediate

5. Time and space 
complexity

Less time and space More time and space 
complexity

More time and space 
complexity

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Consider the grammar
	 S → a
	 S → ab
	 The given grammar is: 
	 (A)	 LR (1) only
	 (B)	 LL (1) only
	 (C)	 Both LR (1) and LL (1)
	 (D)	 LR (1) but not LL (1)

	 2.	 Which of the following is an unambiguous grammar, 
that is not LR (1)?

	 (A)	 S → Uab | Vac
		  U → d
		  V → d
	 (B)	 S → Uab/Vab/Vac
		  U → d
		  V → d
	 (C)	 S → AB
		  A → a
		  B → b
	 (D)	 S → Ab
		  A → a/c

Common data for questions 3 and 4: Consider the grammar:

		  S → T; S/∈
		  T → UR
		  U → x/y/[S]
		  R → .T/∈
	 3.	 Which of the following are correct FIRST and 

FOLLOW sets for the above grammar?
	 (i)	 FIRST(S) = FIRST (T) = FIRST (U) = {x, y, [, e}
	 (ii)	 FIRST (R) = {,e}
	 (iii)	 FOLLOW (S) = {], $}
	 (iv)	 FOLLOW (T) = Follow (R) = {;}
	 (v)	 FOLLOW (U) = {. ;}
	 (A)	 (i) and (ii) only
	 (B)	 (ii), (iii), (iv) and (v) only
	 (C)	 (ii), (iii) and (iv) only
	 (D)	 All the five

	 4.	 If an LL (1) parsing table is constructed for the above 
grammar, the parsing table entry for [S → [ ] is

	 (A)	 S → T; S	 (B)	 S → ∈
	 (C)	 T → UR	 (D)	 U → [S]

Common data for questions 5 to 7: Consider the aug-
mented grammar

S → X
X → (X)/a

	 5.	 If a DFA is constructed for the LR (1) items of the 
above grammar, then the number states present in it 
are:

	 (A)	 8	 (B)	 9
	 (C)	 7	 (D)	 10

	 6.	 Given grammar is
	 (A)	 Only LR (1)
	 (B)	 Only LL (1)
	 (C)	 Both LR (1) and LL (1)
	 (D)	 Neither LR (1) nor LL (1) 

	 7.	 What is the number of shift-reduce steps for input (a)? 
	 (A)	 15	 (B)	 14
	 (C)	 13	 (D)	 16

	 8.	 Consider the following two sets of LR (1) items of a 
grammar:

	 X → c.X, c/d	 X → c.X, $
	 X → .cX, c/d	 X → .cX, $
	 X → d, c/d	 X → .d, $

	� Which of the following statements related to merging 
of the two sets in the corresponding LALR parser is/are 
FALSE?

	 1.  Cannot be merged since look ahead are different.
	 2.  Can be merged but will result in S – R conflict.
	 3.  Can be merged but will result in R – R conflict.
	 4. � Cannot be merged since goto on c will lead to two 

different sets.
	 (A)	 1 only	 (B)	 2 only
	 (C)	 1 and 4 only 	 (D)	 1, 2, 3 and 4

	 9.	 Which of the following grammar rules violate the 
requirements of an operator grammar?

	 (i)	 A → BcC	 (ii)	 A → dBC
	 (iii)	 A → C/∈	 (iv)	 A → cBdC
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	 (A)	 (i) only	 (B)	 (i) and
	 (C)	 (ii) and (iii) only	 (D)	 (i) and (iv) only

	10.	 The FIRST and FOLLOW sets for the grammar:
S → SS + /SS*/a

	 (A)	 First (S) = {a}
		  Follow (S) = {+, *, $}
	 (B)	 First (S) = {+}
		  Follow (S) = {+, *, $}
	 (C)	 First (S) = {a}
		  Follow (S) = {+, *}
	 (D)	 First (S) = {+, *}
		  Follow (S) = {+, *, $}

	11.	 A shift reduces parser carries out the actions specified 
within braces immediately after reducing with the cor-
responding rule of the grammar:

	 S → xxW [print ‘1’]
	 S → y [print ‘2’]
	 W → Sz [print ‘3’]
	 What is the translation of ‘x x x x y z z’?
	 (A)	 1231	 (B)	 1233
	 (C)	 2131	 (D)	 2321

	12.	 After constructing the predictive parsing table for the 
following grammar:

	 Z → d
	 Z → XYZ
	 Y → c/∈
	 X → Y
	 X → a

		  The entry/entries for [Z, d] is/are
	 (A)	 Z → d
	 (B)	 Z → XYZ
	 (C)	 Both (A) and (B)
	 (D)	 X → Y

	13.	 The following grammar is 
	 S → AaAb/BbBa
	 A → e
	 B → e
	 (A)	 LL (1)	 (B)	 Not LL (1)
	 (C)	 Recursive	 (D)	 Ambiguous 

	14.	 Compute the FIRST (P) for the below grammar:
	 P → AQRbe/mn/DE
	 A → ab/e
	 Q → q

1
q

2
/e

	 R → r
1
r

2
/e

	 D → d
	 E → e
	 (A)	 {m, a}	 (B)	 {m, a, q

1
, r

1
, b, d}

	 (C)	 {d, e}	 (D)	 {m, n, a, b, d, e, q
1
, r

1
}

	15.	 After constructing the LR(1) parsing table for the aug-
mented grammar

	 S′ → S
	 S → BB
	 B → aB/c

	 What will be the action [I
3
, a]?

	 (A)	 Accept	 (B)	 S
7

	 (C)	 r
2
	 (D)	 S

5

Practice Problems 2
Directions for questions 1 to 19:  Select the correct alterna-
tive from the given choices.
	 1.	 Consider the grammar
	 S → aSb
	 S → aS
	 S → e
	� This grammar is ambiguous by generating which of the 

following string. 
	 (A)	 aa	 (B)	 ∈
	 (C)	 aaa	 (D)	 aab

	 2.	 To convert the grammar E → E + T into LL grammar
	 (A)	 use left factor 
	 (B)	 CNF form
	 (C)	 eliminate left recursion 
	 (D)	 Both (B) and (C) 

	 3.	 Given the following expressions of a grammar
	 E → E × F/F + E/F
	 F → F? F/id
	 Which of the following is true?
	 (A)	 × has higher precedence than +
	 (B)	 ? has higher precedence than ×

	 (C)	 + and? have same precedence
	 (D)	 + has higher precedence than *

	 4.	 The action of parsing the source program into the 
proper syntactic classes is known as

	 (A)	 Lexical analysis
	 (B)	 Syntax analysis
	 (C)	 Interpretation analysis
	 (D)	 Parsing

	 5.	 Which of the following is not a bottom up parser?
	 (A)	 LALR	 (B)	 Predictive parser
	 (C)	 CLR	 (D)	 SLR

	 6.	 A system program that combines separately compiled 
modules of a program into a form suitable for execu-
tion is 

	 (A)	 Assembler.
	 (B)	 Linking loader.
	 (C)	 Cross compiler.
	 (D)	 None of these.

	 7.	 Resolution of externally defined symbols is performed 
by a

	 (A)	 Linker	 (B)	 Loader.
	 (C)	 Compiler.	 (D)	 Interpreter.
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	 8.	 LR parsers are attractive because
	 (A)	� They can be constructed to recognize CFG cor-

responding to almost all programming constructs.
	 (B)	 There is no need of backtracking.
	 (C)	 Both (A) and (B).
	 (D)	 None of these

	 9.	 YACC builds up
	 (A)	 SLR parsing table
	 (B)	 Canonical LR parsing table
	 (C)	 LALR parsing table
	 (D)	 None of these

	10.	 Language which have many types, but the type of every 
name and expression must be calculated at compile 
time are

	 (A)	 Strongly typed languages
	 (B)	 Weakly typed languages
	 (C)	 Loosely typed languages
	 (D)	 None of these

	11.	 Consider the grammar shown below:
	 S → iEtSS′/a/b
	 S′ → eS/e
		  In the predictive parse table M, of this grammar, the 

entries M [S′, e] and M [S′, $] respectively are

	 (A)	 {S′ → eS} and {S′ → ∈}
	 (B)	 {S′ → eS} and { }
	 (C)	 {S′ → ∈} and {S′ → ∈}
	 (D)	 {S′ → eS, S′ → e}} and {S′ → ∈}

	12.	 Consider the grammar S → CC, C → cC/d. 
		  The grammar is
	 (A)	 LL (1)
	 (B)	 SLR (1) but not LL (1)
	 (C)	 LALR (1) but not SLR (1)
	 (D)	 LR (1) but not LALR (1)

	13.	 Consider the grammar
	 E → E + n/E – n/n
	� For a sentence n + n – n, the handles in the right senten-

tial form of the reduction are
	 (A)	 n, E + n and E + n – n
	 (B)	 n, E + n and E + E – n
	 (C)	 n, n + n and n + n – n
	 (D)	 n, E + n and E – n

	14.	 A top down parser uses ___ derivation.
	 (A)	 Left most derivation
	 (B)	 Left most derivation in reverse
	 (C)	 Right most derivation
	 (D)	 Right most derivation in reverse

	15.	 Which of the following statement is false?
	 (A)	� An unambiguous grammar has single leftmost 

derivation.
	 (B)	 An LL (1) parser is topdown.
	 (C)	 LALR is more powerful than SLR.
	 (D)	� An ambiguous grammar can never be LR (K) for 

any k.

	16.	 Merging states with a common core may produce ___ 
conflicts in an LALR parser.

	 (A)	 Reduce – reduce
	 (B)	 Shift – reduce
	 (C)	 Both (A) and (B)
	 (D)	 None of these

	17.	 LL (K) grammar
	 (A)	 Has to be CFG
	 (B)	 Has to be unambiguous
	 (C)	 Cannot have left recursion
	 (D)	 All of these

	18.	 The I
0
 state of the LR (0) items for the grammar

	 S → AS/b
	 A → SA/a.

	 (A)	 S′ → .S
		  S → .As
		  S → .b
		  A → .SA
		  A → .a
	 (B)	 S → .AS
		  S → .b
		  A → .SA
		  A → .a
	 (C)	 S → .AS
		  S → .b
	 (D)	 S → A
		  A → .SA
		  A → .a

	19.	 In the predictive parsing table for the grammar:
	 S → FR
	 R → ×S/e
	 F → id

		  What will be the entry for [S, id]?
	 (A)	 S → FR
	 (B)	 F → id
	 (C)	 Both (A) and (B)
	 (D)	 None of these
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	 1.	 Consider the grammar:
	 S → (S) | a
	� Let the number of states in SLR (1), LR (1) and LALR (1) 

parsers for the grammar be n
1
, n

2
 and n

3
 respectively. 

The following relationship holds good: � [2005]
	 (A)	 n

1
 < n

2
 < n

3	
(B)	 n

1
 = n

3
 < n

2

	 (C)	 n
1
 = n

2
 = n

3	
(D)	 n

1
 ≥ n

3
 ≥ n

2

	 2.	 Consider the following grammar:
	  S → S * E
	  S → E
	 E → F + E
	 E → F
	 F → id
	� Consider the following LR (0) items corresponding to 

the grammar above.
	 (i)	 S → S * .E
	 (ii)	 E → F. + E
	 (iii)	 E → F + .E

		  Given the items above, which two of them will appear 
in the same set in the canonical sets-of items for the 
grammar?� [2006]

	 (A)	 (i) and (ii)	 (B)	 (ii) and (iii)
	 (C)	 (i) and (iii)	 (D)	 None of the above

	 3.	 Consider the following statements about the context-
free grammar

	 G = {S → SS, S → ab, S → ba, S → ∈}
	   (i)	 G is ambiguous
	  (ii)	� G produces all strings with equal number of a’s 

and b’s
	 (iii)	 G can be accepted by a deterministic PDA.

	� Which combination below expresses all the true state-
ments about G? � [2006]

	 (A)	 (i) only	 (B)	 (i) and (iii) only
	 (C)	 (ii) and (iii) only	 (D)	 (i), (ii) and (iii)

	 4.	 Consider the following grammar:
	 S → FR
	 R → *S|e
	 F → id

	� In the predictive parser table, M, of the grammar the 
entries M[S, id] and M[R, $] respectively.� [2006]

	 (A)	 {S → FR} and {R → e}
	 (B)	 {S → FR} and { } 
	 (C)	 {S → FR} and {R → *S}
	 (D)	 {F → id} and {R → e}

	 5.	 Which one of the following grammars generates the 
language L = {aibj|i ≠ j}?� [2006]

	 (A)	 S → AC|CB	 (B)	 S → aS|Sb|a|b
		  C → aCb|a|b
		  A → aA|∈
		  B → Bb|∈

	 (C)	 S → AC|CB	 (D)	 S → AC|CB
		  C → aC|b|∈		  C → aCb|∈
		  A → aA|∈		  A → aA|a
		  B → Bb|∈		  B → Bb|b

	 6.	 In the correct grammar above, what is the length of 
the derivation (number of steps starting from S) to 
generate the string albm with l ≠ m?� [2006]

	 (A)	 max (l, m) + 2
	 (B)	 l + m + 2
	 (C)	 l + m + 3
	 (D)	 max (l, m) + 3

	 7.	 Which of the following problems is undecidable? 
� [2007]

	 (A)	 Membership problem for CFGs.
	 (B)	 Ambiguity problem for CFGs.
	 (C)	 Finiteness problem for FSAs.
	 (D)	 Equivalence problem for FSAs.

	 8.	 Which one of the following is a top-down parser? 
� [2007]

	 (A)	 Recursive descent parser.
	 (B)	 Operator precedence parser.
	 (C)	 An LR (k) parser.
	 (D)	 An LALR (k) parser.

	 9.	 Consider the grammar with non-terminals N = {S, C, 
and S

1
}, terminals T = {a, b, i, t, e} with S as the start 

symbol, and the following set of rules:� [2007]
	 S → iCtSS

1
|a

	 S
1
 → eS|e

	 C → b
	 The grammar is NOT LL (1) because:
	 (A)	 It is left recursive
	 (B)	 It is right recursive
	 (C)	 It is ambiguous
	 (D)	 It is not context-free.

	10.	 Consider the following two statements:
	 P: Every regular grammar is LL (1)
	 Q: Every regular set has a LR (1) grammar
	 Which of the following is TRUE?� [2007]
	 (A)	 Both P and Q are true
	 (B)	 P is true and Q is false
	 (C)	 P is false and Q is true
	 (D)	 Both P and Q are false

Common data for questions 11 and 12: Consider the 
CFG with {S, A, B} as the non-terminal alphabet, {a, b} 
as the terminal alphabet, S as the start symbol and the fol-
lowing set of production rules:
 S → aB	   S → bA
B → b	  A → a
B → bS	  A → aS
B → aBB	    S → bAA

Previous Years’ Questions
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	11.	 Which of the following strings is generated by the 
grammar?� [2007]

	 (A)	 aaaabb	 (B)	 aabbbb
	 (C)	 aabbab	 (D)	 abbbba

	12.	 For the correct answer strings to Q.78, how many der-
ivation trees are there? � [2007]

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

	13.	 Which of the following describes a handle (as applica-
ble to LR-parsing) appropriately?� [2008]

	 (A)	� It is the position in a sentential form where the next 
shift or reduce operation will occur.

	 (B)	� It is non-terminal whose production will be used 
for reduction in the next step.

	 (C)	� It is a production that may be used for reduction 
in a future step along with a position in the sen-
tential form where the next shift or reduce opera-
tion will occur.

	 (D)	� It is the production p that will be used for reduc-
tion in the next step along with a position in the 
sentential form where the right hand side of the 
production may be found.

	14.	 Which of the following statements are true?
	   (i)	� Every left-recursive grammar can be converted 

to a right-recursive grammar and vice-versa
	  (ii)	� All e-productions can be removed from any con-

text-free grammar by suitable transformations
	 (iii)	� The language generated by a context-free gram-

mar all of whose productions are of the form X 
→ w or X → wY (where, w is a string of terminals 
and Y is a non-terminal), is always regular

	 (iv)	� The derivation trees of strings generated by a con-
text-free grammar in Chomsky Normal Form are 
always binary trees� [2008]

	 (A)	 (i), (ii), (iii) and (iv)	 (B)	 (ii), (iii) and (iv) only
	 (C)	 (i), (iii) and (iv) only	 (D)	 (i), (ii) and (iv) only

	15.	 An LALR (1) parser for a grammar G can have shift-
reduce (S–R) conflicts if and only if� [2008]

	 (A)	 The SLR (1) parser for G has S–R conflicts
	 (B)	 The LR (1) parser for G has S–R conflicts
	 (C)	 The LR (0) parser for G has S–R conflicts
	 (D)	� The LALR (1) parser for G has reduce-reduce 

conflicts

	16.	 S → aSa| bSb | a | b; 
	� The language generated by the above grammar over the 

alphabet {a, b} is the set of� [2009]
	 (A)	 All palindromes.
	 (B)	 All odd length palindromes.
	 (C)	 Strings that begin and end with the same symbol.
	 (D)	 All even length palindromes.

	17.	 Which data structure in a compiler is used for managing 
information about variables and their attributes?� [2010]

	 (A)	 Abstract syntax tree
	 (B)	 Symbol table
	 (C)	 Semantic stack
	 (D)	 Parse table

	18.	 The grammar S → aSa|bS|c is� [2010]
	 (A)	 LL (1) but not LR (1)	
	 (B)	 LR (1) but not LR (1)
	 (C)	 Both LL (1) and LR (1)
	 (D)	 Neither LL (1) nor LR (1)

	19.	 The lexical analysis for a modern computer language 
such as Java needs the power of which one of the fol-
lowing machine models in a necessary and sufficient 
sense?� [2011]

	 (A)	 Finite state automata
	 (B)	 Deterministic pushdown automata
	 (C)	 Non-deterministic pushdown automata
	 (D)	 Turing machine

Common data for questions 20 and 21:  For the grammar 
below, a partial LL (1) parsing table is also presented 
along with the grammar. Entries that need to be filled are 
indicated as E

1
, E

2
, and E

3
. Is the empty string, $ indicates 

end of input, and, I separates alternate right hand side of 
productions

S → a A b B|b A a B| e

A → S

B → S

a b $

S E1 E2 S → e

A A → S A → S Error

B B → S B → S E3

	20.	 The FIRST and FOLLOW sets for the non-terminals 
A and B are� [2012]

	 (A)	 FIRST (A) = {a, b, e} = FIRST (B)
		  FOLLOW (A) = {a, b}
		  FOLLOW (B) = {a, b, $}
	 (B)	 FIRST (A) = {a, b, $}
		  FIRST (B) = {a, b, e}
		  FOLLOW (A) = {a, b}
		  FOLLOW (B) = {$}
	 (C)	 FIRST (A) = {a, b, e} = FIRST (B)
		  FOLLOW (A) = {a, b}
		  FOLLOW (B) = ∅
	 (D)	 FIRST (A) = {a, b} = FIRST (B)
		  FOLLOW (A) = {a, b}
		  FOLLOW (B) = {a, b}

	21.	 The appropriate entries for E
1
, E

2
, and E

3
 are � [2012]

	 (A)	 E
1
: S → a A b B, A → S

		  E
2
: S → b A a B, B → S

		  E
3
: B → S



6.24  |  Unit 6  •  Compiler Design

	 (B)	 E
1
: S → a A b B, S → e

		  E
2
: S → b A a B, S → e

		  E
3
: S → ∈

	 (C)	 E
1
: S → a A b B, S → e

		  E
2
: S → b A a B, S → e

		  E
3
: B → S

	 (D)	 E
1
: A → S, S → e

		  E
2
: B → S, S → e

		  E
3
: B → S

	22.	 What is the maximum number of reduce moves that 
can be taken by a bottom-up parser for a grammar with 
no epsilon-and unit-production (i.e., of type A → ∈ 
and A → a) to parse a string with n tokens?� [2013]

	 (A)	 n/2	 (B)	 n – 1
	 (C)	 2n – 1	 (D)	 2n

	23.	 Which of the following is/are undecidable?
	 (i)  G is a CFG. Is L (G) = φ?
	 (ii)  G is a CFG, Is L (G) = Σ*?
	 (iii)  M is a Turing machine. Is L (M) regular?
	 (iv)  A is a DFA and N is an NFA. Is L (A) = L (N)? 
� [2013]
	 (A)	 (iii) only
	 (B)	 (iii) and (iv) only
	 (C)	 (i), (ii) and (iii) only
	 (D)	 (ii) and (iii) only

	24.	 Consider the following two sets of LR (1) items of an 
LR (1) grammar.� [2013]

	 X → c.X, c/d	 X → c.X, $
	 X → .cX, c/d	 X → .cX, $
	 X → .d, c/d	 X → .d, $

	� Which of the following statements related to merging 
of the two sets in the corresponding LALR parser is/
are FALSE?

	 (i) � Cannot be merged since look - ahead are different.
	 (ii)  Can be merged but will result in S-R conflict.
	 (iii)  Can be merged but will result in R-R conflict.
	 (iv) � Cannot be merged since goto on c will lead to 

two different sets.
	 (A)	 (i) only	 (B)	 (ii) only
	 (C)	 (i) and (iv) only	 (D)	 (i), (ii), (iii) and (iv)

	25.	 A canonical set of items is given below 
	 S → L. > R
	 Q → R.
	 On input symbol < the sset has� [2014]
	 (A)	 A shift–reduce conflict and a reduce–reduce conflict.
	 (B)	� A shift–reduce conflict but not a reduce–reduce 

conflict.
	 (C)	� A reduce–reduce conflict but not a shift reduce 

conflict.
	 (D)	� Neither a shift–reduce nor a reduce–reduce conflict. 

	26.	 Consider the grammar defined by the following produc-
tion rules, with two operators * and +

	 S → T * P
	 T → U|T * U
	 P → Q + P|Q
	 Q → Id
	 U → Id
	 Which one of the following is TRUE?� [2014]
	 (A)	 + is left associative, while * is right associative 

	 (B)	 + is right associative, while * is left associative 

	 (C)	 Both + and * are right associative.

	 (D)	 Both + and * are left associative 

	27.	 Which one of the following problems is undecidable?
� [2014]

	 (A)	� Deciding if a given context -free grammar is am-
biguous. 

	 (B)	� Deciding if a given string is generated by a given 
context-free grammar.

	 (C)	� Deciding if the language generated by a given 
context-free grammar is empty.

	 (D)	� Deciding if the language generated by a given 
context free grammar is finite.

	28.	 Which one of the following is TRUE at any valid state 
in shift-reduce parsing?� [2015]

	 (A)	� Viable prefixes appear only at the bottom of the 
stack and not inside.

	 (B)	� Viable prefixes appear only at the top of the  
stack and not inside.

	 (C)	� The stack contains only a set of viable prefixes.
	 (D)	 The stack never contains viable prefixes.

	29.	 Among simple LR (SLR), canonical LR, and look-
ahead LR (LALR), which of the following pairs iden-
tify the method that is very easy to implement and the 
method that is the most powerful, in that order?

� [2015]
	 (A)	 SLR, LALR
	 (B)	 Canonical LR, LALR
	 (C)	 SLR, canonical LR
	 (D)	 LALR, canonical LR

	30.	 Consider the following grammar G

		  S → F | H

		  F → p | c

		  H → d | c

		  Where S, F and H are non-terminal symbols, p, d 
and c are terminal symbols. Which of the following 
statement(s) is/are correct?� [2015]

		  S
1
.	� LL(1) can parse all strings that are generated 

using grammar G

		  S
2
. �LR(1) can parse all strings that are generated using 
grammar G
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	 (A)	 Only S
1
	 (B)	 Only S

2

	 (C)	 Both S
1
 and S

2
	 (D)	 Neither S

1
 nor S

2

	31.	 Match the following:� [2016]
	 (P) Lexical analysis	 (i) Leftmost derivation
	 (Q) Top down parsing	 (ii) Type checking
	 (R) Semantic analysis	 (iii) Regular expressions
	 (S) Runtime environments	 (iv) Activation records
	 (A)	 P ↔ i, Q ↔ ii, R ↔ iv, S ↔ iii
	 (B)	 P ↔ iii, Q ↔ i, R ↔ ii, S ↔ iv
	 (C)	 P ↔ ii, Q ↔ iii, R ↔ i, S ↔ iv
	 (D)	 P ↔ iv, Q ↔ i, R ↔ ii, S ↔ iii

	32.	 A student wrote two context - free grammars G1 and 
G2 for generating a single C-like array declaration. 
The dimension of the array is at least one. 

		  For example, int a [10] [3];

		  The grammars use D as the start symbol, and use six 
terminal symbols int; id [ ] num.� [2016]

		  Grammar G1			  Grammar G2

		  D → int L;			   D → intL;

		  L → id [E			   L → id E

		  E → num ]			   E → E [num]

		  E → num ] [E			   E → [num]

		  Which of the grammars correctly generate the decla-
ration mentioned above?

	 (A)	 Both G1 and G2

	 (B)	 Only G1

	 (C)	 Only G2

	 (D)	 Neither G1 nor G2

	33.	 Consider the following grammar:

→
→
→ ε
→

 |  

 |

P xQRS

Q yz z

R w

S y

		  What is FOLLOW (Q)?� [2017]
	 (A)	 {R}	 (B)	 {w}
	 (C)	 {w, y}	 (D)	 {w, $}

	34.	 Which of the following statements about parser is/are 
CORRECT?� [2017]

	 I.	 Canonical LR is more powerful than SLR.
	 II.	 SLR is more powerful than LALR.
	 III.	 SLR is more powerful than Canonical LR.
	 (A)  I only	 (B)  II only
	 (C)  III only	 (D)  I and III only

	35.	 Consider the following expression grammar G :
E − > E − T | T
T − > T + F | F
F − > (E)  | id

		  Which of the following grammars is not left recur-
sive, but is equivalent to G?� [2017]

	 (A)	 E − >E − T | T	 (B)	 E − > TE
		  T − > T + F | F		  E′ − > −TE | ∈
		  F − > (E)  | id		  T − > T + F | F
				    F − > (E) | id
	 (C)	 E − > TX	 (D)  E − > TX | (TX)
		  X − > −TX | ∈		  X − > −TX | +TX | ∈
		  T − > FY		  T − >  id
		  Y − > + FY | ∈
		  F − > (E) |  id

	36.	 Which one of the following statements is FALSE?	
� [2018]
(A)	 Context-free grammar can be used to specify 

both lexical and syntax rules.
(B)	 Type checking is done before parsing.
(C)	 High-level language programs can be translated 

to different Intermediate Representations.
(D)	 Arguments to a function can be passed using the 

program stack.

	37.	 A lexical analyzer uses the following patterns to rec-
ognize three tokens T

1
, T

2
, and T

3
 over the alphabet {a, 

b, c}.
	 T

1
: a?(b|c)*a

	 T
2
: b?(a|c)*b

	 T
3
: c?(b|a)*c

		  Note that ‘x?’ means 0 or 1 occurrence of the symbol 
x. Note also that the analyzer outputs the token that 
matches the longest possible prefix.

		  If the string bbaacabc is processed by the analyzer, 
which one of the following is the sequence of tokens 
it outputs?� [2018]

(A)	T
1
T

2
T

3
	 (B)	 T

1
T

1
T

3

(C)	 T
2
T

1
T

3	
(D)	 T

3
T

3

	38.	 Consider the following parse tree for the expression 
a#b$c$d#e#f, involving two binary operators $ and #.

# 

a  # 

# $ 

$ d e  f 

b c 

		  Which one of the following is correct for the given 
parse tree?� [2018]
(A)	 $ has higher precedence and is left associative; # 

is right associative
(B)	 # has higher precedence and is left associative; $ 

is right associative
(C)	 $ has higher precedence and is left associative; # 

is left associative
(D)	 # has higher precedence and is right associative;  

$ is left associative
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Answer Keys

Exercises

Practice Problems 1
	 1.  D	 2.  A	 3.  B	 4.  A	 5.  D	 6.  C	 7.  C	 8.  D	 9.  C	 10.  A
	11.  C	 12.  C	 13.  A	 14.  B	 15.  D

Practice Problems 2
	 1.  D	 2.  C	 3.  B	 4.  A	 5.  B	 6.  B	 7.  A	 8.  C	 9.  C	 10.  A
	11.  D	 12.  A	 13.  D	 14.  A	 15.  D	 16.  A	 17.  C	 18.  A	 19.  A	

Previous Years’ Questions
	 1.  B	 2.  D	 3.  B	 4.  A	 5.  D	 6.  A	 7.  B	 8.  A	 9.  C	 10.  A
	11.  C	 12.  B	 13.  D	 14.  C	 15.  B	 16.  B	 17.  B	 18.  C	 19.  A	 20.  A
	21.  C	 22.  B	 23.  D	 24.  D	 25.  D	 26.  B	 27.  A	 28.  C	 29.  C	 30.  D
	31.  B	 32.  A	 33.  C	 34.  A	 35.  C	 36.  B	 37.  D	 38.  A
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