Example 10 : If A + B + C = T, then prove that
sin2A + sin2B + sin2C = 4sinA sinB sinC.
Solution : L.H.S.= sin2A + sin2B + sin2C
2sin(A + B) cos(A — B) + 2s5inC - cosC

= 2sin(Mt — C) cos(A — B) + 2sinC - cosC A+B+C=1m
= 25inC « cos(A — B) + 2sinC - cosC

= 2sinC [cos(A — B) + cosC]

= 2sinC [cos(A — B) — cos(A + B)] A+B+C=m
= 2sinC [—2sinA - sin(—B)]

= 4sinA sinB sinC (sin(—B) = —sinB)
= R.H.S.

Example 11 : f A+ B + C = %, then prove that

cos?A + cos?B + cos?C = 2[1 + sinA sinB sinC].

cos?A + cos’B + cos?C

1+ cos2A 1+cos2B 1+ cos2C
- > + 7] + 2

Solution : L.H.S.

= %[3 + cos2A + cos2B + cos2C]
= %[3 + 2cos(A + B) cos(A — B) + 1 — 2sin?C]

= %[4 + 2cos(A + B).cos(A — B) — 2sin’C]

=2 + cos(£-C) . cos(A — B) — sin’C (A+B=Z-()
= 2 + sinC [cos(A — B) — sinC]
=2 + sinC [cos(A — B) — cos(A + B)] (A +B=I — c)

= 2 + sinC [2sinA - sin(—B)]

= 2 + 2sinA sinB sinC

=2 [l + sinA sinB sinC]
or second method :

L.H.S. = cos’A + cos’B + cos’C

cos’A + 1 — sin®B + 1 — sin®*C
=2 + (cos’A — sin’B) — sin’*C
=2 + cos(A + B) cos(A — B) — sin’C

=2+ cos(%—C) .cos(A — B) — sin*C
=2 + sinC - cos(A — B) — sin’C

= 2 + sinC [cos(A — B) — sinC]

=2 + sinC [cos(A — B) — cos(A + B)]
= 2 + sinC [—2sinA - sin(—B)]

= 2[1 + sinA sinB sinC] = R.H.S.
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Exercise 5.3

If A+ B + C = T, prove that

(1) cos2A + cos2B + cos2C = —1 — 4cosA cosB cosC

(2) sinA + sinB + sinC = 4cos% cos% cos%

(3) cosA + cosB + cosC =1 + 4sin% sin% sin%

4) sin’A + sin®B + sin?C = 2(1 + cosA cosB cosC)
(5) cos?A + cos’B + cos’C = 1 — 2cosA cosB cosC

(6) sin?d 4 sinzg + 5in?S =1 — 2sinl sin2 sinS

2 2 2 2

2A 2B 2C _ ( inA inB
(7) cos 5 + cos > + cos > 2(1 +sm2 sin=

(8) sin’A + sin®B — sin’C = 2sinA sinB cosC
IfA+B+C= %, prove that

(1) sin*A + sin’B + sin®C = 1 — 2sinA sinB sinC
(2) sin2A + sin2B + sin2C = 4cosA cosB cosC
(3) sin’A — sin’B + sin?C = 1 — 2cosA sinB cosC

*

Miscellaneous Problems :

2

Sin

Example 12 : Prove that tan142%0 =2+J2-J3 - 6.

3 fon 1°_ 1°
Solution : l‘anl422 lan(90° + 522 )
— 1°
= —cot52 >
= _ 1°
= 001(450 + 72 )

cot 7%0— 1

cot 7%0 +1

710 .710
_ _COS > — Sin >

10 . _10
COS7? + sm7§

C

2

)

10 . _qo0 10 i 10
_ cos 75 _ Sll’l73 cos 72 Sll’l72

10 . 10 lO_ . lO
cos 73 + sin 73 cos 72 sm72

710 .7102
cos > — Sin >

2510 222510
Cos™l5 — sin" 73

. o [0
1-2sin 7% X cos 7%

o . (o]
cos? 7% — sin? 7%
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1 - sin 15°

cos 15°
| — sin (45° = 30°)
T cos(45° —30°)

l_ﬁ—l
W2
V3+1
22
22 -J3+1

J3+1
Q2 -3+ W3-
T WBHD @B

V6 =22 =3+ 3 +3—-1)

=-Joe+2+2-43
=2+2-V3-V6

Example 13 : If A + B + C = T, then prove that
T—A T-B T-C
sm— + sm— + sm— =1+ 4sm( 7 ) sin( 7 ) sm( )
T—A -
Solution : RH.S. =1 + 4sin( 7 ) sin( ) ( 7 )
_(B+CY . A+C A+B
=1+ 4sin| — sin 7 A+B+C="m
B+C A+C + B
=1+ 2(2sin( 7 j sin( )) ( ))
A+B + B+ 2C
=1+ 2sin( 7 ) [cos( ) ( )]
A+ B T — +C
=1+ 2sin( T j cos( ) — 2Sl}1( j cos( 7 )

=1+ (sin% + sin%) (sm— — sin&

2

= inB A T i C
1+sm2 +sm2 sin= +sm2

= ¢pd B S G
sin= +sm2 +sm2 L.H.S.

Example 14 : If o0 and B be the roots of the equation acos® + bsin® = c, prove that

o+
tan + tanE = L. Hence, deduce that tan( > B) = Q.

2 2 a+c a

Solution : acos® + bsin® = ¢

1-tan* 2tan
1+tan29 +b 1+tan29 - ¢
29

a — atan“= + 2btang =c+ ctan29

(a + ¢ tanzg - 2btan% +(c—a=0
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This is a quadratic equation in tan% and its roots are tan% and tan%.

_ c—a
tan: + tanE = —(Lbj =2 and tan: . tan% =

2 2 a+c a+c 2 c+a
o+p tan%+tan%
Now, tan| = = B
1 - tan tan
2b_
__atc 2 2 _b
o |_t-a T atc—cta " 2 g
C+a

Example 15 : Prove using principle of mathematical induction,

cos® + cos20 + cos30 +...+ cosn® = sin (nJ;1)6 . cos % . cosecg — 1.

Solution :

Let, P(n) : cosO + cos20 + cos30 + ... + cosn® = sin (an -;1)9 . cosn—2e . cosec% -

For n =1, LH.S. = cosO, RH.S. = sin0 . cos% . cosec% —

sine-cosg
= e !
sin=
25in8 . cosd . cosd
_ 2 2 2 _
T |
sin=

= QCOSZ% —1
= cos® = RH.S. (cos20 = 2c0s?0 — 1)
P(1) is true.

Let P(k) is true.

cos® + cos20 + cos30 + ... + cosk® = sin(k + 1)% . coskTe . cosec% -

Let, n =k + 1

L.H.S. = cosO + cos20 + cos30 + ... + cosk® + cos(k + 1)0
sin (kilje-cosk—ze

= — 1+ cos(k + 1)0

8
sin =

- 0 (2sin(k;1j9cos%+2sme cos(k + 1)9)— 1

25in3 5
- 2silng [s"”w + Sin% + sinw _ Sl-n(zk;rne] iy
g [ 2 )] -
= si,l,l% [%-QSin k *;2)9 .cos(k;ne] .
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10.

11.

12.

13.

14.

15.
16.

= o, k+20  (k+DB 0
= sin 5 cos 3 cosec= 1

P(k + 1) is true.

P(k) is true. = P(k + 1) is true.
P(n) is true for Vn € N by PM.I.

Exercise 5

Prove : (1 to 15)

lan(%+%) = secO + tan0

cot 8 + cosec 0 — 1

cotO—cosecO+1 Ol
3cos2B—2

tantl = \/gtanﬁ = cos20 = m

o —tan*2 8
tans = intl = ——¢
an= cos® = sinQl, = |+ tan* 8
If 5in® = a, then the roots of a(l + x2) = 2x are tan% and col%.
If cos® = a, then the roots of 4x2 — 4x + 1 = 42 are cos29 and sm29

If o and P are the roots of the equation acos® + bsin® = c, then

6’2 _b2
(1) cosOl + cosB = acb2 and cosOl - cosB L b
2 b 2_ 2
() tano. + tanf = P_2 . 2 and fanQl - tanf} = B 02
—c
G) sina + B) = =L~
’+b

cos°0 = % [10cosO + 5c0s30 + cos50]

(2cosO + 1)(2cosO — 1)(2cos20 — 1)(2cos40 — 1) = 2c0s80 + 1

cosecO + cosec20 + cosecdO + cotd = cot%

(cos?48° — 5in?12°) — (cos266° — sin’6°) = &

sec 80 —1 tan 80

sec40—1 ~ tan20

cote =2 + 3 +J4 + Vo

lan— = \/4+2J5 -2+
45in270 = J5+45 — 3-45

If x = sin® + cosO - sin20 and y = cosO + sin0 - sin20,

2 2
then prove that (x + »)3 + (x — »)3 = 2.
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17. If A+ B + C = T, prove that

. . . . (B-C . (C-A . ({A-B
(1) sin(B + 2C) + sin(C + 2A) + sin(A + 2B) = 4sin| — - sin| — - sin| —

2) cosd + cosB + cosE = 4cos(n_A) -cos(n_B) -cos(n_c)
2 2 2 4 4 4

18. Prove : AABC is right angled triangle <
cos?A + cos?B + cos?C = 1 & sin’A + sin®B + sin®C = 2
Prove by principle of mathematical induction : (19 to 22)

)
19. sinx + sin3x + sind5x + ... + sin(2n — 1)x = SLIL

sinx
20. LianX + Linx + o+ Lt = L ocor X — conx
2 2 4 4 on on on on
21. sin® + sin20 + ... + sinn® = sin (n -;1)6 . sinn—2e . cosec%
sin" 20
22. cosOL- cos20.- cos4Ol- ...- cos2" ~ oL = =, .
2"« sinoL

23. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) One root of 4x3 — 3x = % is ... ]
(a) sin70° (b) sin10° (¢c) sin20° (d) cos70°

(2) The range of the function cos*0 — sin0 is ... ]
(@) [0, 1] (b) [=1, 1] (¢) (0, 1) (d (=L 1)

(3) The range of sec*® + cosec?0 is ... ]
(@ [1, o] (b) RT (c) [8, =) (R =11

(4) The value of c0s67%0 is ... ]
@ 22 () 2242 © V2 -1 @2 +1

(5) The value of 3sin% — 4sin3% is ... []
(@) 4 (b) 1 © L (d) —+

(6) If sin® = %, % < 0 < m, then P(20) is in the ...... quadrant. ]
(a) lst (b) 2nd (c) 3rd (d) 4th

(7) One root of the equation 6x — 8x3 = /3 is ... []
(a) sin20° (b) sin30° (c) sinl0° (d) cos10°

(8) If o is the root of 25¢0s20 + 5cos® — 12 =0, % < O < T then sin2QL is ... [ ]
(@) 52 ) 5 © 3 (d) 3%
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sin30
(9) TT 200520 Is equal to ...

(a) —sin® (b) —cos0 (c) cosO (d) sin®

1+ sin® —cos0 )2
I+ sin®+cos® ) 18

(10) The value of (

(a) tanze (b) 2001% (©) cotzg (d) 2c0sec2
(11) The value of 125in40° — 16sin340° is ...
(a) =342 (b) 243 (©) =243 (d) 3v2
(12) If sin0. = _?3, T<a< 37“, then the value of cos% is ...
@ 7 ® 7 © 7 D 75
1+cosA  ,p .
(13) If 7= = P then tanA is equal to ...
2 +n? m* —n
+ 2mn 42mn_ 2mn m -
(2) £ (b) £ © 0 )
(14) cos ( ) — sin (ZL) is equal to ...
5- 5o i [+
(a) 2J_ 1 © S5 (d)
(15) If cosOt = —0.6 and T < O < 37[ , then tanZ is equal to ..
1-45 -1 S5 S5+1
@) — 2 © 5 2

(16) If0< 0 < % is an acute angle and 2x-sm29 + 1 = x, then tan® is .

(@) x? -1 (®) {x?+1 (©) {x*-2 (d)
(17) If tanx = %, then the value of acos2x + bsin2x is ...
(@ya—»b (b) a (c) b (da+b
(18) The value of cos6° - sin24° - cos72° is ...
=1 —1 1 1
(a) 5 ®) - ©) 3 (d) 7
(19) The maximum value of the expression sin®0 + cos®0 is ...
1 5 13
(a) 1 (b) 5 ) 3 (d) 5
(20) If cosA = 3 , then the value of 32sm% sms‘; is equal to ...
(a) —11 (b) =11 ) J11 11
*
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Summary

We studied following points in this chapter :

1.
2%
Sk

10.

11.

12.

13.

14.

15.

16.

17.

sin200 = 2sinQL cosOl
cos20L = cos?0L — sin?0L = 2cos?0L — 1 = 1 — 2sinQL

1 + cos20. = 2cos?0 and 1 — cos20. = 2sin’0L

. _ _2tanc.
Sin200 = 71 g2,
_ 1—tan’o.
COSC s
2tanot
_ —<lant: T 5
tan20, = 7_, o0 aeR-[{eck-nDRluiek-1nE} ke z
_ cot’o—1 _ fk=m

sin30L = 3sin0l — 4sin30L
cos30L = 4cos30L — 3cosOl

3tan o, — tan® o

_ — - N
tan3o. Y= o€ R {(2k DE, ke Z}
cot30L — 3cot O
_ _ fk=m
o0l = s —— o€ R {—3 | k € Z}

: 1—coso.

2 2
cosz% — 1+;0S0(
tan2% = iliﬁiz o€ R— {(Zk— 18%,4 | k e Z}
sin18° = ‘/54_1 , cos18° = 104;6%/5

sin36° = ‘/—10 _1625 , C0s36° = '/§4+1

sinZZ%o = 2;'/5 , COS22%0 _42+V2 , tanZZ%o =2 -1

2

— 4% —
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Chapter

TRIGONOMETRIC EQUATIONS
AND PROPERTIES OF A TRIANGLE

If equations are trains threading the landscape of numbers, then no train stops at pi.
— Richard Preston

Pure mathematics is in its way, the poetry of logical ideas.
— Albert Einstein

6.1 Introduction
In the previous semester and in chapters 4, 5 we have studied about trigonometric functions, their
graphs and their properties like zeros, range, periodic nature, identities. Trigonometry is useful in land
surveying. We know that by using trigonometry we can find the height of a hill without actually
measuring it. In 1852, Radhanath Sikdar, an Indian mathematician and a surveyor from Bengal,
was the first to identify Mount Everest as the world’s highest peak, using trigonometric calculations.
Trigonometry is useful in modern navigation such as satellite systems, astronomy, aviation, oceanography.
In this chapter we will learn how to solve trigonometric equations and properties of a triangle using
trigonometry.
6.2 Trigonometric Equations

2

A trigonometric equation is an equation containing trigonometric functions, e.g. sin“x — 4cosx = 1

is a trigonometric equation.
A trigonometric equation that holds true for all values of the variable in its domain is called a

trigonometric identity, e.g. cos20 = 2c0s20 — 1 is a trigonometric identity.
There are other equations, which are true only for some proper subsets of domain of functions involved.
We will learn some techniques for solving such trigonometric equations, as well as how to obtain the

complete set of solutions of an equation based on a single solution of that equation The equations

sinx = l has not only the solution x = E but also x = 5 L x=2m+ 7% x=3n—-L ¢ etc. are also solutions
of sinx = 2 Thus, we can say that x = % is a solutlon of sinx = = but it is not the complete solution

of the equation. A general solution to an equation is the set of all possnble solutions of that equation.
Note that some trigonometric equations may not have any solution, e.g. sinx = T. Due to periodic nature
of trigonometric functions, if a trigonometric equation has a solution it may have infinitely many solutions.
The set of all such solution is known as the general solution.
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Look at the graph of y = sinx. Observe any of the horizontal line y = k£ where k varies from —1
to 1. We can see that the graph of y = k intersects the graph of y = sinx in infinitely many points
(figure 6.1). This means that if we take a € [—1, 1], then there are infinitely many real numbers x such
that sinx = a. For a solution of a trigonometric equation, we need a unique real number O such that

sin0, = a. For that we have to restrict the domain suitably. If we restrict the domain to [—Z, & or

27 2
I 3% or 3—71:, 20 , etc. then we get a unique number O such that sinOL = a. We assume that the
27 2 2° 72 & q
restricted domain for y = sinx is —%, %] In this domain any horizontal line y = k, k£ € [—1, 1]

intersects the graph of y = sinx only at one point (figure 6.2).

Y
2 y=2
1
y=1
- QO n T 3 2T X
2 2 2
=-1
| Y
=2
2 Y
Figure 6.1
Y
y = sinx
2
1
= 0 =z X
2 2
-1
2
Figure 6.2

Similar situation arises for the function y = cosx. (figure 6.3)
We take the restricted domain [0, Tt] for y = cosx. (figure 6.4)

Note that any horizontal line y = a where | a | > 1 will not intersect the graph of y = sinx or

y = cosx. Thus sinx = a or cosx = a where | a | > 1 has no solution.
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-1

-2

Figure 6.3
Y

2

-2

Figure 6.4

y=2
y=1
% 2T

y=-1
y=-2

y=2

y=1

X
y=-1
y=-2

For the function y = fanx, if we draw any horizontal line in the plane it will intersect the graph of

y = tanx at infinitely many points (figure 6.5). This means that if we take any a € R, then there are

infinitely many real number x such that fanx = a. we need a unique value Ol such that tan0l = a. So we

have to restrict domain suitably. We take (

T T

272

) as restricted domain of y = tanx. (figure 6.6). We

shall discuss this in more detail when we study the concept of inverse trigonometric functions in the third

semester in 12th standard.

y = tanx

Y

O v &~ o ®
wla

& LWL

Figure 6.5

y=2

y=1
3r 2T X
2

y=-1

y=-2
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8
6
4
2
_n T X
2 (0] 2
-2
-4
-6
-8
Figure 6.6
Thus, for any a € [—1, 1] there is a unique O € [—%, T , such that, a = sinOL..

Also, for any a € [—1, 1] there is a unique Ol € [0, Tt], such that, a = cosOL..

Finally, for any ¢ € R there is a unique O € (—%, %), such that, a = tanO..

We know the set of zeros of sine, cosine and tangent functions. That actually means that we already

know the general solutions of the equations sin@ = 0, cos0 = 0, tan® = 0.

6.3

sin =0 0=Iim, ke Z

cos® =0 & 0=k + 1)%,k€ Z

tan® =0 & 0 =km, ke Z

We shall now solve the equations, sin® =a, —1 <a<1,cos0 =a,—1 <a<1and tan® = a, a € R.

General Solution of sin® = a, where —1 < a <1

Here —1 < a < 1. Therefore, there is a unique O € [—%, %] such that, a = sinOL..
Now, sin@ = a = sinO.
sin® — sin0l = 0

0+a . 00—«
sin
2
0+o .-
5 =0 or sin 5 =0

0+ o

2cos =0

cos

2

=@+ Do L= ez (Why ?)

O=Qn+ 1)t —orO=2nw+ 0, ne Z

gt ¢3¢ ¢ ¢

O=0Cn+ D+ DT lotor O =2uw + (=)0, n € Z

Therefore, the general solution is given by 0 = kTt + (—1)fo, k € Z.

(We have replaced 2n + 1, 2n by k because any integer is of the form either 2n + 1 or 2n)
Thus, sin® = sin0l & 0 = kTt + (ko k € Z
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Hence, the solution set of sin® = a, =1 < a < 1 is given by {,Tt + (—1)*0L | K € Z} where
_ 1], in® = g = si
o e [ o 2] and sin@® = a = sin0OL.

(We may take any Ot € R such that a = sinOl. The solution remains same. This convention of

taking Ot € [—E L 1is only for the uniformity of the form of the solution set.)

272
General Solution of cos® = a, where =1 < a < 1
Here —1 < a < 1. Therefore, there is a unique Ot € [0, T] such that, a = cosQL.

Now, cos® = a = cosO.

0+a sine—oc 0

cos® — cosO. = 0 <—2sin

2
<:>sine+a =Oorsine;a =0
= O+a = kT or 0-« =km, ke Z

S O0=2%kT—-or@=2knw+ 0, ke Z
Therefore the general solution is given by 8 = 2km + o, k € Z.
Thus, cos® = cosOl & O =2kR T O, k€ Z
Hence, the solution set of cos® = a, —1 < a < 1 is given by {2kt £ O | kK € Z} where
o € [0, ] and cos® = a = cosO..
General Solution of tan® = a, where a € R

Here a € R. Therefore, there is a unique O € (—%, %) such that, a = tanOL.

Now, tan® = a = tan0.

sin® Sinol
cosO coso.

tan® — tanol = 0 &

sin® coso. — cosO sind
cosO coso. B

sin(@—o)
cosBcoso.

< sin® — o) =0

S 0-0o=kn ke Z

SO0=m+o. ke Z
Thus, tan® = tan0l < O =kn + O, k € Z

Hence, the solution set of tan® = a, a € R is given by {kKT + O | kK € Z} where

_ T =g =
o€ ( > 2) and tan® = a = tano.

By the word ‘solve’ we shall mean to obtain the general solution set of the given equation.
Example 1 : Solve : (1) 25in20 — 1 =0 (2) sin*0 — s5in® — 2 =0

Solution : (1) 2sin20 — 1 =0
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. - 1_ (E
sin20 = 5= sm( 6)
We know that general solution of sin® = sin0t is kT + (—1)f0l, k € Z.

20 = kT + (— 1)k7t ke z

_ KT X
0=+ (-1fZ ke z

Hence, the required solution set is {kn + (= l)k | ke Z}

() sin*0 — sin® —2 =10
(sin® + 1)(sin® — 2) =0

sin@ = —1 or sin@ = 2

But sinf = 2 is not possible. (Why ?)
9 = —1 = ¢7 _l
So, sin® | sm( > )

0 =in + (— 1)k(——) ke Z

Hence, the required solution set is {kTE + (=1k+1 % | ke Z}.

Example 2 : Solve : (1) 2cos50 + \/5 =0 (2)2cos?0 — \/gcose =0
Solution : (1) 2cos50 + \/5 =0

_ B T — ST 5T
cos50 = - = cos(Tt - F) = cos( 5 ) (T € |o0, Tt])
We know that general solution of cos® = cosOl is 0 = 2k + O, k € Z.

50 =2kn + 3L ke 7

_ 24T
0 5

I+

%, ke 7
Hence, the required solution set is {% + % | k € Z}.
(2) 2cos?0 — ,/gcose =0
cosO(2cosO — \/5) =0
cos® = 0 or cosO = g = cos(%)
—(2k+1)7T ke Zor9—2k1'c+ ke z

Hence, the required solution set is {(Zk + 1)% | k € Z} ) {2k71: + I ‘ k € Z}

Example 3 : Solve : (1) sin5x — sin3x — sinx = 0 (2) cosx + cos2x + cos3x = 0
Solution : (1) sin5x — sin3x — sinx = 0
2cos4x sinx — sinx = 0

sinx(2cosdx — 1) = 0

116 MATHEMATICS-2



. T
sinx = 0 or cosdx = % = cos(§)

X =kW, k € 20r4x=2kni§,ke 7Z

X =km, k € Zoerani%,ke V4

Hence, the required solution set is {kTU | k € Z} U {an + % | k € Z}.

0

cos3x + cosx + cos2x = 0

(2) cosx + cos2x + cos3x

2cos2x cosx + cos2x = 0

cos2x (2cosx + 1)

Il
[}

cos2x = 0 or cosx

I
|
|
|
)
)
T

1 _ 2@ (ZTR e [, n])

x=Qk+ DI ke z or x=2knJ_rZTT“,ke Z

x=Qk+DHE ke z or x=2kﬂ:i27n,ke Z

Hence, the required solution set is {(2k + 1)% | k e Z} U {Zk‘lt t 2Tn | ke Z}.
Example 4 : Solve : (1) tan?0 + (1 — \/g)tane - J§ =0
(2) tan® + tand® + tan70 = tanO tan40 tan7O
Solution : (1) tan®0 + (1 — V3)an® — 3 =0
tan*0 + tan® — \/gtane - ,/E =0
tan®(tan® + 1) — \/g(tane +1)=0
(tan® + 1)(tan® — \/5) =0
tan® = —1 or tan® = J§

tane = tan(—%) or tane = tan%

e:kn—%,kez or 9=kn+%,ke Z

Hence, the required solution set is {kTC - % ‘ k € Z} U {k‘lt + % ‘ k € Z}.

(2) tanB + tan40 + tan70 = tanB tan4O tan70

tan® + tan4® = —tan70 + tanO tan4O tan70

tan® + tan40 = —tan70 (1 — tanB tan40) (@)
First we prove that 1 — tan0 tan4® # 0.
If 1 — tan® tand® = 0 then by (i) we have tan® + tan40 = 0.

Thus, tan® tand® = 1 and tan4® = —tan® which gives tan?60 = —1 which is not possible in R.
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tan® + tan40

Now, by (i) we have T_7anBianid —tan70

tan(9 + 40) = —tan70
tan50 = tan(—70)
50 =kmt — 70, ke Z

_ kT
0= o ke Z
Also tan®, tan40, tan70, should be defined.

6 @m+ DT 40 # Qm+ DF. 70 = Cm+ DT, ke Z

If9=%,ke 7 then k # 6, 18, 30, ...

40 = k_37£ # (2m + 1)% forany k € Z — {6, 18, ...}
70 = % # (2m + 1)% for any k € Z — {6, 18, ...}

k# 6,18, ..
k# 12n+6,ne€ 7
k is not odd multiple of 6.

The solution set is {%E ’ k € Z where k # 12n + 6}, ne’zZ

Example 5 : Solve : (1) 4sin® = cosec® (2) sec® + tan® =2 — 3

Solution : (1) 4sin® = cosecO

1

45in@ = Sin0
45in’0 = 1
sinQ = i%

sin® = sin(%) or sin@ = sin(—%)

=i+ D& keZ or 6 =kn+(_1)k(_%)’ke 7
O=im+@E keZ o O=km+(1)" 1L kez
O=imti ke z

Hence, the required solution set is {kTE i% ‘ k e Z}.
(2) sec® + 1an®=2— 3 (i)

_ a o B L 2443 _
Since sec?0 — tan’® = 1, we have sec® — tan0® D 2=+ 2+J§

sec® — tan® =2 + \/5 (i)
Solving (i) and (ii) we get, sec® = 2 and tan® = —J§
Note that the above is a simultaneous system of trigonometric equations.

Since cosO = % > 0 and tanB = —\/5 < 0, P(9) is in the fourth quadrant.
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cosO = cos(—%) and tan® = tan(—%)

0 = 2km — %, ke Z (P(0) is in fourth quadrant.)

Hence, required solution set is {2le: —% ‘ k e Z}.

6.4 The General Solution of acosx + bsinx = ¢, a, b, c € R and a* + b> # 0
For the given real numbers @ and b, we can find » > 0 and &0 € [0, 27) such that @ = rcosOl and
b = rsinQl. (chapter 4)

@ + b? = 12 cos?oL + 12 sinoL = 2

r=Ja+p r > 0)

Now, acosx + bsinx = ¢
rcosOL cosx + rsinOl sinx = ¢

rcos(x — Q) = ¢
cos(x — Q) = % ()

<

The last equation will have a solution if and only if < 1, that is if and only if ¢ < 2, that

is if and only if ¢Z < a? + b2
If cos(x — Q) = cosB, where cosB = %, [3 € [0, m], then the general solution of (i) is
x — O =2k £ B, k € Z where 00 € [0, 2T) such that a = rcosOl and b = rsinQL.

Thus, if ¢2 < a?> + b2, the general solution of acosx + bsinx = c is

x=2T+ 0ot [3, k € Z, where O € [0, 2T0) such that a = rcosO. and b = rsin0O, and

cosB = %, B € [0, ], r = ‘,a2+b2-

If ¢2 > a? + b2, the equation has no solution. In this case the solution set is §.
Example 6 : Solve : chosx + sinx = ﬁ
Solution : Method 1 : Here a = JE, b=1c¢c= ﬁ
P=a+p=3+1=4

Hence, 7 = 2. Here ¢2 < a* + b2. So the given equation has a non-empty solution.

a = rcosO. and b = rsinQl gives cosOl = @ and sinQl = % Therefore oL = %

— V2 _

= £ = =
Now,cosB—r 5=
- I
B=%

Hence, required solution set is {2k + L X B | k€ Z} = {ZkTC + % i% ‘ ke Z}.

TRIGONOMETRIC EQUATIONS AND PROPERTIES OF A TRIANGLE 119



Method 2 : \/gcosx + sinx = \5
J3 1. L

= -cosx + Ssinx = -

The required solution set is {ZkTC + STE ‘ ke } { o ‘ ke Z}.

Example 7 : Solve : 3cosO + 4sin® = 6
Solution : Here a = 3, b = 4, ¢ = 6.
2 =a?+ b2 =25 ¢2=36. S0, > d?+ b?

Hence, the solution set is .

Exercise 6.1

Solve the following equations :

1. 2cos20 + \/5 =0 2¢0s%0 + \/gcose =0

2
3. 2cos0 + secO =3 4.  4sin*0 — 8cos® + 1 =10
5. ﬁcosecB@ —-2=0 6. 2sin’*0 — sin@ =0
7. 2sin® + cosecO =3 8. sin20 + cosO =0
9. sin70 = sin® + sin30 10. cos?0 — cos® = 0
11. tan20 — \/5 =0 12. \/Ecote — co?0 =0
13. tan’*® — (\/5 + 1)tan® + J§ =0 14. cosO + sin® =1
15. \/gsine — cosO = \/5 16. 2cosO + sin® =3
17. 3 — cot*560 =0 18. cosec®20 —2 =0
19. J2 + sec4B =0 20. tan30 + cot® =0

*

6.5 Properties of a triangle

The literal meaning of the word trigonometry is A
“the science of measurement of (the parts of) a triangle.”
A triangle has three angles and three sides. Measures of
angles and sides are not independent of each other. In c R b
this article we shall get the exact relationship between the
parts of a triangle. 0

We will use following notation in relation to a triangle :

mZBAC = A, mZABC = B, mZBCA = C B a c
A+B+C=m

(A, B, C are taken in radian measures.)

AB=c¢, BC=a, CA=5b

The radius of the circumcircle of the triangle, that is, circumradius = R

Figure 6.7
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sine Rule :
In AABC we have,

a b C

sinA — sinB ~ sinc ~ 2R
We shall prove here that ﬁ = 2R. The other two can be proved similarly.

There are three possibilities for A :

(1) 0<A<§ QA=2Z (3)§<A<n

2
) T
Case 1 : 0 <AL > A
. . —
Suppose O is the circumcentre of AABC. Let BO D
intersect the circumcircle at D. Here BD = 20B = 2R and R
D = m4ZBDC = mZCAB = A @)
(Angles in the same segment)
(0]
R
Now in ABCD, mZBCD = % (Angle in a semicircle)
sinD B R B C
Figure 6.8
. - _a .
sinA 3R (by (1))
a
sina ~ 2R C
Case 2 : AABC is right angled and A = % R
BC is a diameter of the circumcircle. (0]
BC = 2R R
Now, a = BC = 2R = 2RsinZ- = 2RsinA
A B
a
-~ = 2R
Sin A Figure 6.9
Case 3: T <A<m
2 C
As ZBAC is obtuse, so vertex A is on the minor arc
BC. Now take any Point A' on the major arc BC.
A
Here, mZBA'C = (T — A) < & (E <A< TI:)
2 2 0
By case (1) applied to ABA'C, we get A
BC = a = 2RsinA' = 2Rsin(Tt — A) = 2RsinA B
a
sina ~ 2R
Figure 6.10

Thus, in each case, 7, + = 2R
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- b
Similarly, we can prove that ;"= = 2R and —5= =R,

sin B sinC
a b c
sinA — sinB ~ sinC = 2R
cosine Rule :
In AABC, we have
2,2 0 2, 2 12 2,2 2
cosh = =@ g = @b cosC = LD =
2bc 2ca 2ab
2,2 2
We shall prove that cosA = brc—ar
2bc
Y
As shown in the figure 6.11, without loss of C(bcosA, bsinA)
%
generality we take vertex A as the origin and AB in the
positive direction of the X-axis. Since AB = ¢, the b a
coordinates of B are (¢, 0). Now AC = b and
mZCAB = A. So vertex C is (bcosA, bsinA).
NOW, a = BC A (05 O) c B(C, 0)

a? = BC? )
Figure 6.11

(bcosA — ¢)* + (bsinA — 0)?
= b2cos’A — 2bc cosA + c? + brsin?A
= b2(cos’A + sin*A) — 2bc cosA + 2
a? = b* — 2bc cosA + c?
2bc cosA = b2 + 2 — &

b? +c2-a*
COSA = ———
2bc
In the same way, we can prove the results,

ct+a’-b? a*>+b*-c?
- 7 and cosC = —————

cosB =
2¢ca 2ab

Note :

(1) The above proof will not change even if ZBAC is a right angle or an obtuse angle.

(2) If the lengths of the three sides of a triangle are known, we can find the measure of all the
angles using cosine rule. Similarly, if two sides and the included angle are given, then by cosine rule
we can find the remaining sides and remaining angles.

Important Formula :

We shall obtain an important result by the use of sine and cosine rules.

Projection Formula :

a = bcosC + ccosB, b = ccosA + acosC, ¢ = acosB + bcosA

We shall prove a = bcosC + ccosB

We prove the result using cosine rule. (Try to prove it using sine rule)
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bcosC + ccosB = b + ¢

a*+b>-c? ct+a’-b?

2ab 2ca
_at+bi-c | Fral-b?
2a 2a
_at+bP =+ +at-b* _ g _
2a 2a

Thus, a = bcosC + ccosB

=da

Similarly, the other two projection formulae can also be proved.

Example 8 : For AABC prove that,

(1) a(sinB — sinC) + b(sinC — sinA) + c(sinA — sinB) = 0

B-C C-A
2) asinésin( ) )+bsin§sin( )

2 2

Solution : (1)

2

a(sinB — sinC) + b(sinC — sinA) + c(sinA — sinB)

b C b

alb-c)+b(c-a)+cla-b) _ 0
2R B

. A . [B=C ({MT—=(B+0O .
2) asin 5 sin| — = asin| —— | sin

B+C .
= acos| — sin

= %(sinB — sinC)

_a/b _ c
= 2GR 7 )
_ 1 _

= ﬁ(ab ac)

B . [(C-A

)

alfx—55) + blsx—5%) + o3k 5%

B-C
2

Similarly, bsin = sin( > ) = ﬁ(bc — ab)

2

A-B

- C _ _
csin = szn( > )— ﬁ(ac bc)

Adding (i), (ii) and (iii) we get

B-C
L.H.S. = asin & sin ( > ) + bsin% sin(

2

Example 9 : In any AABC, prove that

COSA cos B cosC  a’+b*+c?

() ==+ —— + =

c 2abc

tanC b? +c? -a?
(2) tan A al+b*= 2

C-A
2

)

)

B—C)

2

+ csin% sin

ﬁ(ab —ac + bc — ab + ac — bc) = 0 = RH.S.

. C . A_B
+ csin = sin 5

(

A-B
2

)=0

)

A+B+C=m

(i)

(i)

(iii)
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Solution :

COSA cos B cosC
+ +

(1) LH.S.= - :
B b* +c? - a? ] ra?-b? ] a*+b* -
2bc X 2ca T 2ab
I e e it A i
2abc
2,12 .2
@bt s
2abc
) LS. = fanC sinC cosA
() LHS.= 5% = cosC sinA

| b +ct—a?
2R 2be

i[a2+b2 —czj

ZR 2ab
b? + ¢ - a?
= 2. -2 - RHS

Example 10 : In AABC, prove that

10.

(a + b)cosC + (b + ¢)cosA + (¢ + a)cosB = a + b + ¢
Solution : L.H.S.= (a + b)cosC + (b + c)cosA + (¢ + a)cosB

= bcosC + ccosB + ccosA + acosC + acosB + b cosA

a+ b+ c=RHS.

Exercise 6.2

For AABC, prove (1 to 9) :
asin(B — C) + bsin(C — A) + csin(A — B) =0

a*(cos’B — cos?C) + bX(cos’C — cos?A) + c*(cos’A — cos’B) = 0

a’sin(B—C) = b%sin(C—A) | c?sin(A-B) _
Sin A sin B sinC B

0

a’sin(B — C) + b3sin(C — A) + 3sin(A — B) = 0

asin(%#—C) = (b + ¢)sin %

B-C _ . A
acos| =5 = (b + c)sin 5

sin(A_B) = a-b cos c
2 c 2

an(4+B) = 5 a4

1+cosA cos(B—C) b*+c?
l+cosC cos(A—B) — p? +4°

Prove : sin?A + sin’B = sin’C = AABC is right angled at C.

acosC + b cosC + bcosA + ccosA + ccosB + acosB

X % (cosine rule)
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11.
12.

13.

14.

15.
16.

17.
18.

19.

20.

Prove : (a? + b2)sin (A — B) = (a* — b?)sin (A + B) = AABC is either isosceles or right angled.
2 — HeotA + (¢ — a*)coB + (a* — b?)cotC = 0

 (
b? ct-a? a*-b?
Prove : (_]snﬂA + (_2 ]sinZB + (_2 ]sinZC =0
a b c
12

(asinZ% + csin? A) =c+a-—-5>

Prove

Prove >

Prove : 4 (bccos? & + cacos® B + abcos? &) = (@a+ b+ c)?
2 2 2

Show that a triangle having sides equal to 3, 5, 7 is an obtuse angled triangle and determine the
measure of the obtuse angle.

If the angles of a triangle are in the ratio 1:2 : 3, find the ratio of sides opposite to these angles.
The measures of angles A, B, C of a AABC are in A.P. and it is being given that b : ¢ = 342,
find A.

sin A sin (A — B) 2 2,

If in a AABC, 5, = Sin(B_C) brove that a°,

c? are in A.P.

In a AABC, a = 2b and|A—B|=§. Find C.

*

Miscellaneous Problems :

Example 11 : Solve sin30 = 4sinQl sin(x + ) sin(x — OU), where OL # kT, k € Z

Solution : sin30L = 4sinQ. sin(x + ) sin(x — O), where 0L #Z kT, k € Z
sin30, = 4sin0, (sin®x — sin*0l)
3sinQl — 4sin’0L = 4sinOL sin®x — 4sin30

3sinQL = 4sinOL sin’x

sin’x = 2 (Since OL # AT, sin0. # 0)

x=kn+ ¥ L ke Zorx—kﬂ:+(—1)k(—%),ke Z
x—kTC+ ke Z

Hence, the required solution set is {Im + % | k € Z}.

Example 12 : Solve : tan( + 9) + fan (% 9) =4

Solution : tan( + 9) + tan(% — 6) =4

1+tan © 1—tan9_
1—tan O + 1+tan®

(1+tan®)® + (1—tan®)*
(1—tan®)(1 + tanB)
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2+ 2tan’0
1—tan’0

2 + 2tan’0 = 4 — 4tan’0

6tan’0 =2

20 =1
tan*0 3

tan® = iﬁ = tan(iﬂ)

9=kni%,kez

6

Hence, the required solution set is {k‘lt + % | k € Z}.

sin A sinB _ sinC COSA _ cosB cosC
Example 13 : If T s T ¢ , show that 5 -9 - 3
of cosA + cosB + cosC.
Solution : We have SinA _ sinB _ sinC
4 5 6
a b
2R _ 2R _ 3K
4 5 6
a-b _c -
. ) c k (say), where k£ > 0
a =4k, b = 5k, ¢ = 6k
> +c—a® o5k 4 36k% - 16k> 2
_ _ _ 45k _ 3
Now, cosA = he = BT RPTYE R
COSA _ |
12 16
.. cosB _ 1 cosC _ 1
Similarly, — " 16 and — T3¢
H COSA _ coSsB _ cosC
ence, — 5 3
=12 . 9 . 2 _ 23
Also, cosA + cosB + cosC T + T + T T
Exercise 6
Solve (1 to 10) :
1. 2(sec’® + sin°0) = 5 2. 2 — cosx = 2tan%
3. 4sin0 sin20 sind0 = sin30 4. sin*O — cosO = %
5. Jgtan39 + \/gtan29 + tan30 tan20 = 1
6. cosecx = 1 + corx 7. sindx 4+ cosdx = %

and hence find the value

126

MATHEMATICS-2



10.

11.

12.
13.

14.
15.

16.

17.
18.

19.

20.

21.

T 2T _
tan® + tan(e + 3) + tan(e + T) =3
sinx — 3sin2x + sin3x = cosx — 3cos2x + cos3x
2sin0 + chose +1=0
For AABC, prove (11 to 14) :

abc

acosA + bcosB + ccosC = 4RsinA sinB sinC = SRZ

a(cosC — cosB) = 2(b — c)cos2%

a’cos(B — C) + b3cos(C — A) + 3cos(A — B) = 3abc

b+tc _c+ta _ a+b N cosA _ cosB _ cosC
11 12 13 7 19 25

Prove : cosine rule using sine rule.

Prove : (a — b)? cos? % + (a + b)? sin? % =2

Prove : abc(cotA + cofB + cotC) = R(a? + b2 + ¢?)

If length of the sides of a triangle are 4, 5 and 6, prove that the largest measure of an angle is twice
that of the angle with smallest measure.

If length of the sides of a triangle are m, n, ‘,mz +mn +n2 » prove that the largest measure of an

angle of the triangle is 2Tn

If length of the two sides of a triangle are the roots of the equation x2 — 23x +2 =0 and if

the included angle between them has measure %, then show that the perimeter of the

triangle is 2\5 + JE .
Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

tan3x —tan2x

(1) The set of values of x for which T97———"m = 1 is ... ]
T
(@) ¢ ® { %}
T T

(c){kn+Z|keZ} (d){2kn+z|kez}

(2) Number of ordered pairs (a, x) satisfying the equation sec? (a + 2)x + a*> — 1 =0;
—NM<x<Tis...
(a) 2 (b) 1 (©) 3 (d) infinite

(3) The general solution of the equation sin>% — cos>'x = 1 is ... [ ]
(@ 2%t + % ke z b)2%4n + L. ke z
(c)kﬂ:+%,kez (d)kn+%,kez

(4) The number of solutions of the equation 3sin’x — 7sinx + 2 = 0, in the interval [0, 5T
is ... [ ]
(@ o0 (b) 5 (c) 6 (d) 10
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(6)

(7

8

)

The real roots of the equation cos’x + sin*x = 1, in the interval (=T, T), are ...
T _T n _n n _n n T 1
(a) 07 ?9 3 (b) 03 4) 4 (c) 0’ 27 2 (d) 23 37 4
The number of points of intersection of 2y = 1 and y = sinx, =270 < x < 2T is ...
(a) 2 (b) 4 (©3 (d) 1
The general solution of sin® + cos@ = 2 is ...
(@) kW, k€ Z (b)2/m+§,kez
(c) 0 (d) 2k + 1)%, ke Z
The general solution of cos20 = cos?0 — sin?0 is ...
(a R (b) kT, k € Z
(c) (d) 2k + 1)%, ke Z
A B C
In a AABC, if COZ = COZ = coz and a = 2, then the area of the triangle is ...
(a) 1 (b) 2 © L @ V3

(10) In a AABC, a = 5, b = 7 and sinA = %, numbers of such triangles are ...

[]

[]

[]

[]

[]

[]

(a) 1 (b) 0 ()2 (d) infinite
(11) The perimeter of AABC is 6 times the arithmetic mean of the sines of its angles. If a is 1,
then A is ...
T yis T
(a) 2 (b) Z () L %

(12) In a AABC, a = 2b and A = 3B, then A = ......

[]

[]

@ L b L © L @
(13) If A, B, C in a AABC are in A.P. and the sides a, b, ¢ are in G.P., then a2, b2, c?
are in ...
(a) GP. (b) A.P.
(c) a_lz» b%’ CLz are in A.P. (d) no relation

(14) In AABC, A

%,c=%,thena+c\5= ......

(a) b (b) /30 (c) V2 b (d) 26

(15) In a AABC, 2acsiny (A = B + C) = .....

(a) a® + b2 — 2 (b) 2 + a* — b? (c) b2 — ¢ + a&? (d) 2 — a* — b?
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Summary

We studied following points in this chapter :

1.

Pe

sinD =0 0=km, ke Z
cosG=O<:>9=(2k+1)%ke Z
tan® =0 & 0 =km, ke Z

Solution set of sin® = a, —1 < a < 1 is given by {kTt + (=1)0L | k € Z}, where O € [—%,

wla

and sin® = a = sinQL.

Solution set of cos® = a, =1 < a < 1 is given by {2kt £ O | kK € Z}, where O € [0, T
and cos® = a = cosOL.

Solution set of tan® = a, a € R is given by {kTL + O | k € Z}, where Ol € (—%, %) and
tan® = a = tanQL.

If ¢2 < a* + b2, the general solution of acosx + bsinx = c is

x =2k + o £ B, k € Z, where 00 € [0, 2T) such that a = rcosO and b = rsinQ. and

COSB = %’ B € [O: TE]’ r= "Clz'f'bz

If ¢2 > a? + b2, the solution set is §.

. . a _b _c¢c
The sine rule is : SinA — sinB — sinC — 2R
The cosine rule is :
b2 2 _ g2 2 522 a2 +b?—-c?
cosA = ——— cosB = cra b and cosC = —————
2bc 2ca 2ab

10. Projection Formula :

a = bcosC + ccosB, b = ccosA + acosC, ¢ = acosB + bcosA

— ‘ —
e

Aryabhata gave an accurate approximation for 7t. He wrote in the Aryabhatiya the following :

Add four to one hundred, multiply by eight and then add sixty-two thousand. The result
is approximately the circumference of a circle of diameter twenty thousand. By this rule the
relation of the circumference to diameter is given.

62832

This gives Tt = 20000

= 3.1416 which is a surprisingly accurate value. In fact T = 3.14159265
correct to 8 places.

He gave a table of sines calculating the approximate values at intervals of 90°/24 = 3° 45",
In order to do this he used a formula for sin(n + 1)x — sin nx in terms of sin nx and sin(n — 1)x.

He also introduced the versine (versin = 1 — cosine) into trigonometry.

Aryabhata gives the radius of the planetary orbits in terms of the radius of the Earth/Sun orbit
as essentially their periods of rotation around the Sun. He believes that the Moon and planets
shine by reflected sunlight. Incredibly he believes that the orbits of the planets are ellipses. He
correctly explains the causes of eclipses of the Sun and the Moon. The Indian belief up to that
time was that eclipses were caused by a demon called Rahu. His value for the length of the
year at 365 days 6 hours 12 minutes 30 seconds is an overestimate since the true value is less
than 365 days 6 hours.
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Chapter 7

L SEQUENCES AND SERIES )

7.1 Introduction

The word ‘sequence’ used in the English language and in mathematics has the same sense.
That is the sequence emphasises on the order of occurrence. When we talk about a sequence of events,
it clearly indicates the order of occurrence of the events. For example, India won the ICC World
Cup-2011. As we know that Indian team played a sequence of matches and won certain number of
them and finally won the final match. Here, we can see the sequence of events taking place in a
definite order. Similarly, in mathematics, when we talk about a sequence of numbers, it clearly
indicates the first number, the second number, the third number and so on. Historically, Aryabhata was
the first mathematician to give the formula for the sum of the squares of first » natural numbers, the
sum of cubes of first » natural numbers etc. This is found in his work Aryabhatiyam. Such kind of
work is also observed in the work of famous Italian mathematician Fibonacci (1175-1250). The
numbers of Fibonacci sequence are also known as Fibonacci numbers and they are applied in

many fields of knowledge.

Now, let us discuss about sequences mathematically. Observe the sequence of even numbers

2,4, 6, ..., we can easily see that the sequence is 2(1), 2(2), 2(3), ..., so we can generalise that nth even
number must be 2(n). So we can think of a function f: N — R, f(n) = 2n. Similarly the sequence
1, 4,9, 16, ... can be written as f: N — R, f(n) = n%. So we define sequence as a function whose
domain is N or {1, 2, 3, ..., n}.

Sequence : A function f : N — R or f: {1, 2, 3,.., n} — R is called a sequence.
{1, 2,3,..., n} — R is called a finite sequence. Here n € N.

For instance, f : N — R, f(n) = 3n — 1.

Taking n =1, 2, 3, ... we get f(1) =2, f(2) =5, f(3) =38, .... 2,5, 8, ... are called respectively
first, the second, the third, ... term of the sequence. f(n) is called the nth term or a general term.
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f(n) is also denoted by a, or 1, or T, or u, etc.

{f(m)} or {a,} or {1} indicates the sequence having the nth term as f(n) or a, or 1,
respectively.

According as codomain of the function is N, Z or R, the sequence is called a sequence of

natural numbers, a sequence of integers or sequence of real numbers respectively.

The nth term of a sequence may be in the form of formula, but it is not necessary that every
sequence is defined by means of some formula. For example, the sequence of prime numbers
2,3,5,7, 11, 13, ... There is no formula to get the nth prime number, so the sequence is not expressed

by defining a rule.

Let us see one interesting sequence, f(n) = (n — 1)-(n — 2)-(n — 3) + (2n — 1). Obviously
(=1, f2) =3, f(3) = 5. We may be tempted to say that f(4) = 7, but it is not so, it is 13.
Thus by using a few terms only we can not guess the general term of a sequence.

Example 1 : Find first five terms of the sequence : f: N — R, f(n) = 2n* — 4.
Solution : Here f(n) = 2n2 — 4
F() =20 —4=-2, f2)=227—-4=4,
fBR) =203 —4 =14, f(4) =242 —4=28, f(5 =252 —4=46.
Thus, the first five terms are —2, 4, 14, 28 and 46.
Example 2 : For f: N — R, f(n) = n(—1)", find the difference between 17th and 16th terms.
Solution : Here f(n) = n(—1)"
f(16) = 16(=1)1° = 16 and f(17) = 17(-D)V7 = —17
Now, f(17) — f(16) = (=17) — (16) = =33
The difference = | £(17) — f(16) | = 33
Example 3 : f/: N — R, f(n) = 8 — n3. Find the first four terms of the sequence.
Solution : f()=8— (1P =7,f2)=8—-(2) =0, f3) =8 — (3)° = —19 and
f(4) =8 — (4 = -56.
The first four terms are 7, 0, —19 and —56.
Example 4 : Let the sequence f: N — R be defined by f(1)=1and f(n)=f(n—1)— 1 forn = 2.

Find the first five terms of the sequence.

Solution : Here f(1) = 1

Now f(n) =f(n—1)—1,forn 22
fO=fe-n-1=f0-1=1-1
@) =f@Q —1=-1, f&=/3)— I
The first five terms are 1, 0, —1, —2 and —3.

0
=2, fG)=fW—1=-3

Example 5 : If f: N — R, f(n) = cos%, find the first six terms of the sequence f.

Solution : Here f(n) = cos%
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f(y = cos% =0, fQ2)=cosmw=-1, fQ3)= 003377E =0

f@) =cos2m =1, f(5) = 003577E =0, f(6) = cos3m =—1
So the first six terms are 0, —1, 0, 1, 0 and —1.
Example 6 : What will be the 10th term of the sequence defined by
fm)y =@ —Dn+2)n—3)7?
Solution : Here, f(n) = (n — 1)(n + 2)(n — 3)
f(10)= (10 — 1)(10 + 2)(10 —3) =9-12-7 = 756
Hence the 10th term is 756.
7.2 Series :
Let ay, a,, a3, ..., a

> - be a given sequence. Let us think of the sequence formed

by using the terms of the given sequence as follows :
a,a taya +ay,+aza tatatay.a tatagt..ta,.. Such a new sequence
is called a series derived from sequence {a,}.

Usually, S, denotes the sum of the first » terms of a sequence. So the sequence
S, S5, Ss...., S, becomes the series corresponding to the given original sequence.

Hence every series is a sequence and nth term of the series is the sum of the first
n terms of its corresponding sequence.

For instance, take the sequence of odd natural numbers. i.e. 1, 3, 5, 7, 9, ...
S;=a;, =1
S,=a,+a,=1+3=4
S;=a+a,ta;=1+3+5=9
Sy=a+taytayta=1+3+5+7=16

We get the sequence 1, 4, 9, 16, ... which is the sequence of squares of natural numbers.
ie. S, = n?. 1t is called the series derived from the sequence f(n) = 2n — 1.
Let us obtain nth term a, of a sequence from the sum of first #» terms S, of the same sequence.
We can derive the formula for a, as follows, if we are given the formula of S, :
S;=a
S,=a,+a, =85, +a,
S;=a,tay+a3=8,+ag

S4=a1+a2+a3+a4=S3+a4

S,=a;t+a,+ay+.+a,_ | +a, =5S,_|+a

n n n

We observe that S, =S, _ | +q, forn =23, 4, .
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S,—S,_1=4a, VnZ=2andS,=aq
This gives the formula for a,, when the sum of first #» terms S, is given.

Example 7 : For the sequence {a,}, S, = n3 — 2n, find the first four terms and 8th term of {a,}.
Solution : S, = w — 2n
S, =P -20)=1-2=-1, S,=(2)P -22)=8—-4=4,
;=3P -23)=27-6=21, S,=(4)>—-24)=64—8=56
So, ay=S;=-1, a=S,—S;=4—-(-1)=5, a3=8;—-85,=21—-4=17,
a; =S, —S; =56 —21 =35.
The first four terms of {a,} are —1, 5, 17 and 35.
The 8th term, ag= Sg — S,
= [(8 — 2(8)] — [(7)* — 2(7)]
=[512 — 16] — [343 — 14] = 167

Example 8 : From the formula for the series, S, = 4" — 1, obtain the formula for the corresponding

sequence.
Solution:a1=Sl=41—1=3’ S, =4"— 1
- -1
Sn—l_ 47 =1
a, =S,=S,_, Vn22=@"-1)—-@"1-1
:4n_4n—l

=3.47-1 Vn2>2
Takingn=1,3-41‘l=3=a1
a,=3-4"-1,Vn2>1

Exercise 7.1

1. Write the first five terms of the following sequence :

M fm=3n+1 2)f(n)= # (3) f(n) = nth prime number
2. The Fibonacci sequence is defined by,

ay=a,=1landa,=aqa,_ |+ a,_, n>2, find a5, q4 as, a.
3. Obtain a,, a;, a, for the following sequences :

(1) ay=-3anda,=2a,_,+ 1, Vo> 1.

) a, =+ and a,=3a, |+ ()", Vn22.

4. Find the first three terms and tenth term of the sequence {a,} :
nn+1)

M s, =n*—=1 (@28, =

5. From the following formula for the series S,, obtain the formula for corresponding sequence :

_ar -1 _ _
(H s, = p— cr#ELa#z0  (2)S,=4{1 —(3) Iy

&
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7.3 Arithmetic Progression (A.P.)

Observe the sequence 1, 3, 5, 7, .... . Here each term (after the first) is obtained by adding the same
number 2 to its preceding term. The difference between two consecutive terms is a non-zero constant.
Such a sequence is called an arithmetic progression. We define it as follows :

Arithmetic Progression : A sequence f : N = R, f(n) = an + b, a, b € R, a # 0 is

called an arithmetic progression (A.P.). Thus an A.P. is a linear function of n, where n € N.

For example, the sequence f(n) = 3n — 4, n € N is an A.P., its terms are —1, 2, 5, 8, 11, ...
Here difference between any two consecutive terms is 3, a constant.

In the above discussion, we can observe that the difference between any two consecutive terms
is a non-zero constant and f is a linear function of n, » € N. Now we shall combine these two
properties in the following theorem.

Theorem 1 : Difference between any two successive terms in an A.P. is a non-zero constant.

Proof : Suppose {f(n)} = {an + b} is an AP, a, b € R, a # 0.

For any k € N, f(k+ 1) — f(k) = [ak + 1) + b] — (ak + D)

=ak+a+b—ak—0>b
= a, a non-zero constant

Thus, the difference of between any two successive terms f(k + 1) and f(k) is a non-zero
constant. We call it the common difference of the A.P. and usually denote it by ‘d’. Now, onwards
the common difference will be termed as difference. Here we take d = f(k + 1) — f(k) which may
be positive or negative.

The converse of above theorem is also true. Suppose the first term of a sequence {f(n)} is ‘@’ and
the difference f(k + 1) — f(k) = d, d # 0 for all kK € N. Then it is clear that the sequence is an
A.P. In general we conclude that nth term of the A.P. as f(n) = a + (n — 1)d, d # 0 and it is a
linear function of #. We shall prove our conclusion by the method of mathematical induction.
Theorem 2 : If the first term of a sequence {f(n)} is a and if the difference of two

successive terms is d # 0, then f(n) = a + (n — 1)d, Vn € N and so it is an A.P.

Proof : Let the statement P(n) : f(n) = a + (n — 1)d, Vn € N

(1) Form =1, f(1) = a, the first term and

atmn—10Dd=a+ (1 —1d=a

P(1) is true.
(2) Let P(k) : f(k) = a + (k— 1)d be true for some kK € N. (i)
Then we shall prove that P(k + 1) is true.
S+ 1) =fk) +d S+ —=fk) =d)
=la+ (k— 1)d] +d (from (i))
ftk+1) =a+ kd

a+[(k+1)—1]d
Thus P(k) is true. = P(k + 1) is true.

By the principle of mathematical induction P(») is true for all » € N.
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Here, f(n) = a + (n — 1)d = dn + (a — d) is a linear function of »n (as d # 0), so fis an A.P.

We conclude from these two theorems that if ‘a’ is the first term and ‘d’ is the common difference
of an A.P., then the A.P. can be written as a, a +d, a + 2d, ..., a + (n — 1)d, ...

Thus the formula for nth term of an A.P. is f(n) = a + (n — 1)d. a, is also used for the last
term of a finite A.P. having domain {1, 2, 3, ..., n}.

If we denote nth term by ¢, then {, = a + (n — 1)d, where a is the first term and d is the
common difference.

Note : a, b, ¢ are consecutive terms in AP. & b—a=c—>
S 2bh=a+c
Example 9 : For an A.P. 3, 8, 13, 18, ... find the 17th and 40th terms.
Solution : a =3, d =5
nth term of the AP. is¢, =a+ (n — 1)d
=3+ m—1)5
=5n—2
Taking n = 17, 1,7 = 5(17) — 2 = 83 and
taking n = 40, 14, = 5(40) — 2 = 198.
17th term is 83 and 40th term is 198.
Example 10 : Which term of the A.P. 3, 14, 25, 36, ... will be 121 less than its 37th term ?
Solution : Here a = 3, d = 11, given m = 37
mth term, 7, = a + (m — 1)d
3+ @37—- 111
=3+ 396 =399
Let 7, be the term 121 less then /5.
t, =t3; — 121 =399 — 121 = 278
a+ m— 1)d=278
3+ (n—1)11=278
(m— DIl =278 —3 =275
n—1=25
n =26
Thus, the 26th term is 121 less than its 37th term.

I37

Note : Order of the term 121 less is % = 11 less than 37th term (here d = 11).

So 37 — 11 = 26th term is the required term.

Example 11 : If the 11th term of an A.P. is zero, then prove that its 31st term is double than the
21st term.

Solution : ¢, = a + (n — 1)d
t;1=a+10d
0 =a+ 10d ()
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Now, 2-1,; = 2(a + 20d)

= 2a + 40d

= (a + 30d) + (a + 10d)

=1+ 0 =1 (from (i))
Thus, 31st term of the A.P. is double than the 21st term.

Example 12 : If the pth term of an A.P. is ¢ and the gth term is p, p # ¢, then find the nth term of
the A.P.

Solution : Here L isa+ (p—1d=gq (i)
and 1 isa+(q—1d=p (ii)
Solving (i) and (ii), we get
@—q@d=q—p
Asp#qg,d=—landa=p+q—1
Now the nth term 7, = a + (n — 1)d
=ptqg—1+m—1D(D
=p+q—n
Arithmetic Series :

The series corresponding to an A.P. is called an Arithmetic Series.

The nth term of the arithmetic series corresponding to the A.P.
a,a+d a+2d..,a+ n-—1d is
S,=at+(@+d+(@+2d+..+[a+(n— 1)

Now we shall prove the expression for the sum of first #» terms of the A.P.,

ie. S, = ’21[261 + (n — 1)d] by the principle of mathematical induction.

Theorem 3 : If first term of an A.P. is a and d is the common difference, then the sum of
first n terms is S, = %[2(1 + (n — 1d], Vn € N.
Proof : Let the statement P(n) : S, = %[Za + (n — d), Vn € N.
(I) Forn=1,8,= %[2a + (1 — 1)d] = a, i.e. the sum of the first term is the first term ‘a’ itself.
P(1) is true.
(2) Let P(k) : S, = %[20 + (k — 1)d] be true for some k € N. (i)

Letn =k + 1
Sy +1 =S, + (k+ Dth term

= Kpa+ k= Ddl+a+ [k+1)—11d (from (i)
= %[2ak + k(k — 1)d + 2a + 2kd)

= 2[2alk + 1) + k(k — 1 + 2)d]
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T[2ak + 1) + kd(k + 1)]

=5 e+ (ki + 1) - 1)

Thus, P(k) is true. = P(k + 1) is true.
By the principle of mathematical induction P(n) is true. Vn € N.

Note : Formula for S, of an A.P. of finite term is

S =%[2a+(n—l)d]=g[a+{a+(n—l)d}]=%(a+l)

n

where a is the first term and / is the last term, ie. / =1, = a + (n — 1)d.

Thus, the formula of S, for A.P. Bnuwbey ZOf terms [first term + last term]

Example 13 : Find the sum of the first fifteen terms of A.P. 15, 11, 7, 3, ...

Solution : Here a = 15, d =11 — 15 =—4 and n = 15
Now, S, = %[2(1 + (n — 1)d]
1

2[2(15) + (15 = 1)(=4)]

Sis

5
2
5130 — 561 = 151061 = —
B30 - 56] = L[—26] = —195

The sum of the first 15 terms is —195.

Example 14 : The sum of 7 terms of two AP.s are in the ratio (3n + 6) : (5n — 13), Vn € N. Find
the ratio of their 11th terms.
Solution : Suppose, the first term and common difference of one A.P. are a; and d; and
the same for the other A.P. are a, and d, respectively.
According to the given condition,

Sum of the first # terms of first A.P. n+6

Sum of the first 7 terms of second A.P.  51-13

Lay+ (= Dd\] 4,

Lp2a, + (n = dy] M1

2ay + (n — )d, _ 3n+6 .
2a, + (1 — Ddy, 013 ®

Let 7, and 7, be the nth terms of given A.P.s.

Now, 77— = ————
> 1Y, a, +10d,

_ 2a; +20d,

- 2612 + 20d2

2a; + (21 - 1)d,
2a, + (21 -1d,

So, substituting n = 21 is (i), we have
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tl—lz 3(21) +6 _69 _ 3
o 52h-13 T 92 4

The ratio of the 11th terms of the two A.P.s is 3 : 4.
Note : Sometimes we need to assume some consecutive terms of an A.P.
If three or five or seven consecutive terms are given, then we assume the middle term as ‘e’ and
preceding terms decreasing by ‘d’ and succeeding terms increasing by ‘d’.

So we assume,

The 3 consecutive terms in A.P. : a —d, a, a + d

The 5 consecutive terms in A.P. : a — 2d, a — d, a, a + d, a + 2d

The 7 consecutive terms in A.P. : a —3d,a —2d, a —d, a, a + d, a + 2d, a + 3d

If four or six consecutive terms are given, then there are two middle terms, so we assume them
as a — d and a + d. Here the difference between consecutive terms is taken as ‘2d’, so preceding
term is decreased by ‘2d” and succeeding term is increased by ‘2d”. So we assume,

The 4 consecutive terms in A.P. : a —3d, a —d, a + d, a + 3d

The 6 consecutive terms in A.P. : a — 5d, a —3d, a —d, a+ d, a+ 3d, a+ 5d

Example 15 : The sum and the product of three consecutive terms of an A.P. are 24 and 312

respectively. Find the three terms.
Solution : Suppose the three consecutive terms of the A.P. are a — d, a, a + d.

According to the given conditions,
a@a—d)+t+a+@+d)=24and (a—d)-a-(a+ d) =312

Thus, 3a = 24.
Soa=8and (8 —d)-8-(8 + d) =312
64 — d* = 39
d* =25
d=5o0ord=-5

If @ = 8 and d = 5, then the required terms are 3, 8, 13 and if @ = 8§ and d = —5, then they

are 13, 8§, 3.
Thus the required terms are 3, 8, 13.
Example 16 : The sum of four consecutive terms of an A.P. is 24 and the product of first and last

terms is —45. Find the terms.

Solution : Suppose the four consecutive terms of the A.P. are
a—3d, a—d a+d, a+ 3d.

Their sum (a — 3d) + (a — d) + (a + d) + (a + 3d) = 24
4a = 24. So a = 6.

Also (a — 3d)(a + 3d) = —45
(6 — 3d)(6 + 3d) = —45
36 — 9d* = —45
9d? = 81
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