Maxwell's Equations

Introduction

- Stationary charges -> Electrostatic field
- Steady currents → Magnetostatic field
- Time-varying currents → Electromagnetic field (or waves)

Faraday's Law

The induced emf (V_{emf}), in any closed circuit is equal to the time rate of change of the magnetic flux linkage by the circuit

$$V_{emf} = -\frac{d\lambda}{dt} = -N\frac{d\psi}{dt}$$

where.

 $\lambda = flux linkage$

N = number of turns in the circuit

 $\Psi = \text{flux through each turn}$

The negative sign shows that the induced voltage acts in such a way as to oppose the flux producing it.

Transformer and motional Electromotive Forces

Stationary loop in time-varying magnetic field

(i) Transformer emf

(ii) Maxwell's equation for time-varying field

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Note:

Time varying electric field E is not conservative ($\nabla \times E \neq 0$).

Moving loop in static magnetic field

(i) Motional electric field

$$\vec{E}_{m} = \frac{\vec{F}_{m}}{Q} = \vec{u} \times \vec{B}$$

where, $F_m =$ Force on charge moving with uniform Velocity u, in a magnetic field

(ii) Motional emf or flux-cutting emf

$$V_{emf} = \oint \vec{E}_m \cdot d\vec{I} = \oint_{L} (\vec{u} \times \vec{B}) \cdot dI$$

Moving loop in time-varying field

$$V_{emf} = \oint_{L} \vec{E} \cdot d\vec{I} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} + \oint_{L} (\vec{u} \times \vec{B}) \cdot d\vec{I}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} + \nabla \times (\vec{u} \times \vec{B})$$

Displacement Current

Displacement current density

$$\vec{J}_d = \frac{\partial \vec{D}}{\partial t}$$

Maxwell's Equations in Final Forms

Maxwell's equation for static electric and magnetic fields

Differential (or Point form)	Integral Form	Remarks
$\vec{\nabla} \cdot \vec{D} = \rho_{\vee}$	$ \oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho_{V} dV $	Gauss's law
$\nabla \cdot \vec{B} = 0$	$\oint_{S} \vec{B} \cdot d\vec{S} = 0$	Nonexistence of magnetic monopole
$\vec{\nabla} \times \vec{E} = 0$	$\oint_{L} \vec{E} \cdot d\vec{I} = 0$	Conservative of electrostatic field
∇×H=J	$\oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot d\vec{S}$	Ampere's Law

Maxwell's equation for time-varying field

Differential Form	Integral Form	Remarks
$\vec{\nabla} \cdot \vec{D} = \rho_{\nu}$	$ \oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho_{V} dV $	Gauss's law
$\vec{\nabla} \cdot \vec{B} = 0$	$ \oint_{S} \vec{B} \cdot d\vec{S} = 0 $	Nonexistence of isolated magnetic charge
$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{dt}$	$\oint_{L} \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot d\vec{S}$	Faraday's law
$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	$\oint_{L} \vec{H} \cdot d\vec{l} = \iint_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) d\vec{S}$	Ampere's circuit law

Time-Varying Potentials

$$E = -\nabla V - \frac{\partial A}{\partial t}$$

Lorentz condition for potentials

$$\nabla \cdot A = -\mu \in \frac{\partial V}{\partial t}$$

Time Harmonic Field

- A time harmonic field is one that varies periodically or sinusoidally with time.
- Phasor form of vector A is A_s (x, y, z)

$$A = R_e \left\{ A_s e^{j\omega t} \right\}$$

Maxwell's equation for time harmonic field

Point Form	Integral Form
$\vec{\nabla} \cdot \vec{D}_{S} = \rho_{vS}$	$\oint \vec{D}_s \cdot d\vec{S} = \int \rho_{vs} dv$
$\vec{\nabla} \cdot \vec{B}_s = 0$	$\oint \vec{B}_8 \cdot d\vec{S} = 0$
$\vec{\nabla} \times \vec{E}_s = -j \omega \vec{B}_s$	$\oint \vec{E}_{S} \cdot d\vec{l} = -j\omega \int \vec{B}_{S} \cdot d\vec{S}$
$\vec{\nabla} \times \vec{H}_s = \vec{J}_s + j\omega \vec{D}_s$	$\oint \vec{H}_s \cdot d\vec{l} = \int (\vec{J}_s + \omega \vec{D}_s) d\vec{S}$