CBSE Sample Question Paper Term 1

Class – VIII (Session : 2021 - 22)

Class 08 - Mathematics Subject- Mathematics041 - Test - 03

Maximum Marks: 50

General Instructions:

1. The question paper contains 50 questions

- 2. Attempt any 40 questions.
- 3. There is no negative marking.

Chapter Name	Multiple Choice Question	Total
Rational Numbers	8 (1)	8 (8)
Linear Equations in One Variable	8 (1)	8 (8)
Understanding Quadrilaterals	8 (1)	8 (8)
Data Handling	7 (1)	7 (7)
Squares and Square Roots	3 (1)	3 (3)
Cubes and Cube Roots	3 (1)	3 (3)
Exponents and Powers	7 (1)	7 (7)
Playing with Numbers	6 (1)	6 (6)
Total	50 (50)	50 (50)

Time Allowed: 1 hour 30 minutes

CBSE Sample Question Paper Term 1

Class – VIII (Session : 2021 - 22)

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

Time Allowed: 1 hour and 30 minutes

General Instructions:

- 1. The question paper contains 50 questions
- 2. Attempt any 40 questions.
- 3. There is no negative marking.

1. Find the value of
$$\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}}$$
 [1]

a)
$$\frac{2b^{2}}{b^{2}-a^{2}}$$

b) $\frac{2b^{2}}{b^{2}+a^{2}}$
c) $\frac{2ab}{b^{2}-a^{2}}$
d) $\frac{2a^{2}}{b^{2}-a^{2}}$

b) none of these

multiplication

d) Commutative property of

2. Tell what property allows you to compute
$$\frac{1}{3} \times (6 \times \frac{4}{3}) = (\frac{1}{3} \times 6) \times \frac{4}{3}$$

a) Associative property of multiplication

c) Associative property of addition

3. Write the additive inverse of $\frac{13}{17}$.

- a) $\frac{13}{17}$ b) $-\frac{13}{17}$ c) 0 d) 1
- 4. The multiplicative inverse of $-1\frac{1}{7}$ is

a)
$$\frac{8}{7}$$
 b) $\frac{7}{-8}$
c) $\frac{7}{8}$ d) $\frac{-8}{7}$

5. Which of the following is an example of the distributive property of multiplication over addition to rational numbers?

a)
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{b}{4} \times \frac{1}{4} \left(\frac{-4}{7} \right) \right] = \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} - \frac{1}{4}$$

c) $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \frac{2}{3} + \left(-\frac{1}{4} \right) \times \frac{-4}{7} = \frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[\frac{1}{4} \times \frac{2}{3} \right] - \left(\frac{-4}{7} \right)$
the (1) is: [1]

6. One (1) is:

- a) the identity for the subtraction of rational numbers
- c) the identity for the addition of rational numbers
- b) the identity for division of rational numbers
- d) the identity for multiplication of rational numbers

Maximum Marks: 50

[1]

[1]

[1]

[1]

7.	If a = 2 and b = 3, then value of $\left(\frac{1}{a} + \frac{1}{b}\right)^a$.		[1]
	a) $\frac{75}{26}$	b) $\frac{24}{26}$	
	c) $\frac{25}{36}$	d) $\frac{25}{26}$	
8.	If $\frac{1}{x} = \frac{x^2}{27}$, then x is number.	20	[1]
	a) none of these	b) irrational	
	c) negative	d) rational	
9.	The present age of Sahil's mother is three tim ages will add to 66 years. Find their present a	es the present age of Sahil. After 5 years their ges.	[1]
	a) 14, 46 years	b) 28, 56 years	
	c) $28,42$ years	d) 14, 42 years	
10.	Solve: $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$		[1]
	a) 27	b) 10	
	c) None of these	d) $\frac{27}{10}$	
11.	The sum of three consecutive multiples of 8 is	s 888. Find multiples.	[1]
	a) None of these	b) 288, 296 and 304	
	c) 288, 300 and 304	d) 288, 296 and 310	
12.	Solve: $rac{2x}{3}+1=rac{7x}{15}+3$		[1]
	a) 6	b) 5	
	c) 3	d) 10	
13.	Find the solution of 2x - 3 = 7		[1]
	a) 3	b) 5	
	c) none of these	d) 4	
14.	Solve: $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6}$ = 21		[1]
	a) $\frac{24}{26}$	b) 36	
	c) $\frac{25}{26}$	d) 25	
15.	The base of an isosceles triangle is $\frac{4}{3}$ cm. The	perimeter of the triangle is $4\frac{2}{15}$ cm. What is the	[1]
	length of either of the remaining equal sides?		
	a) $\frac{2}{5}cm$	b) 1cm	
	c) None of these	d) $1\frac{2}{5}cm$	
16.	Solve: $a-rac{a-1}{2}=1-rac{a-2}{3}$		[1]
	a) None of these	b) 5	
	c) 7	d) $\frac{7}{5}$	
17.	Find the number of sides of a regular polygor	n whose each exterior angle has a measure of 40°.	[1]

a) 6 b) 7

	c) 8	d) 9	
18.	A rectangle is a parallelogram in which eve	ry angle is a angle.	[1]
	a) right	b) obtuse	
	c) acute	d) None of these	
19.	Find x + y + z.		[1]
	2 30° (P		
	a) 360°	b) none of these	
	c) 90°	d) 180°	
20.	Find x + y + z + w		[1]
	1200 H		
	a) 360°	b) 90°	
	c) 45°	d) 180°	
21.	How many vertices are present in a heptage	on?	[1]
	a) None of these	b) 8	
	c) 7	d) 6	
22.	Given a parallelogram ABCD. AD =		[1]
	A		
	a) AB	b) AC	
	c) BC	d) CD	
23.	The sum of angles of a concave quadrilatera	al is	[1]
	a) equal to 360 ⁰	b) _{twice of 360^o}	
	c) more than 360 ^o	d) less than 360 ^o	
24.	Theof a rhombus are perpendicular	r bisectors of one another.	[1]
	a) angles	b) sides	
	c) diagonals	d) vertices	
25.	Numbers 1 to 20 are written on twenty sepa and mixed well. One slip is chosen from the	arate slips (one number on one slip) kept in a box box without looking into it. What is the	[1]

	probability of getting a 2-digit number?		
	a) None of these	b) $\frac{1}{5}$	
	c) $\frac{1}{10}$	d) $\frac{11}{20}$	
26.	26. When a die is thrown, what are the six possible outcomes?		[1]
	a) 1, 2, 3, 4, 5, 6	b) T, H	
	c) 0, 1, 2, 3, 4, 5, 6	d) None of these	
27.	Upper limit of class interval 75-85 is:		[1]
	a) 10	b) 85	
	c) 75	d) -10	
28.	What is the probability of getting a number t	hrough 6 numbers?	[1]
	a) None of these	b) $\frac{1}{2}$	
	c) 1	d) 0	

29. The following pie chart represents the distribution of proteins in parts of human body. [1]

What is the ratio of the distribution of proteins in the muscles to that of proteins in the bones?

- a) 1:3 b) 2:1
- c) 1:2 d) 3:1
- 30. The colour of refrigerators preferred by people living in a locality are shown by the following [1] pictograph. How many people choose red colour?

	$\tilde{\Psi}$ $\tilde{\Psi}$ $\tilde{\Psi}$ $\tilde{\Psi}$
Green	ŶŶ
Red	Ŷ
White	* * * * *

c) 40

b) 30d) 10

31. A display of information using ______ of uniform width, their heights being proportional to [1] the respective values.

a) histograms	b) None of these

c) angles d) bars

32. Find the perfect square number between 190 and 200.

	a) 196	b) 195	
	c) 198	d) 194	
33.	3. Which of the following will have 4 at the units place?		
	a) ₂₇ 2	b) 35 ²	
	c) ₁₄ ²	d) ₆₂ ²	
34.	Without doing any calculation, find the num	bers which are surely perfect squares.	[1]
	A. 625		
	B. 347		
	D. 233		
	a) B	b) D	
	c) C	d) A	
35.	If $\sqrt[3]{\frac{x}{y}} = \frac{3}{4}$, then $\frac{x}{y}$ =		[1]
	a) 64	b) $\frac{64}{27}$	
	c) 27	d) $\frac{27}{64}$	
36.	Find the prime factorisation of 1728.		[1]
	a) $2^3 \times 2^3 \times 3^3$	b) None of these	
	c) $2^3 \times 2^3 \times 5^3$	d) $2^3 \times 3^3 \times 3^3$	
37.	The cube of -25 is		[1]
	a) 15625	b) 50	
	c) -15625	d) -15635	
38.	Find a so that (-5) ^{a + 3} \times (-5) ² = (-5) ⁶		[1]
	a) 2	b) 1	
	c) 4	d) 3	
39.	9. For a non-zero rational number p, $p^{13} \div p^8$ is equal to		[1]
	a) p ⁻¹⁹	b) p ⁻⁵	
	c) p ⁵	d) p ²¹	
40.	The standard form for 234000000 is		[1]
	a) $0.234 imes 10^{-9}$	b) $_{2.34} imes10^8$	
	c) $2.34 imes10^{-8}$	d) $0.234 imes 10^9$	
41.	Evaluate the exponential expression (-y) $^4 imes$	(-y) ⁵ , for y = 1.	[1]
	a) 9	b) 2	
	c) 1	d) -1	

42.	The value of (7 ⁻¹ - 8 ⁻¹) ⁻¹ - (3 ⁻¹ - 4 ⁻¹) ⁻¹ is		[1]
	a) 68	b) 56	
	c) 12	d) 44	
43.	For any two non-zero rational numbers x ar	nd y, $x^4 \div y^4$ is equal to	[1]
	a) $(x \div y)^0$	b) $(x \div y)^4$	
	c) $(x \div y)^1$	d) $(x \div y)^8$	
44.	Find the value of n so that (6) ^{n + 3} $ imes$ (6) ⁵ = (6)	6) ¹¹	[1]
	a) 2	b) 1	
	c) 6	d) 3	
45.	Generalised form of a three-digit number xy	yz is	[1]
	a) 100y + 10x + z	b) x + y + z	
	c) 100x + 10y + z	d) 1000x + 100y +10 z	
46.	Identify the missing digit in the number 234,4_6, if the number is divisible by 4.		[1]
	a) 2	b) 6	
	c) 5	d) 4	
47.	If 6A $ imes$ B = A8B, then the value of A – B is		[1]
	a) -2	b) -3	
	c) 3	d) 2	
48.	If 5 $ imes$ A = CA then the values of A and C are		[1]
	a) A = 5, C = 2	b) A = 2, C = 5	
	c) A = 4, C = 2	d) A = 5, C = 1	
49.	Find A and B in the addition. A + A + A = BA		[1]
	a) A = 1 and B = 5	b) A = 5 and B = 5	
	c) A = 1 and B = 1	d) A = 5 and B = 1	
50.	Find the values of the letters in following :- 2 A B <u>+ A B 1</u> <u>B 1 8</u>		[1]
	a) A = 4, B = 5	b) A = 2, B = 7	
	c) None of these	d) A = 4, B = 7	

Solution

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

- 2. (a) Associative property of multiplication **Explanation:** The answer is <u>associative property of multiplication</u> as the product follows the associative property of multiplication rule which is $a \times (b \times c) = (a \times b) \times c$
- 3. **(b)** $-\frac{13}{17}$

Explanation: The additive inverse of any rational number is the same number with the opposite sign, here the rational number is $\frac{13}{17}$, ao its additive inverse will be $\frac{-13}{17}$.

4. **(b)** $\frac{7}{-8}$

Explanation: We know that, if the product of two rational numbers is 1, then they are multiplicative inverse of each other.

Given number is $-1\frac{1}{7}$, i.e. $\frac{8}{7}$.

Let the multiplicative inverse of $-\frac{8}{7}$ be x.

 $\Rightarrow \quad \frac{-8}{7} \times x = 1$ $\Rightarrow \quad x = 1 \times \left(-\frac{7}{8}\right) \text{ [by cross-multiplication]}$ $= \frac{-7}{8} \text{ or } \frac{7}{-8}$ Hence, $\frac{7}{-8}$ is the multiplicative inverse of $-\frac{8}{7}$

5. **(a)** $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7}\right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7}\right) \right]$

Explanation: We know that, the distributive property of multiplication over addition for rational numbers can be expressed as a \times (b + c) = ab + ac, where a, b and c are rational numbers.

Here, $-\frac{1}{4} \times \left\{\frac{2}{3} + \left(\frac{-4}{7}\right)\right\} = \left[-\frac{1}{4} \times \frac{2}{3}\right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7}\right)\right]$ is the example of distributive property of multiplication over addition for rational numbers.

- 6. (d) the identity for multiplication of rational numbers
 Explanation: One (1) is the identity for multiplication of rational numbers. That means, If a is a rational number. Then, a.1 = 1.a = a
- 7. (c) $\frac{25}{36}$

Explanation: Given , a = 2 , b = 3 so, $\left(\frac{1}{a} + \frac{1}{b}\right)^{a} = \left(\frac{1}{2} + \frac{1}{3}\right)^{2}$ $= \left(\frac{3+2}{6}\right)^{2}$

$$= \left(\frac{5}{6}\right)^2$$
$$= \frac{25}{36}$$

8. (d) rational **Explanation:** $\frac{1}{x} = \frac{x^2}{27}$ $x^3 = 27$ $x = \sqrt[3]{27}$ x = 3 and x is a rational number (d) 14, 42 years 9. **Explanation:** Let sahil's age = x sahil's mother's age = 3xafter 5 years their age will be sahil's age = x + 5sahil's mother's age = 3x + 5According to question, x + 5 + 3x + 5 = 66or, 4x + 10 = 66or, 4x = 66 - 10or, 4x = 56by transpposing or,x=56/4or, x = 14. Now sahil's age = 14years sahil's mothers age = 42years (d) $\frac{27}{10}$ 10. **Explanation:** $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$ By L.C.M or, $\frac{(5x-2)}{10} = \frac{(4x+3)}{12}$ by cross multiplication or, 60x - 24 = 40x + 30by transposing or, 60x - 40x = 30 + 24 or, 20x = 54 or, x = $\frac{54}{20}$ in lowest term or, x = $\frac{27}{10}$ (b) 288, 296 and 304 11. **Explanation:** let first number be = x second multiple of 8 = x + 8third multiple of 8 = x + 16According to question x + x + 8 + x + 16 = 888or, 3x + 24 = 888 or, 3x = 888 - 24 or, 3x = 864 or, x = $\frac{864}{3}$ or, x = 288now the first multiple of 8 = 288 second multiple of 8 = 296 third multiple of 8 = 304

12. (d) 10 **Explanation:** $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$ by transposing or, $\frac{2x}{3} - \frac{7x}{15} = 3 - 1$ or, $\frac{10x - 7x}{15} = 2$ or, 3x = 30 or, x = 10 **(b)** 5 13. Explanation: by transposing, the signs will be change 2x-3=7 2x=7+3 2x=10 x=10/2 x=5. The correct option is 5 14. **(b)** 36 **Explanation:** $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$ by L.C.M of 2, 4 and 6 = 12 or, $\frac{(6n-9n+10n)}{12} = 21$ or, $\frac{7n}{12} = 21$ or, 7n = 252 or, n = $\frac{252}{7}$ or, n = 36 (d) $1\frac{2}{5}cm$ 15. **Explanation:** The base of an isosceles triangle = $\frac{4}{3}$ cm let two equal sides are = x perimeter of the triangle = $4\frac{2}{15}$ cm the perimeter of the triangle = sum of all sides $\frac{62}{15} = x + x + \frac{4}{3}$ or, $\frac{62}{15} = 2x + \frac{4}{3}$ or, $\frac{62}{15} = \frac{(6x+4)}{3}$ By crossmutliply, or, 186 = 90x + 60 or, 186 - 60 = 90x or, 126 = 90x or, $\frac{126}{90} = x$ or, $\frac{7}{5} = x$ $1\frac{2}{5}cm = x$ (d) $\frac{7}{5}$ 16. Explanation: $a - \frac{a-1}{2} = 1 - \frac{a-2}{3}$ By L.C.M on both sides $or, \frac{2a-a+1}{2} = \frac{3-a+2}{3}$ $or, \frac{a+1}{2} = \frac{5-a}{3}$ By cross-multiply, or, 3a + 3 = 10 - 2a by transposing or, 3a + 2a = 10 - 3

or, 5a = 7 or, a = $\frac{7}{5}$

17. **(d)** 9

Explanation: Number of sides = $\frac{360^{\circ}}{exterior-angle}$

 $n = \frac{360^0}{40^0} = 9$

18. **(a)** right

Explanation:

Let an angle of a rectangle = x

 $x + x + x + x = 360^{\circ}$ (All angles a of a rectangle are equal)

 $4x = 360^{\circ}$ $x = \frac{360^{\circ}}{4}$

x = 90⁰

19. **(a)** 360°

Explanation: Interior angle = 180 - (90 + 30) = 60° (Angle sum property) = 60° Now x + y + z

= (180 - 90) + (180 - 60) + (180 - 30)(Linear pair) = 90 + 120 + 150 = 360°

20. **(a)** 360°

Explanation: Given is a quadrilateral. Sum of all interior angles of quadrilateral = 360° Single side of quadrilateral = $360 - (60 + 80 + 120)^{\circ} = 360 - 260 = 100^{\circ}$ $x + 120 = 180^{\circ}$ $\Rightarrow 180 - 120 = 60^{\circ}$ By linear pair property $y + 80 = 180^{\circ} \Rightarrow y = 180 - 80 = 100^{\circ}$ $z + 60 = 180^{\circ} \Rightarrow z = 180 - 60 = 120^{\circ}$ $w + 100 = 180^{\circ} \Rightarrow w = 180 - 100^{\circ} = 80^{\circ}$

 $x + y + z + w = 60 + 100 + 120 + 80 = 360^{\circ}$

21. **(c)** 7

Explanation: A heptagon is a seven-sided polygon. It is also sometimes called a septagon.

22. **(c)** BC

Explanation: Opposite sides of a parallelogram are equal

23. **(a)** equal to 360^o

Explanation: We know that, the sum of interior angles of any polygon (convex or concave) having n sides

= (n - 2) imes 180^o

Therefore, the sum of angles of a concave quadrilateral = (4 - 2) \times 180 $^{\rm o}$

= 360^o

24. **(c)** diagonals

Explanation:

In a rhombus, two diagonals intersect each other at right angles and become the perpendicular bisectors

In Rhombus ABCD, consider $\triangle AOD, \triangle AOB$ AD = AB (sides of a rhombus are equal) OD = OB (diagonals of a rhombus bisect each other). AO = OA (common side) \therefore , using SSS congruency rule, $\Delta AOD \cong \Delta AOB$ $\Rightarrow \angle AOD = \angle AOB$ As $\angle AOD + \angle AOB = 180^{\circ}$ $\therefore \angle AOD = 90^{\circ}$ $\therefore AO \perp BD$ Hence, $AC \perp BD$. Thus, In a rhombus, the diagonals bisect each other at 90°.

25. (d) $\frac{11}{20}$

Explanation: Total number of outcomes = 20 2 digit number= 11(10,11,12,13,14,15,16,17,18,19,20) probability of getting a 2 digit number = $\frac{11}{20}$

26. **(a)** 1, 2, 3, 4, 5, 6

Explanation: When a dice is thrown there are only six possible outcomes 1, 2, 3, 4, 5, 6

27. **(b)** 85

Explanation: Upper limit of class interval 75-85 is 85. Note The upper value of class interval is called its upper class limit and lower value of a class interval is called lower class limit.

28. **(c)** 1

Explanation: When there are only 6 numbers, if you select one of them, you will always be successful. So probability is 1.

29. **(b)** 2 : 1

Explanation: Distribution of protein in muscles = $\frac{1}{3}$ Distribution of protein in bones = $\frac{1}{6}$ Ratio of distribution of proteins in the muscles to that of proteins in the bones = $\frac{1}{3}$: $\frac{1}{6} = \frac{1}{3} \times \frac{6}{1}$: 1 = 2 : 1

30. **(d)** 10

Explanation: $10 \times 1=10$ 10 people choose red colour.

31. (d) bars

Explanation: A display of information using bars of uniform width, their heights being proportional to the respective values.

32. **(a)** 196

Explanation: The answer is 196 which is sqaure of 14 and the next square number is 225 which does not lie between 190 and 200.

33. **(d)** 62²

Explanation: The unit place of the square of $62^2 = 2^2 = 4$ [.: $2^2 = 4$] Clearly, 62^2 has 4 at the unit's place.

34. **(d)** A

Explanation: The answer is 625 as the other numbers are 347, 658,233 and they cannot be perfect squares as a perfect square number never ends with 2, 3, 7, 8.

35. **(d)** $\frac{27}{64}$

36.

Explanation: IF $\sqrt[3]{\frac{x}{y}} = \frac{3}{4}$, then $\frac{x}{y} =$ _____. Cubing both sides, $\sqrt[3]{\left(\frac{x}{y}\right)^3} = \left[\frac{3}{4}\right]^3$ $\frac{x}{y} = \frac{27}{64}$ (a) $2^3 \times 2^3 \times 3^3$ **Explanation:** 1728 = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3

 $= 2^3 \times 2^3 \times 3^3$

37. **(c)** -15625

Explanation: (-25)³ = (-25) × (-25) × (-25) = -15625 (The cube of a negative integer is negative)

38. **(b)** 1

```
Explanation: (-5)^{a+3} \times (-5)^2 = (-5)^6
(-5)^{a+3} = (-5)^6 \div (-5)^2
(-5)^{a+3} = (-5)^{6-2}
(-5)^{a+3} = (-5)^4
Hence, a + 3 = 4,
So, a = 1
```

39. **(c)** p⁵

Explanation: Using law of exponents, $a^m \div a^n = (a)^{m-n}$ [\therefore a is non-zero integer] Similarly, $p^{13} \div p^8 = (p)^{13-8} = (p)^5$

40. **(b)** 2.34×10^8

Explanation: Given, 234000000 = 234×10^6 = $2.34 \times 10^{6+2}$ = 2.34×10^8 Hence, standard form of 234000000 is 2.34×10^8

41. **(d)** -1

Explanation: for y = 1, $(-y)^4 \times (-y)^5$ $(-1)^4 \times (-1)^5$ $-1 \times -1 = -1$

42. **(d)** 44

Explanation: Using law of exponents, $a^{-m} = \frac{1}{a^m}$ [:: a is non-zero integer]

$$\therefore (7^{-1} - 8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1} = \left(\frac{1}{7} - \frac{1}{8}\right)^{-1} - \left(\frac{1}{3} - \frac{1}{4}\right)^{-1} = \left(\frac{1}{56}\right)^{-1} - \left(\frac{1}{12}\right)^{-1} = 56 - 12 = 44$$

43. **(b)** $(x \div y)^4$

Explanation: Using laws of exponents, $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m = (a \div b)^m$ [\because a and b are non-zero integers] Similarly, $x^4 \div y^4 = \left(\frac{x}{y}\right)^4 = (x \div y)^4$

Explanation: $(6)^{n+3} \times (6)^5 = (6)^{11}$ $(6)^{n+3} = (6)^{11} \div (6)^5$ $(6)^{n+3} = (6)^{11} \times (6)^{-5}$ $(6)^{n+3} = (6)^{11-5}$ $(6)^{n+3} = (6)^6$ Hence, n+3=6So, n=3

45. **(c)** 100x + 10y + z

Explanation: In general, any three-digit number xyz can be written as,

xyz = 100 imes x + 10 imes y + 1 imes z

= 100x + 10y + z

where x is a hundredth place digit, y is a ten's place digit and z is a unit's place digit. Hence, if it's a threedigit number, the places will be ones, tens, and hundreds from right to left.

46. **(c)** 5

Explanation: Last two digits number must be divisible by 4. Only 1 3 5 7 9 can be possible.

- 47. (a) -2 Explanation: $6A \times B = A8B$ $A \times B = B$ and $6 \times B = A8$ Therefore, A = 1 and B = 3 $61 \times 3 = 183$ Hence, A - B = 1 - 3 = -2
- 48. (a) A = 5, C = 2Explanation: $5 \times A = CA$ A = 5, C = 2 $5 \times 5 = 25$
- 49. **(d)** A = 5 and B = 1

Explanation: Here, A + A + A = BA as the sum of 3 ones digit numbers is a two-digit number so the value of A will be greater than 3. Putting the value of A = 4,

4 + 4 + 4 = 12 which do not satisfy the equation. Putting the value of A = 5, 5 + 5 + 5 = 15, which satisfies the equation.

Therefore, A= 5 and B = 1.

50. (d) A = 4, B = 7 Explanation: 1 + B is 8 so B = 7. B + A gives 1 in units digit. Thus A has to be 4.