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1.3
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1119

1.120

1121

Laws of Conservation of Energy, Momentum and Angular Momentum.

As Fis constant so the sought work done
A= FAFZF-(-7)
— e — - e e I —  —»
or, A= (3i+4j ) [(Ri-3)-(+2j)]=(3i+4j ) (i-5j)=177
Differentating v (5) with respect to time

& _ ds
" 2\/_dt N‘“‘F

(As locomotive is in unidrectional motion)
2

_-W

Hence force acting on the locomotive F =mm w = %
Let, at v= Oat ¢t = O then the distancc covered during the first £ seconds
_ 1 2. 1 a a .2
5= 'i wt -5 —'2-- f T 4
2,22 4.2
Hence the sought work, A = Fs= ma_ (at7) =mar
2 4 8
We have
1 2 7 2 as’*
T= Emvz-as or, V= — 1)
Differentating Eq. (1) with respect to time
2vw-ﬂv or, w-zﬂ 2)
m m

Hence net acceleration of the particle

w7 VT[] - oo

mR m

Hence the sought force, F = mw= 2asV1 + (s/RY

—
Let F makes an angle 8 with the horizontal at any instant of time (Fig.). Newton's second
law in projection form along the direction of the force, gives :

F = Jmg cos 0 + mg sin 0 (because there is no
acceleration of the body.)

—p — . . o
As F 11 drthe differential work done by the force F,
dA = F-d7= Fds, (where ds = | d7”|) N

= kmg ds (cos 0) + mg dssin 0

= fong dx + mg dy. >
1 A X
Hence, A = kmgfdx-t-mgfdy
0 0 (;%
= kmg!l+mgh= mg(kl+h). >x ¥
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1122 Let s be the distance covered by the disc along the incline, from the Eq. of increment of
M.E. of the disc in the field of gravity : AT+ AU = Ag
O+ (—mgssina)= -kmgcosas-kmgl
ki

o $™ sina-keos o )
Hence the sought work N
Ay = —kmg[scosa+1] 207 (’b
o kimg . <
A T fcola [Using the Eqn. (1)]

On puting the values Ag = -0.057]

L123 Let x be the compression in the spring when the bar m, is about 1o shift. Therefore at this

moment spring force on m, is equal to the limiting friction between the bar m, and horizontal
floor. Hence

Kx= km,g [where x is the spring constant (say)] (1)
For the block m,; from work-energy theorem : A = AT =  for minimum force. {4 here
indudes the work done in stretching the spring.)
50, Fx—%xxz—kmgx- 0 or x%-

From (1) and (2),

F-km g 2,

F=k e
= Kg|m + 3T
1124 From the initial condition of the problem the limiting fricition between the chain lying on
the horizontal table equals the weight of the over hanging part of the chain, i.c.
Anlg= ki(l -n)lig(where A is the linear N
mass density of the chain)
So, k= )
1- k1] f
Let (at an arbitrary moment of time) the length r
*of the chain on the table is x. So the net friction

force between the chain and the table, at this AX
moment : 8‘ ?\(l'JC)
f’- kN = k?\.xg (2) 3
The differential work done by the friction forces :
dA-}':-dF’-—f,ﬁ*-—klxg(—dx)-lg(-i—:‘;)xdt 3)

{Note that here we have written ds = ~ dx., because ds is essentially a positive term and
as the length of the chain decreases with time, dx is negative)

Hence, the sought work done
0

A-f Agﬁxdx- - ni”-zgi- ~137
(1=-a)
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1.126

1127

The velocity of the body, f seconds after the begining of the motion becomes
V= v, +gt. The power developed by the gravity (m g') at that moment, is

P=mg-v=m(@ " vy+gt)= mg(gt-v,ysina) (1)
As m§' is a constant force, so the average powcr
<Pom __ _8_

T
where Ar” is the net displacement of the body during time of flight.
As, mg-LAr s0 <P>= 0
2
‘We have w, = %- atz, o, vavaRi

t is defined to start from the begining of motion from rest,

So, W, = %tv—= vVak

Instantaneous power, P =F V= m (w,ﬁ, +W, ﬁ, )-(VaeR tﬁ, )

{where ﬁ, and ﬁ, are unit vectors along the direction of tangent (velocity} and normal

respectively)
So, P= mw,vYaR t= maRt

Hence the sought average power
t

det fmatht
t
fd;

maRt® - ma Rt

2t 2
Let the body m acquire the horizontal velocity v, along positive x — axis at the point O.

<P>=

Hence <P> =

(a) Velocity of the body ¢ seconds after the begining of the motion,

Ve Vot wim (vo-kgt)i ()]
Instantancous power P = F V= (- kmgi_.) “(vo-kgt) i= - kmg (vy — kgt )
From Eq. (1), the time of motion © = vy/kg

Hence sought average power during the time of motion
T

f—kmg(vo-kgt)dt
kmg v

<P>=? - --— % = —2W (On substitution)

From F, = mw,
dv,
*dr

or, v dv, = - kgdx =~ agxdx

—kmg=mw, = mv,
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1130

To find v (x), let us integrate the above equation
¥

x

fvxdvx-—agfxdx or, v:-v%-otgx2 (1)
v 0
Now, PaF-i% -maxg\/m 2)
For maximum power, %(W) = 0 which yields x= Vrf‘%E

Putting this value of x, in Eq. (2) we get,
Po= - 1 m vg\/a g

max 2

Centrifugal force of inertia is directed outward along radial line, thus the sought work
2

A= f mw’ rdr = -;-mm2 (r% - rf) = 020 T (On substitution)
n

Since the springs are connected in series, the combination may be treated as a single spring

of spring constant.

- %2
Ky +Ky
From the equation of increment of MLE,, AT+AU=A_,
K
0+1kAI’= 4, o, A= 2f T2 lap2
2 21K +K,

First, let us find the total height of ascent. At the beginning and the end of the path of
velocity of the body is equal to zero, and therefore the increment of the kinetic energy of
the body is also equal to zero. On the other hand, in according with work-energy theorem
AT is equal to the aigebraic sum of the works A performed by all the forces, i.e. by the
force F and gravity, over this path. However, since AT= 0 then A = 0. Taking into
account that the upward direction is assumed to coincide with the positive direction of the
y -~ axis, we can write

) B
o= —»
Asf(F+m§T-d r=f(Fy-mg)dy
0 0

h

- mgf(l —2ay)dy=mgh(l -ah)= 0.
0
whence A= 1/a.
The work performed by the force F over the first half of the ascent is
k2 R2

AF-nydy = 2mgf(1 - ay)dy= 3 mg/da,
0 0

The corresponding increment of the potential energy is
AU= mgh/2= mg/2a.
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1132

From the equation F, = - %g we get F, = [ - %—g— + ;’12-]

(a) we have at r = r,, the particle is in equilibrium position. i.e. F,= 0 so, ry= Zb‘;

To check, whether the position is steady (the position of stable equilibrium), we have to
satisfy

2
‘;rf >0
d*U [6a 2b
We have -d—r—z - [;'4— - ;—3
Putting the value of r= ry= %, we get
2 4
%22= —82-, (as @ and b arc positive constant)
U ¥
So, — =50,
ar®*  8a

which indicates that the potential energy of the system is minimum, hence this position
is steady. ’

dU 2a b
(b} We have F’-—dr- -r3+r2
For F, 10 be maximum, ——= 0
dr
3g - b
So, r= 5 and then Fr(m)- 5;;3,
As F_is negative, the force is attractive.
(a) We have
oU -3U
F = - um" -2ax and F, = dy - -2fy
So, F=2axi-2Pyiand, F=2Vo22+py )
— -
For a central force, rx F= 0
T T > A
Here, rxFw(xi+yj )x{-20xi-2By})

- -2Bxyk-2axy(k)= 0
Hence the force is not a central force,
(b) AsU= ax’+By’

alu -aUu
So, F, = P ~2ax and F’,- 3y = -28y
So, Fa= \/F:+F§=\/4a2x2+4f32y2

According to the problem

F=2Y o?x?+p*y* = C (constant)
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c?
or, By = EY

x2 2 C2
or, 7 ﬁ; by k (say) @

Therefore the surfaces for which F is constant is an ellipse.
For an equipotential surface U is constant.

So, ax’+By’ = C, (constant)
2 2 c
of, = TUP AN K, (constant)

Vi Ve af

Hence the equipotential surface is also an ellipse.

Let us calculate the work performed by the forces of each field over the path from a
certain point 1 (x;, y,) to another certain point 2 (x,, y,)

*
() dA= F-dr= ayi-d7= aydc or, A= afydx-

%
(i) dA= F-di= (axi+byi)-dr= axds +bydy

% Y2
Hence A -faxdx +f bydy
zI. yl.

In the first case, the integral depends on the function of type y (x), i.e. on the shape of
tbe path. Consequently, the first field of force is not potential. In the second case, both
the integrals do not depend on the shape of the path. They are defined only by the coordinate
of the initial and final points of the path, therefore the second field of force is potential.

Let s be the sought distance, then frem the equation of increment of M.E.
AT+AU = A,

( -lmvﬁ)-a-&mgssina)a- -kmgcosa s

2
2
Yo .
or, s 2g/(sma+koosa)
-kmvg
Hence Ay = —langcosas-m

Velocity of the body at height k, v, = vV 2g (H - k), horizontally (from the figure given in
the problem). Time taken in falling through the distance 7.

t= V % (as initial vertical component of the velocity is zero.)

Now s=vt= Vg R x\/—zgf’—ﬂ/z:(ﬂh-h’)
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For s, % (Hh - h*) = 0, which yields = %

Putting this value of # in the expression cbtained for s, we get,
S = H

To complete a smooth vertical track of radius R, the minimum height at which a particle
starts, must be equal to §2—R {one can proved it from energy conservation). Thus in our

problem body could not reach the upper most point of the vertical track of radius R/2.

Let the particle A leave the track at some point O with speed v (Fig.). Now from energy
conservation for the body A in the field of gravity :

mg[h—%(l +sin6)]- %mw2

or, V= gh(1-5in6) )

From Newton’s second law for the particle at

the point O; F, = mw,, 4
my*
in B Y
N + mg sin ) %
But, at the point O the normal reaction N = 0
So, Ve gzﬂsin 8 '0)) J,

From (3) and (4), sin 0= 3 and v= "}/ %ﬁ

After leaving the track at O, the particle A comes in air and further goes up and at maximum
height of it’s trajectory in air, it’s velocity (say v') becomes horizontal (Fig.). Hence, the
sought velocity of A at this point.

V= veos(90-0)= vsinB= %‘V%}l

Let, the point of suspension be shifted with velocity v, in the horizontal direction towards
left then in the rest frame of point of suspension the ball starts with same velocity horizontally
towards right. Let us work in this, frame. From Newton’s second law in projection form
towards the point of suspension at the upper most point (say B) :

mv mvf,
mg+7T= e of, T'= T-mg (1)
Condition required, 1o complete the vertical circle is that T'2 0. But {2)
Lmi=mg@h+Im} So, i i-4gl G)
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From (1), (2) and (3)

2
m(v,-4gl
Tw= “fil_mgzo o, v,z V5gl VE B_.\
P -~
. ’ AN
Thus VA miny ™ Y5 8! /' YT “
f ! vV
From the equation F, = mw, at point C ! V???g c
: ]
. ™ 8y T
=7 4 \\ [ /I
Again from energy conservation \\.,\ - ’
—;-mvi - -;—mvf +mgl A Va
From (4) and (5)
T=3mg

73

()

Since the tension is always perpendicular to the velocity vector, the work done by the
tension force will be zero. Hence, according to the work energy theorem, the kinetic energy
or velocity of the disc will remain constant during it’s motion. Hence, the sought time

5 . . . - .
t= e where s is the total distance traversed by the smail disc during it’s motion.

(i
Now, at an arbitary position (Fig.)
ds= (I,-R9)d0,

/R

50, s-f(lo—RB)dG
0

o, Sem s m e

Iy
T 2ZRv,

Hence, the required time, ¢

It should be clearly understood that the only uncompensated force acting on the disc A
in this case is the tension T, of the thread. It is easy to see that there is no point here,
relative to which the moment of force T is invarible in the process of motion. Hence

conservation of angular momentum is not applicable here.

Suppose that Al is the elongation of the rubbler cord. Then from energy conservation,

AU, + AU = 0(as AT = 0)

or, -mg(1+AI)+%xA12-o

or, %Kuz—mg.&!—mgl-ﬁ
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1141

mg\/ (m )2+4x£ml
or, Al = J \/ J 28 x%:ﬂ[1+ 1:2—‘51]

24 & x mg

Since the value of V I+ i_xgl is certainly greater than 1, hence negative sign is avoided.

So, Al= m[u\/uﬁ)
K mg

When the thread P4 is bumt, obviously the speed of the bars will be equal at any instant
of time until it breaks off. Let v be the speed of each block and O be the angle, which
the elongated spring makes with the vertical at the moment, when the bar A breaks off
the plane. At this stage the elongation in the spring.

Al= lysec O - Iy=1,(sec @~ 1) (1)

Since the problem is concerned with position and there are no forces other than conservative
forces, the mechanical energy of the system (both bars + spring) in the field of gravity is
conserved, i.e. AT+ AU = 0

So, 2 %—rﬁvz)+%xlo2(secﬁ—l)z—mglotane- 0 2)
From Newton’s second law in projection form N

along vertical direction : o

mg= N+xly(secO-1)cos @ K'ZG(SECG-I)

But, at the moment of break off, N = 0.

Hence, k {,(sec8~1)cos 0= mg | T
Kly-mg
or, cos 8= By 3
Sm mg*
Taking k = 7 g simultaneous solution\of {2) and (3) yields :
0
19¢g1i,
Ve T 1-7m/s.

Obviously the elongation in the cord, Af= [, (sec 6 - 1), at the moment the sliding first

starts and at the moment horizontal projection of spring force equals the limiting friction.
So, K, Alsin@= kN . 1)

(where x, is the elastic constant). KAI\@PN

From Newion’s law in projection form along
vertical direction :

K;Alcos O+ N = mg. _,__f‘r

or, N=mg-x,Alcos @ > 2)
From (1) and (2),

K, Alsin@= k(mg -k, Af cos 6) Y mg
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K, - kmg
1" AlsinB+kAlcos B

From the equation of the increment of
mechanical energy : AU+ AT = A,

or,

or, (%KlAlz)-Aﬂ
or, kmg Al A
' 2AI(sinB+kcos@® TF

fang I, (sec 8 -1)
A= 3 lsin 6 — k cos 6)
1.142 Let the deformation in the spring be A, when the rod AB has attained the angular velocily .
From the second law of motion in projeciion form F, = mw, .

Thus = 0-09] (on substitution)

2
kAl = mw2(10+Al) o, Al= "’ME
K — mo
2

From the energy equation, A, = —;—mv + ;,lw K Al?

= S mo? (g + Al + 2 AL

2
2 2
1 5 mmzlo 1 [ me?i?
= 5 mw 10+K-mm2 +§K x-m(;i
Eal+r 2
On solving A~ _E__g_'l_(___’_‘_ﬂ' where 1 = =
2 (-9 K

1.143 We know that acceleration of centre of mass of the system is given by the expression.

— —
— ml W1+m2W2

W, =
¢ m; +m,
Since 7*’:- “'_‘”2
—
—»  (my—m)w,
Wom — " N
m, +m,

—_
Now from Newton’s second law F = mw, for
the bodies m; and m, respectively.

T+ myg= my W, @

and  Tamyge mywy= —-myw,  (3) T

Solving (2) and (3)

o, m=-m)g
Wym W (4) ?n:g
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1.145

1.146

Thus from (1), (2) and (4),

— (ml - m2)2 ?

{m, + m2)2
As the closed system consisting two particles
m, and of m, is initially at rest the C.M. of

the system will remain at rest. Further as
m, = m,/2, the C.M. of the system divides the

line joining m, and m, at all the moments of

time in the ratio 1 : 2. In addition to it the
total linear momentum of the system at all the
times is zero. So, IJI -— E; and therefore the

velocities of m; and m, are also directed in

opposite sense. Bearing in mind all these thing,
the sought trajectory is as shown in the figure.

First of all, it is clear that the chain does not
move in the vertical direction during the
uniform rotation. This means that the vertical
component of the tension T balances gravity.
As for the horizontal component of the tension
7, it is constant in magnitude and permaneantly
directed toward the rotation axis, It follows from
this that the C.M. of the chain, the point C,
travels along horizontal circle of radius p (say).
Therefore we have,

TcosO=mg and TsinQ = ma)zp

Thus p= &La};_ﬂ.. 0-8 con
[

and Tm= ——m—&-—SN
cos 6

(a) Let us draw free body diagram and write Newton’s
second law in terms of projection along vertical and
horizontal direction respectively.

Ncosa-mg+ frsina=0 (¢))

freoso-Nsina= mar? | (2)

From (1) and (2)

sin o
freosa -
Cos5

(- frsina +mg) = mw? !
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w2l
So, fr=mg sina+—§-cosa = 6N 3)

(b) For rolling, without sliding,
frs kN

but, N = mgcosa—mcozlsina
0.)21 2
mg sina+Tcosa % k{mgcos a—~mo*lsina) [Using (3)]

Rearranging, we get,

mm?l(cosa+ksine) s(kmgcosa—mgsina)

Thus wsYg(k-tana)/(1+ktanc )l = 2 rad/s

(a) Total kinetic energy in frame K ' is
1 el 1 -
T=5m(-V ) +5m(7-V Y

-
This is minjimum with respect to variation in V, when
1 - = - -
Q—T_-.;- 0, ie. ml(vl—V)2+m2(v2-V)-D
oV

-
14

— —»
— m1v1+m2V2
or - -
m; +m,

Hence, it is the frame of C.M. in which kinetic energy of a system is minimum.

(b) Linear momentum of the particle 1 in the K’ or C frame

"—‘b_ e m1m2 (—-b —:-)
pi=m(v,~v)= ™y + m, Vi=¥y

Xy — ”'2
or, P1= (v, -vy), where, p= —— = reduced mass
Similarly, ;; =u( ‘7;— 3;)
= = ~ - —»
So, |pil=|p2l= P= vy where, vu=|vi-v, )

Now the totai kinetic energy of the system in the C frame is
2 =2 =

T T +Tom £+ £ o 2
T=T+1, 2m1+?)n2 o

~ 2
Hence T=

NI

2
WV =

[ 1

— -
kel
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1.150

To find the relationship between the values of the mechanical energy of a system in the
K and C reference frames, let us begin with the kinetic energy T of the system. The
velocity of the i-th particle in the K frame may be represented as v, = v, + v . Now we

can write
=3 2mvi= 3 2m(F+0)- G+ 7)

1 » - = 1 2
- 2 5 m;¥; +vc2 ml-v1+E > mvE
Since in the C frame E m; 3:' = 0, the previous expression takes the form

=1 = 1
Tw T+ -2—m v%. =T+ 2
Since the internal potential energy U of a system depends only on its configuration,
the magnitude U is the same in 2all refrence frames. Adding I/ to the left and right
hand sides of Eq. (1), we obtain the sought relationship
1

E-E+5mvz

mv? (since according to the problem v.= V) (1)

As initially U= U= 0, so, E= T
From the solution of 1.147 (b)

~ 1
T'E"W;_;;!’

As vy Ly,
~ m
Thus T= 1% 0 +d)
2mi+m,
Velocity of masses m; and m,, after t seconds are respectively.

— —_ - — —_ -
vy = v +gtand v = v+ 81
Hence the final momentum of the system,
i P —nr — — -
P=mv, +mv, = mvi+mv,+(m +my)gt
— — — —» —
= potmgt, (where, py= my v, +m,v, and m=m +m,)

. 1
And radius vector, Tom= ;Er+~é-v?::.tz

— —
(myvi+myvy)t

s Lg%
{m, +my )} 23
— —>
| — My TV,
>gt°, where vym ——————=

—
= volf+
2 mg+m,
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1.151 Afier releasing the bar 2 acquires the velocity v,, obtained by the energy, conservation :

1.152

1.153

1 2.l -y =
5 MV 2Kx2 or, V= x\ — (1)

2
Thus the sought velocity of C.M.

K
0+mxVom, vy

m +m, -(ml+m2)

-
om

Let us consider both blocks and spring as the physical system. The centre of mass of the

systern moves with acceleration a = -,;—1;-;— towards right. Let us work in the frame of
1 2

centre of mass. As this frame is a non-inertial frame (accelerated with respect to the

ground) we have to apply a pseudo force m, a towards left on the block m;and m, a

towards left on the block m,

As the center of mass is at rest in this frame,

the blocks move in opposite directions and

come to instantaneous rest at some instant. The
elongation of the spring will be maximum or o <
minimum at this instant. Assume that the block  <— 1, LEBEHHN 7. —>F
m; is displaced by the distance Xy and the block VA I ISP

m, through a distance x, from the initial

positions,

??72 o

From the energy equation in the frame of C.M.
AT+U=4_,,
{where 4_, also includes the work done by the pseudo forces)

Here,

AT=0, Unk(y+x) and

(F-sz] m F m F(x;+x)
Wm= X. =

m, +m, m +my ! m, +m,
1 m, (x, +x,} F
or, =k (x, +Jc2)2 -2
2 m +m,
2m F
So Xy+x, =0 or X + Xy m ————
’ 172 2 k(m+my)
. . Zm F
Hence the maximum separation between the blocks equals : [ + ————
k(my+my)

Obviously the minimum sepation corresponds to zero elongation and is equal to [

(a) The initial compression in the spring A/ must be such that after buming of the thread,
the upper cube rises to a height that produces a tension in the spring that is atleast equal
to the weight of the lower cube. Actually, the spring will first go from its compressed
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state to ils natural length and then get elongated beyond this patural length. Let [ be the
maximum elongation produced under these circumstances.

Then
kil =mg (1)
Now, from energy conservation,
:1,,_—icA1'2-amg(Al-bl)+%ncl2 (2)

{Because at maximum elongation of the spring, the speed of upper cube becomes zero)
From (1) and (2),

2
Mz_ZngAl_Zimzﬁ_ 0 o, Al= 31:;g’ —:lg
K

Therefore, acceptable solution of Al equals 3—:’:3-

(b) Let v the velocity of upper cube at the position (say, at C ) when the lower block
breaks off the floor, then from energy conservation.
1

L SN LN LI
5 mv 2K(AI 1“)-mg(l+Al)

(where = mg/x and Al = 7%8)
K

or, a7 @
At the position C, the velocity of C.M; v, = Exzig- -;-*Let, the CM. of the system
(spring+ two cubes) further rises up to Ay, T f-"lcT
. v
Now, from energy conservation, { |
1 I
5 @m) g = (2m) g Arcy
2 I B
t
v !
- Y _Admg
o Ae 2¢ 8 «x Al |
But, uptil position C, the CM. of the system i I

has already elevated by,

AMl+Dm+0 4m
Aycl- 2m = Kg

Hence, the net displacement of the CM. of
the system, in upward direction

8 mg

K TIrrr7im

Ayc= Ay, +Aye, =

Due to ejection of mass from a moving system (which moves due to inertia) in a direction
perpendicular to it, the velocity of moving system does not change. The momentum change
being adjusted by the forces on the rails. Hence in our problem velocities of buggies
change only due to the entrance of the man coming from the other buggy. From the
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81

Solving (1) and (2), we get

v, = ¥ — and v, = My
1 M-m 2 M-m
As vl viand vty
—_ —_
So, ;‘;, —mv_ and ;,'2“ - .__A..".I_.‘.'._..
(M-m) (M-m)

From momentum conservation, for the system “rear buggy with man”

(Mem)vgm m(u+vg)+Mvp, 1)

From momentum conservation, for the system (front buggy + man coming from rear buggy)
My +m(@+vg)= (M+m)v,

— M;(: m — =
So, V= M+m+M+m(u+vR)
Putting the value of v, from (1), we get
om o
(M +m)

(i) Let 17; be the velocity of the buggy after both man jump off simultaneously. For the
closed system {iwo men + buggy), from the conscrvation of linear momentum,
Mu+2m{+v;)= 0

—»  —2mi"
Or, Vi= M+2m (1)
(ii) Let v be the velocity of buggy with man, when one man jump off the buggy. For
the closed system (buggy with one man + cther man) from the conservation of linear
momentum :

O= (M+m) 17"+m(|?+ F") {2)
Let 17; be the sought velocity of the buggy when the second man jump off the buggy; then
from conservation of linear momentum of the system {buggy + one man) :

M+m)v" = M, +m{@+v3) (3)

Solving equations (2) and (3) we get

- m2M+ 3m)a
V27 M+ m) (M +2m)

(4)

From (1) and (4)
V2 m

;;- 1+-—-—-————2(M+m)>1

Hence v, > v,

The descending part of the chain is in free fall, it has speed v= Y2 gh at the instant, all
its points have descended a distance y. The length of the chain which lands on the floor
during the differential time interval dr following this instant is vdt.
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1.159

For the incoming chain element on the floor :

From dp, = F, dt (where y - axis is directed down}
0-(vdt)v = Fydt

or Fy= -AvV= -2Agy

Hence, the force exerted on the falling chain

equals A v* and is dirccted upward. Therefore

___-
Rt

from third law the force exerted by the falling l
chain on the table at the same instant of dy — —
time becomes A v° and is directed downward. t v

Since a length of chain of weight (Ayg) already lies on the table the total force on the
floor is (2hyg) + (Avg) = (3hyg) or the weight of a length 3y of chain.

Velocity of the ball, with which it hits the slab, v= Y2 gh
After first impact, v' = ev (upwa{d) but according to the problem v' = ﬁ, s0 e= *1—] (1)

and momentum, imparted to the slab,
=mv—(—mv)=mv(l+e)
Similarly, velocity of the ball after second impact,
Vi= eV = ey
And momentum imparted = m (V' + v )= m(l + €} ev
Again, momentum imparted during third impact,
=m(l+e) ezv, and so on,

Hence, net momentum, imparted = mv (1 + ¢} + mve (1 + ¢) + mve’ (l+e)+...
- mv(1+e)(1+e+e2+...)

-y dte

(1-e)’
(1 + %
= V2gh I mvV2gh / (n+1)/{n~1) (Using Eq. 1)
1-=
)
= 0-2kg m/s. (On substitution)
(a) Since the resistance of water is negligibly small, the resultant of all external forces

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

ic. ro= constantor, AFc= 0 ie. Y mAF= 0

(from summation of G.P.)

or, m(AF,:M +Ar‘;)+MAr“;= 0
Thus m(r'+l_3‘+Ml_; 0, of, Im— ml™
’ T m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, Om m{v" )+ ()] + MV, (1)
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(a) Since the resistance of water is negligibly small, the resuitant of all external forces
acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

ie. Fg- constant or, Aro= 0 ie. E m, Ar;= 0

or, m(Ar':M +Ar';)+MAr_; =0
- LT Mi% 0, o To-
us, m(I +1)+ =0, o Im-——r

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, O=m[v () +v ()] +Mv, (1)
or, 2= - 2200 (1)

m+M
As ¥ () or ;;(t) is along horizontal direction, thus the sought force on the raft

_MATG) M T

dt m+M dr

Note : we may get the result of part (a), if we integrate Eq. (1) over the time of motion
of man or raft.

In the refrence frame fixed to the pulley axis
the Jocation of CM. of the given system is

described by the radius vector
AFa MAT +(M-m)ATG, . +mAF,

¢ 2M
But  Afy= ~AFp .
and AF;"A’_':.(M—...) + AF(;I_M) lﬁﬂ (M-m}s-m

ml”

—

Thus Ar.= M

Note ; one may also solve this problem using momentum conservation.

Velocity of cannon as well as that of shell equals V2 gl sin o down the inclined plane
taken as the positive x — axis. From the linear impulse momentum theorem in projection
form along x — axis for the system (connon + shell) ie. Ap = F_At:

peosa—-MY 2glsina = Mgsina At (as mass of the shell is neligible)
peosa—-MV 2glsina
Mgsina

From conservation of momentum, for the system (bullet + body) along the initial direction
of bullet

or, At

mv,
m+M

mvg= {m+M)v, o, v=
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When the disc breaks off the body M, its velocity towards right (along x-axis) equals the
velocity of the body M, and let the disc’s velocity'in upward direction (along y-axis) at
that moment be v'

¥
From conservation of momentum, along x-axis for the system (disc + body)
, my
mv=(m+M)Vv_ or v = —Y (1)
And from energy conservation, for the same system in the field of gravity :
%mvz— —(m+1il)v'2+ zlzmv +mgh’,
where /' is the height of break off point from initial level. So,
1 mv 1 2 . .
2mv (mHW)(MH") 2mv +mgh' using (1)
2
12 " my - '
or, v, = (m+ M) 2gh
Also, if 4" is the height of the disc, from the break-off point,
then, V',z, = 2gh"
2 n v2
H '
So, 28"+ R )= v M+ m)
Hence, the total height, raised from the initial level
MV
= h; h”== ;M
T M em)

{a) When the disc slides and comes to a plank, it has a velocity equal to v = W Due
to friction between the disc and the plank the disc slows down and after some time the
disc moves in one piece with the plank with velocity v' (say).
From the momentum conservation for the system (disc + plank) along horizontal towards
right :

my
m+M
Now from the equation of the increment of total mechanical enezgy of a system :

mv={m+M1V or V=

%(M+m) v’z-%mv2= A

or, %(M-k m) (m"f‘;) - %—mvz = Ag,

s0, %vz[Mrfm —m}- A,

Hence, Ap= - (mmyM ) gh= —ugh
(where n= mm-fil = reduced mass )
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(b) We look at the problem from a frame in which the hill is moving (together with the
disc on it) to the right with speed s Then in this frame the speed of the disc when it just
gets onto the plank is, by the law of addition of velocities, v = u + V2gh. Similarly the
common speed of the plank and the disc when they move together is

- m
v = u+m+Mw’Zgh.
Then as above A, = l(m +Myv? - -l-mVZ - -1-Mu2
Fo2 2 2

1 2 2Zm m2 1 2 !_
2(m+M) {u Yoe M uvigh +—__(m+M)22'gh} - —2-(m+M)u -szuVZgh - mgh

We see that Zf, is independent of 4 and is in fact just - w g A as in (a). Thus the result
obtained does not depend on the choice of reference frame.
Do note however that it will be in correct to apply “conservation of enegy’ formula in

the frame in which the hill is moving. The energy carried by the hill is not negligible
in this frame. Sec alsé the next problem.

In a frame moving relative to the earth, one has to include the kinetic encrgy of the earth
as well as earth’s acceleration to be able to apply conservation of energy to the problem.

In a reference frame falling to the earth with velocity v,, the stone is initially going up
with velocity v, and so is the earth. The final velocity of the stone is 0 = v, - gt and

that of the earth is v, + Jl;— gt (M is the mass of the earth), from Newton’s third law,
where ¢ = time of fall. From conservation of energy

2

%—mvﬁ + -12—Mv§ + mgh = %M Ve + %"o)
1 m
Hence Evg (m + H) = mgh

Negecting ;’—l in comparison with 1, we get
vg = 2ghor v, =V 2gh

The point is this in earth’s rest frame the effect of earth’s accleration is of order ;n_? and

can be neglected but in a frame moving with respect to the earth the effect of earth’s
acceleration must be kept because it is of order one (i.e. large).

From conservation of momentum, for the closed system “both colliding particles™
m1q+ mQF;= (my+my) v

mvy + myvy 20 L 6k)
e WitV 1Q@i-2j)+2(4j-6k) _ i_;Zj"_:Ltl?
my +m, 3

Hence [v]=V1+4+16 m/s= 46 m/s

or,
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1.167 For perfectly inelastic collision, in the C.M. frame, final kinetic energy of the colliding

1.168

system (both spheres) becomes zero. Hence initial kinetic energy of the system in C.M.
frame completely turns into the internal energy (Q) of the formed body. Hence

Q= T~ -;-u |F1'—Vz'|2
[Er——1

Now from energy conservation AT = - Q = -%p. |v1—v2| ,

In Jab frame the same result is obtained as

1 {"‘1‘7;”"2‘72’)2 1 =312 =2
AT = 5 ————— = m |v{|" + my {¥,]
2 m+m, 2

Lulv -7

=-5H
2

(a) Let the initial and final velocities of m; and m; are EI ) ﬁ; and v ;;respecﬁvely.
Then from conservation of momentum along horizontal ard vertical directions, we get :

m ;= myv,cos 0 (1)
and myy; = myy,sind 2 r Vi
Squaringz (21) an;i (22) anzd ihen adding them, Us

myv, = my (uy +vy) -—-@—)— _________________
Now, from kinelic energy conservation, \&

1 2 1 2.1 2
MU= F MV s m Y] {3)
V2
2

m
or, m(l-v)= myi= mz-m—;(uiwf) [Using (3)]

2
m m
or, uf 1-—t -v% 1,+—l
my m;
v 2 m
or, (_1.) - my—m %)
ol m; +my
So, fraction of kinetic energy lost by the particle 1,
1 7 1
1 2
5"’1 "i “
my-my  2m .
-1- - [Using (4)] ©)

my + m2 my + my
(b} When the collision occurs head on,
iy = VI, (6))

and from conservation of kinetic energy,
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1 1 1
Emluf- Emlvf+5m2v§
1 [myn -]
1 mu,-v :
Tty m| ] [Using (5))
m m
or, v, 1+ = Uy —+_1
m; my
mfmy -1

V1

(6)

op u - (1 + e/ ms)

Fraction of kinetic energy, lost
) 2
Vi 1_(m1-m7) _ 4m m,

py+m, (m, + m2)2 [Using (6))

(a) When the particles fly apart in opposite direction with equal velocities (say v), then
from conservatin of momentum,

mu+0= (m,—m)v (1
and from conservation of kinetic energy,
i 2 1 1
-imlu - §m1v2+5m2v2
or, mu’ = (m,+m)v: 2)

From Eq. (1) and (2),

2,2
myu

2
m i = (m +my) Uy
R Ml S G C NI
or, ﬁl§—3m1m2- 0
Hence -’ﬁ- l as = (
mo 3 "™

(b) When they fly apart symmetrically relative to the initial motion direction with the
angle of divergence 8= 60°,
From conservation of momentum, along horizontal and vertical direction,

my uy = m, v, cos (8/2) + my v, cos (8/2) (1)
and m, v, sin (8/2) = m, v, sin (6/2)
or, my v = m, v, (2)
Now, from conservation of kinetic energy,
1 1 1
5“1"%*0"2""1"3"5"'2‘% 3

From (1) and (2),

myu; = cos (8/2) (ml v+ ek’ mz)- 2m, v, cos (8/2)
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So, Uy = 2 v, cos(0/2) 4

From (2), (3), and (4)
2.2
4my cos (8/2) v¢ = my v e w

m

m
or, 4 cos (6/2)=1+ e 3
my

m
or, —L= 4c08? g—1
m, 2

m
and putting the value of 8, we get, ;1-1"- 2
2

If (vy,,vy, ) are the instantaneous velocity components of the incident ball and
( Vg, vy, ) are the velocity components of the struck ball at the same moment, then since
there are no external impulsive forces (i.e. other than the mutual interaction of the balls)
We have U sino = Vi > Vap® 0

mucosa=mv1z+mv2'

The impulsive force of mutual interaction satisfies

d F d
E;("n)’ etk E;(vz,)

( F is along the x axis as the balls are smooth. Thus ¥ component of momentum is not
transferred.) Since loss of K.E. is stored as deformation energy D, we have

1 2 1 2 1 a
D= Emu - Emv1 - Erm'2
1 2 2 1 2 1 2
Emu cos'a imle Emv?_‘
- -—21;;[ mu’coso — m2le2 - (mucosa~ mv ) 2 ]

1 2 : 2.2 2
= om [ 2m ucosawv,, ~ 2m'v,, ] = m{ v ucosa - v,.°)

m ucos’ar _ weosa
4 2 L

We sec that D is maximum when
H COSTL
-

2.2
and D o —— b"

D
Then 7=

-’
tpax 1 U
Le 270"
2
On substivting o = 45° >




1.171 From the conservation of linear momentum of the shell just before and after its fragmentation
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W=V vy 4y 0]

where f'f ) F; and V;are the velocities of its fragments,
From the energy conservation 3y =17 +v5 + vg {2)
Now Vior vig = V- V==V )
where v, = v'= velocity of the C.M. of the fragments the velocity of the shell. Obviously
in the C.M. frame the lincar momentum of a system is equal to zero, so

oy e Sy

v+ +vy=0 4)
Using (3) and (4) in (2), we get

3nv2-(?+5;)2+(17'-'+5;)2+(?-ﬁ-1=;;)2 =32+ 202420242005

ot W24 20, %, cos0+ 27243 (1 -nhP=0 )
If we have had used ¥, =~ v, — vy, then Eq. 5 were contain ¥, instcad of ¥, and so on.

The problem being symmetrical we can lock for the maximum of any one. Obviously it
will be the same for each.
For ¥;to be real in Eq. (5)

472 cos’0 = 8(272 + 3 (1 =) v?) or 6(n - 1)v* = (4 - cos’0)F 3

So, VaE ¥ ﬁnc;% of Vyag=V2MM-1) v

Hence vy = 7375l =v+V2m-1 v -v(1+\/2(n-1) )= 1km/s

Thus owing to the symmetry

Vimax) * V2 (max) = Vi(mar) = ¥ (1 +¥Y2m-1)}=1km/s
Since, the collision is head on, the particte 1 will continue moving along the same line
as before the collision, but there will be a change in the magnitude of it’s velocity vector.

Let it starts moving with velocity v, and particle 2 with v, after collision, then from the
conservation of momentum

mu=mv,+myv, of, u= v, +v, (1)
And from the condition, given,
1 il 1 mv2 + 1 mv%
gm-2 2 v+
= 1 2 -1- u’
Emu
or, voarvi= (1-m)id )

From (1) and (2),
vf+(u --vl)z- (1-n) u?

or, v§+u2-2uv1+vf-(1-n)u7'
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1.174

or, 2v";-2v1u+‘r|u2-0
Vaiz - P)
So, v1-2ut—4-§]u—

= %[u:Vuz-Znu2]= %u(l:Vl-Zn)

Pasitive sign gives the velocity of the 2nd particle which lies ahead. The negative sign is
correct for v, .

So, v, = %u (1-v1-2n)=5m/s will continue moving in the same direction.

Note that v, = 0 if n= 0 as it must.

Since, no external impulsive force is effective on the system “M + m”, its total momentum
along any direction will remain conserved.

So from p, = const.

m i
M cos B @)

mu= Mv cos@ or, v/ =
and from p, = const
. M .
mvy= My,;sin@ or, v,= o V1sin 0= utan 6, [using (1)]

Final kinetic energy of the system

And initial kinetic energy of the system= -é—muz

I.-T
So, % change = —-LT-—'- % 100

= tan‘ 6+ =M — =
mu” tan +2 W o052 2mu
= 1 )(100
2
—mu
12
u
-1--.t412t:mz{3+l--muzseczﬁ-—u2 £ SO Y
2M
- x 100
2

/ .
- ttan29+%scc,29- 1) = 100

and putting the values of 8 and = , we get % of change in kinetic energy= - 40 %

(a) Let the particles m, and m, move with velocities V) and v, respectively. On the basis
of solution of problem 1.147 (b)
Fepvg =u | W=7
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As viLlv;
m,m
So, p= nvv? +v2 where p = L2

my+m,
() Again from 1.147 (b)

T —uv2 zplvl—vzl2

So, T= Eu(vfirv%)

From conservation of momentum

Pi=p P
50 (E;"I—"l')z 'Pi“zl’j Py’ cosB, +P1'2 =P
From conservation of energy
2m;, 2m, 2m,
Eliminating p," we get
m, m,
0 =py (1*’ ',;I] — 2p;'pycosO, +p, (1‘ ml]
This quadratic equation for p,’ has a real solution in terms of p, and cos 8, only if
2

m
4cos’0,24|1-— i

.>
m
! B
2
m
or sin® 0, = —2— o
my > 5
A 7
. my . my
or sinf <+~ or sinf z-—=
L m El
This clearly implies (since only + sign makes sensc) that /
ny
sin © -—
in® .. py

From the symmetry of the problem, the velocity of the disc A will be directed either in
the initial direction or opposite to it just after the impact. Let the velocity of the disc A
after the collision be V' and be directed towards right after the collision. It is also clear
from the symmetry of problem that the discs B and C have equal speed (say v} in the
directions, shown. From the condition of the problem,
d
n<

wsB-TZ-Izlso, sin 0= V4 -n? /2 (1)

For the three discs, system, from the conservation of linear momentum in the symmetry
direction (towards right)

mve 2nv'sin®+my or, v= 2V 5in8+v )
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trom the definition of the coefficeint of restitution, we have for the discs A and B (or C)

But e = 1, for perfectly elastic collision,

So, vsinB= v’ ~v'sin @ 3 8 i

,V.
From (2) and (3), A »
o v{l ~ 2sin’® 0) A Q‘

(1 +2sin” 6)

_ v -2) .
. 112 {using (1)}

Hence we have,
"
orm-2)
Vo= —
6-n

Therefore, the disc A will recoil if 1 <v2 and stop if v = V2.
Note ; One can write the equations of momentum conservation along the direction per-
pendicular to the initial direction of disc A and the consevation of kinetic energy instead
of the equation of restitution.

(a) Let a molecule comes with velocity ﬁto strike another stationary moiecule and just
after collision their velocifies become ?'1 and 7'2 respectively. As the mass of the each

molecule is same, conservation of linear momentum and conservation of kinetic energy

for the system (both molecules) respectively gives :

e e N
vi=V  +V,

2_ .07 2
and vi= v+ vy

From the property of vector addition it is obvious from the obtained Eqs. that

—) —» —
_vaor vlvz-O

P2 2

(b} Due to the loss of kinetic energy in inelastic collision v‘f =V

s0, v 1 e 2 >0 and therefore angle of divergence < 90°.

Suppose that at time ¢ the rocket has the mass m and the velocity v, relative to the
reference frame, employed. Now consider the inertial frame moving with the velocity that
the rocket has at the given moment. In this reference frame, the momentum increament
that the rocket & ejected gas system acquires durmg time dr is,

dp= mdv+p.dtu- F dt
or, m-——=F_pn

— —n
or, mw=F - n
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1.179 According to the question, Fe 0and p = - dm/dt sothe equation for this system becomes,
dv" dm

m=;—= =i

dt dt

As dv? i so, mdv= —udm.
Integrating within the limits :

v m
m
lfd'v=— 9"_'101..‘1=]n__.9.
u m 74
0 m,

m

my,
Thus, v= uln—
m

As dv}} & so in vector form v e -—i?'ln-m
m

1.180 According to the question, F (external force) = 0

So m i;’:, am a
’ dr dt
As 2n N
so, in scalar form, rrdv= —udm
wdt dm
or, TS R
1] m

Hence, m=mye

1181 As F= 0, from the equation of dynamics of a body with variable mass;
mgl— E.d_m_ o, dv= E'ﬂ (1)
m
Now dv} |iand since it'L v, we must have |dv'| = v,d a (because v, is constant)
where d o is the angle by which the spaceship tumns in time 4t

dm u dm
So, -u —=vyydo of, dam -——
m Vo M
m
u dm u ny
or, o= «— § —m= —In|—
VO m Vo m
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We have %a -u or, dm= — pdt

m !
Integrating fdm- —p.fdz or, m= my— W\t
m, 1}

As U= 0 50, from the equation of variable mass system :
—

dv. - dv —»
(my-p)Zr=F or, —-= W= F/(mo~ )
;0 [ 4
or, de':-F g
(my - i)
0
o m
Hence Ve E In 0
K my — W

Let the car be moving in a reference frame to which the hopper is fixed and at any instant
of time, let its mass be m and velocity w
Then from the general equation, for variable mass system.

m & Fewin

dt dt

We write the eguation, for our system as,

—
dv = _dm — —»

mEEF"VE a5, U= -V 1)
So —g; ) = F
Fi
and 7= on integration.
m
But m=nmy + pt
—»
— Fr
50, Ve ——
my (1 + 'E'-t-)
My
- —
Thus the sought acceleration, w= gdl- %
m, (1 + __p_t_)
my

Let the length of the chain inside the smooth horizontal tube at an arbitrary instant is x.
From the equation,
= _—udm

.
mw=F+y —
dt
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asu= 0, F11 “u'r: for the chain inside the tube

Axw= T where A= % )
Similarly for the overhanging part, AV ya
w=0 A
- X —>

Thus mw= F £ T

or Mhwe= Ahg-T ) A

From (1) and (2), N‘}

dv

Ax+h)w= Ahg or (x+h)vdsshg B

s -
dv
or, x+h)v —~= gh,
by T 8

[As the length of the chain inside the tube decreases with time, ds = ~dx.]

or, vdv= -gh——

x+h
v [}
Integrating, fvdv- —ghf xcixh
0 (i-#)

2
or, -‘iz-s gh In (II;) or v= \/ 2gh In (—:;)

Force moment relative to point O ;

V=M oh
d‘ —» —
Let the angle between M and N,
o= 45% att =1, »

—_ —> —

Then 1 M-N (a+bt0) (tho)
vi® |MHN| Vd +b2t; 2bty

2.3 2
26" &, by

Va2+b2t(';‘ 2w, V a+ by

a .
So, 2b%ty = a+ b tg of, = \/ B (as ¢, cannot be negative)
It is also obvious from the figure that the angle a is equal to 45° at the moment £,

2 . —> a —
when a = bl ic. fo = Va/b and N= 2\/3)— b.

o5
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1.187

1,188

M@= Pk p= (F;t+*l—§'tz)xm(i’;+§"t)
2
= mvugt2 sin(g-ra](—ic*) + %mvngt2 sin (gﬂx)(;?)

= %mvogtzcosa(-r):

mv, g 1% cos
2
Thus angular momentum at maximum height

Thus M (f) =

) T Vpsina
ie.at t= —-= A
2 E mg
o (mw) 2 :
ME- Esm acosa= 37kg-m°/s 7,
Alternate : 77 77X

' [
J—\?(O)s(}so, H(t)=f17dt=f(?§<m§')
0 )

3

2
=f th+—1~§".'r2 xmg |dt= (Vg xmg £
A 2 2
(a) The disc experiences gravity, the force of

reaction of the horizontal surface, and the force

—

R of reaction of the wgl] at the moment of the

impact against it. The first two forces

counter-balance each other, leaving only the “g

force R, I’s moment relative to any point of A §

the line along which the vector R acts or along N

normal to the wall is equal to zero and therefore o $ ->
the angular momentum of the disc relative to N = .10 o N
any of these points does not change in the given R

process. !

(b) During the course of collision with wall il

the position of disc is same and is equal to Q'

F,:, Obviously the increment in linear

momentum of the ball Aj';"-.va cos a1

Here, M—; = F;, x Ap'= 2 mv I cos o 1 and directed normally emerging from the plane of
figure

'I'hus]Aﬁ|=2mvlcosa N

(a) The ball is under the influence of forces T and m g'at all the moments of time, while

moving aleng a horizontal circle. Obviously the vertical component of ?balanoc m §' and
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so the net moment of these two about any point becoems zero. The horizontal component
of i’ which provides the centripetal acceleration to ball is already directed toward the
centre (C) of the horizontal circle, thus its moment about the point C equals zero at all
the moments of time. Hence the net moment of the force acting on the ball about point
C equals zero and that’s why the angular mommetum of the ball is conserved about the

horizontal circle.

(b) Let a be the angle which the thread forms
with the vertical.

Now from equation of particle dynamics :

Tcosa= mg and Tsina= ma® Isin o

Hence on solving cos o = :u% )

As {Xl. | is constant in magnitude so from figure.
—
[AM|[= 2M cos a Wwhere

- —»
M= IMil’ IM_fi
= frpxmv’|= mvl(as ?;J.?)

ThuslAﬁls 2mvicos o= 2mml’sinacosa

®

. 2mgl 1- (-Gﬁ—; )2 (using 1).

During the free fall timef = © = V , the reference point O moves in hoizontal direction
(say towards right) by the distance V1: In the translating frame as M (Oy=0, so

AM==Mf=r ‘ "(V)
=(-Vxi+hj)xmigtj-Vi] > 3
-—ngtzl?+th(+E3 J( )

28\ — o —
- -ng(?)IHth(\»k) - -mVhE

—
Hence |AM|=mVh

The Coriolis force is.(2m V™ x @).
Here o is along the z-axis (vertical). The moving disc is moving with velocity v, which

is constant. The motion is zlong the x-axis say. Then the Coriolis force is along y-axis
and has the magnitude 2m v, m. At time ¢, the distance of the centre of moving disc from

O is vy (along x-axis). Thus the torque N due to the coriolis force is
N=2mvyovyg along the z-axis.
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1.192

Hence equating this to %

dM
——=2m vg of or M= mvg w2 + constant.
dt

The constant is irrelevant and may be put equal to zero if the disc is originally set in
motion from the point O.

This discussion is approximate. The Coriolis force will cause the disc to swerve from
straight line motion and thus cause deviation from the above formula which will be substantial
for large ¢

If » = radial velocity of the particle then the total energy of the particle at any instant is
1 .2 M 2
—mr+——+kr'=E 1
2 2mr @
where the second term is the kinetic energy of angular motion about the centre O. Then
the extreme values of r are determined by r = 0 and solving the resulting quadratic equation

2
KrY -Er + % =0

RV

2k

we get

From this we see that

2, .2
E=k(r; +713) 2)
where r, is the minimum distance from O and r, is the maximum distance. Then
1
-é-mv%+2kr%-k(121+r%)
Hence, me=——
V2

-Note : Eq. (1) can be derived from the standard expression for kinetic energy and angular

momentum in plane poler coordinates :

T—%m'rzi-%mrzéz
M = angular momentum = mr* §
The swinging sphere experiences two forces : The gravitational force and the temsion of
the thread. Now, it is clear from the condition, given in the problem, that the moment of
these forces about the vertical axis, passing through the point of suspension N_= 0. Con-
sequently, the angular momentum M, of the sphere relative to the given axis (2) is constant.

Thus mv, (Isin 8) = mv 1

where m is the mass of the sphere and v is it s velocitly in the position, when the thread
n

2 with the vertical. Mechanical energy is also conserved, as the sphere is

forms an angle
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1.195

99

under the influence if only onc other force, i.c. tension, which does not perform any work,
as it is always perpendicular to the velocity.

1 - |
Se, 5 MV + mg Icos © 5 mv

From (1) and (2), we get,

@

vo= V2gl/cos §

Forces, acting on the mass m are shown in the figure. As N= mg, the net torque of these
two forces about any fixed point must be equal to zero. Tension T, acting on the mass m
is a central force, which is always directed towards the centre . Hence the moment of
force T is also zero about the point @ and therefore the angular momentum of the particle
m is conserved about 0.

Let, the angular velocity of the particle be ®, when the separation between hole and
particle m is r, then from the conservation of momentum about the point O, :
m{wyro)re= m(wr)r,

Do 'ﬁ
2
Now, from the second law of motion for m,

T=F=mao%r

Hence the sought tension;

or W=

2.4 2.4
Emworurg mw,ry
r e

On the given system the weight of the body m is the only force whose moment is effective
about the axis of pulley. Let us take the sense of @ of the pulley at an arbitrary instant
as the positive sense of axis of rotation (z-axis)

As M,(0)= 0, so, AM,~ M, (0= [ N,ar

4

So, M, ()= f mg R dt= mg Rt
o

Let the point of contact of sphere at initial
moment (¢t= 0) be at O. At an arbitrary
moment, the forces acting on the sphere are
shown in the figure. We have normal reaction
N, = mg sin o and both pass through same line
and the force of static friction passes through
the point &, thus the moment about point O
becomes zero. Hence mg sin o is the only force
which has effective torque about point O, and
is given by |N |= mgRsinc normally
emerging from the plane of figure.

As M{t=0)= 0, so, AM= Ei(r)=fﬁd:

Hence, M{f)= Nt = mg R sin ot
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1.196

1.197

1.198

Let position vectors of the particles of the system be F:' and ?:' " with respect to the points
( and O’ respectively. Then we have,

—_— —! —

r=1r tr (1)

i
where 7, is the radius vector of O' with respect to O.

Now, the angular momentum of the system relative to the point O can be written as follows;

—

M= 3 (5= 3 (7 %P)+ 2 (o= i) [using (1)]

or, M=M + (F;xﬁ), where, p'= 2 I @)

From (2), if the total linecar momentum of the system, p= 0, then its angular momen-
tum does not depend on the choice of the point O,

Note that in the C.M. frame, the system of particles, as a whole is at rest.

On the basis of solution of problem 1.196, we have concluded that; “in the CM. frame,
the angular momentum of system of particles is independent of the choice of the point,
relative to which it is determined” and in accordance with the problem, this is denoted

by M.

We denote the angular momentum of the system of particles, relative to the point O, by
M. Since the internal and proper angular momentum ﬁ, in the C.M. frame, does not depend
on the choice of the point @', this point may be taken coincident with the point O of the

K-frame, at a given mement of time. Then at that moment, the radius vectors of all the

particles, in both reference frames, are equal (F,-" = r_:) and the velocities are related by

the equation, .
v,= Vv +v,, M

where 17: is the velocity of C.M. frame, relative to the K-frame. Consequently, we may
write,

M=y m (F,-'xﬁ')= Y m,-(?flxvﬂi)+2 ml(ﬁ’xﬁ:)

- — —
or, M= ﬁa—m(rcxf), aszm,—rismf:, where m=2mi.
or, ﬁsﬂ+(fxmf)=ﬁ+(ﬁxf’)

From conservation of linear momentum along the direction of incident ball for the system
consists with colliding ball and phhere

myy= mv' + -’;— v, 1
where V' and v, are the velocities of ball and sphere 1 respectively after collision. (Remember
that the collision is head on).

As the collision is perfectly clastic, from the definition of co-efficeint of restitution,

'
V“vl

1=

i or, V- vi= —-1 )
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Solving (1) and (2), we get,
4 v, %

= directed towards right. @“"“{)1 m/z

In the C.M. frame of spheres 1 and 2 (Fig.)

pi = ~p; and | pi|=|p;] = w|¥]- 7]

— — — oy,
Also, 7y = - ry-, thus ﬁ-Z[rmxpl] C
—» o 1 m/2 4vy a T
Asr. L p, so,ﬂ'-z[2 2 3 ] ;/2
(where 7 is the unit vector in the sense of e % ;I ) TII[ZO
~ mvyl
Hence M =

In the C.M. frame of the system (both the discs + spring), the linear momenium of the
discs are related by the relation, ;{ - ;;, at all the moments of time,

where, Pi=DPy=Pp=nuvy,

And the total kinetic energy of the system,

T- %u v2_ [See solution of 1.147 (b)]

Bearing in mind that at the moment of maximum deformation of the spring, the projection
of 17;, along the length of the spring becomes zero, ie. vy = 0.

The conservation of mechanical energy of the considered system in the C.M. frame gives.

%(%)"3' 'i""xz“}z"(g)"féw_ @)

Now from the conservation of angular momentum of the system about the CM.,

1flo)(m \_ ,(otX)m
212 \2 0 2 ]2 7€»
-1
vo lo x x
ot, Vrel (5} = (ID_+x_) =- v, (1+ ID) -~ vo(l - A ], as x << 2)

Using (2) in (1), %m vg[l -(1-l£)2 ]= K2
0

2
12 2 2Y |_
or, —z—mv(, 1—(1~10+102) =KX
mvix
or, Io ~ K X°, [neglecting x* / 7]
0
mv;
As x»= 0, thus x= —

x



