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3.6 ELECTROMAGNETIC INDUCTION. MAXWELL’S EQUATIONS

3.288 Obviously, from Lenz’s law, the induced current and hence the induced e.m.f. in the loop

is anticlockwise.
A

From Faraday’s law of electromagnetic indcution,
®.> -
g . |42 5 tw
= dy
—  —»
Here, d®=B-dS= -2Bxdy, _ _______71'_....
’ s

and from y-axz,x-v%— \ T T

Y dy 4
a dt

/ >
By §f’- , using %= V2wy 0

3.289 Let us assume, Bis directed into the planc of the loop. Then the motional e.m.f.

Hence, E,,

- - Z
g, = -{(vxB)-di |=vBI
and directed in the same of (vx B) (Fig.) _J_ R Ro
So, i= S = Bvl 5)7’ RTfRz
: R R, R+R, Ry
R+
R, +R,

As R; and R, are in parallel connections.

3.290 (a) As the metal disc rotates, any free clectron also rotates with it with same angular
velocity «, and that's why an electron must have an acceleration w’r directed towards the
disc’s centre, where  is separation of the electron from the centre of the disc. We know
from Newton’s second law that if a particle has some acceleration then there must be a
net effecetive force on it in the direction of acceleration. We also know that a charged
particle can be influenced by two ficlds clectric and magnetic. In our problem magnetic
field is absent hence we reach at the conslusion that there is an electric ficld near any
electron and is directed opposite to the acceleration of the electron.

If £ be the electric field strength at a distance r from the centre of the disc, we have from
Newton’s second law,

F.=mw,
2
mw’r
eE=mrm2, o, E= .

and the potential difference,

Peen = Prim = fE dr= f

0

dr, as E"H dr’
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.'710)2 dz

Thus Poen = Frim = AP = e 2 - 3-0nV

(b) When field Bis present, by definition, of motional e.m.f. :
2

'—-’_> et
@9 -¢;= | -(vxB)-dr

1
Hence the sought potential difference,

a ' a

qam-qam-f—der-f—mrBdr, (as v= wF)
0

Thus Crim = Peen = q3=EmBa 20 mV

(In general w < % so we can neglect the effect discussed in {1) here).

By definition,

— —_— —>
E= -(vxB}
c c d
—- —_—
So, [Ear= [-(%B)-di= [ -vBar
A A 0
But, v = wr, where r is the perpendicular distance of the point from A.
C d
Hence, fF-dF'=f—mBrdr= a--;-deZ- -10mV
A 0

This result can be generalized to a wire AC of arbitary planar shape. We have

¢ c c
IE’-dr=-f(vx§’)-drs—f((mxr) x B)-dr
A A

A
c
— > P —P —» —
=-f(B ro-B-wr)-dr

A

1
"“EB(Ddz,

—
d being AC and r being measured from A.
Flux at any moment of time,
—- = 1_»
|@,1= B-a51= B[ 3R%9
where ¢ is the sector angle, enclosed by the field.
Now, magnitude of induced e.m.f. is given by,
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Ul

d%,| |BR*do| Bsz
“dr 2 a| 27

where w is the angular velocity of the disc. But as it starts rotating from rest at t = 0 with
an angular acceleration P its angular velocity w (f) = pt. So,

BR®
== Bt
According to Lenz law the first half cyc]c current in the loop is in anticlockwise sense,
and in subsequent half cycle it is in clockwise sense.

2
Thus in general, E, = (- 1)" & B ¢, where n in number of half revolutions.

The plot E,, (), where 1, = V2Zxn/f is shown in the answer sheet.

3.293 Field, due to the current carrying wire in the region, right to it, is directed into the plane
of the paper and its magnitude is given by,

Ho £ , . . .
B= ﬁi where r is the perpendicular distance from the wire.

As B is same along the length of the rod thus motional e.m.f

and it is directed in the sense of (VX B)
So, current (induced) in the loop,

3.294 Field, due to the current carrying wire, at a perpendicular distance x from it is given by,

—- >

Motional e.m.f is given by |f -{ vx B )-dl

There will bc no induced e.m.f. in the segments (2) and (4)
as, vt di and magnitude of e.m.f. induced in 1 and 3, will be

Bo { W
R (a*) wnd 5= V(zn(m))

respectively, and their sense will be in the direction of ( VX B).
So, e.m.f, induced in the network = E, - E;[as §; > §; ]

X a+x

avugiflg 1 vatpyi
T 2n [ ]"Zﬂx(aﬂc)
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As the rod rotates, an emf.
a1 - 1,
72" 0-B= s Bw

() - —a Bw

R

A magnetic force will then act on the conductor of magnitude BI per unit length. Iis
direction will be normal to B and the rod and its torque will be
a

§0-5aBo
R de B x

[}

Obviously both magnetic and mechanical torque acting on the C.M. of the rod must be
equal but opposite in sense. Then

for equilibrium at constant ®

1s induced in it. The net curtent in the conductor is then

14
E(t)—zﬂ Bm_Baz
R 2

= = mga sin wt
) g

o, E{n= %azBm+magH£ sinwt= -2—-—B-(a *B*w+2mgRsinw b

(The answer given in the book is incorrect dimensionally.)
From Lenz’s law, the current through the connector

is directed form A to B. Here &, = vBl between

Aand B -
where v is the velocity of the rod atany moment.

For the rod, from F, =

or, mgsino — il B = mw

For steady state, acceleration of the rod must
be equal to zero.

Hence, mgsino=il8 1
& vBl
But, 1= _.-R_ - —R-—
mgsina R

From (1) and (Z) v= FIE
From Lenz’s law, the current through the copper
bar is directed from 1 to 2 or in other words,
the induced crrrent in the circuit is in clockwise
Sense.

Potential differcnce across the capacitor plates,

1_ g = CE
'8, Em or, g CEHI
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1.298

Hence, the induced current in the loop,

dg_ 95

dt dt

But the variation of magnetic flux through the loop is caused by the movement of the bar.
So, the induced e.m.f. E, =8B lv

i=

dg, dav
d —_—= —_—=
and, o Bl 7 Blw
Hence, i=C—-§=CBIw

Now, the forces acting on the bars are the weight and the Ampere’s force, where
Fop= i1B(CBIw) B= CI’B’w.

amp

From Newton’s second law, for the rod, F_= mw,

or, mgsina-C1252w=mw
Hence wo MEse __gsing
Cl*B“+m I“B°C
L

—
Flux of B, at an arbitrary moment of time ¢ :

— 2
(IJ,=E.-S= Bﬁithosmt,

From Faraday’s law, induced em.f., §, = - kil

dt

&2
d(Bn—z—coswt)
Bxa*w

= - = sin .
at 2

2

Jrf

. . n Bna
and induced current, =R = .
Now thermal power, generated in the circuit, at the moment £ = ¢ :
Bxalw) 1

. xa .

P(t) = %MXI‘-“= (-——"i"ﬂwc"o-‘) ‘"smzwt

R
and mean thermal power generated,

2 T
{M] lJ-sinzmrdr
2 R /

<P>= T _ = 15 >
Twa
Ja =)
0
Note : The claculation of &, which can also be checked by using motional emf is correct
even though the conducior is not a closed semicircle , for the flux linked to the rectangular

part containing the resistance R is not changing. The answer given in the book is off by
a factor 1/4.

wsin w .

1
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The flux through the coil changes sign. Initially it is BS per turn.

Finally it is — BS per turn. Now if flux is & at an intermediate state then the current at
that moment will be

N

R
So charge that flows during a sudden lumning of the coil is

im

g= [ias -%’[qa_(-@)]- 2 NBS /R

Hence, B= 5%—5 = 05T on putting the values.
According to Obun’s law and Faraday's law of induction, the current i, appearing in the
frame, during its rotation, is determined by the formula,

dd Ldi

T dt
Hence, the required amount of electricity (charge) is,

q=fi0d.r- -%f(dqnu,dio)- -1% (AD+LAi)

Since the frame has been stopped after rotation, fe—— b E—— 0

the current in it vanishes, and hence A i = 0. Y ‘Saiahni I
]
It remains for us to find the increment of the :
flux A @ through the frame (A ¢ = &, - D). a [
. ¥ {
Let us choose the normal »'to the plane of the l i
frame, for instance, so that in the final position, :
—», . N T I A TR T SS— . . N
n is directed behind the plane of the figure
iy P € e—a —>| 0’
(along B ).

* Then it can be easily seen that in lhe final position, $,> 0, while in the initial position,

@, <0 (the nonnal is opposite to B ) and A ® turns out to be simply equal to the fulx
through the surface bounded by the final and initial positions of the frame :
bra
A®= &, +|0)= [Badr,
b-a
where B is a function of r, whose form can be easily found with the help of the theorem
of circulation. Finally omitting the minus sign, we obtain,

_ AP tdi bra
9 R 2aR " b-a

—
As B, due to the straight current carrying wire, varies along the rod (connector) and enters
linerarly so, to make the calculations simple, B is made constant by taking its average
value in the range [a, b].
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3302

b b §®
der -Eg--iﬂdr —<
2xr F - p
a a
kv el
ext
fdr fdr y >
. a (b
%
or, <B> «

-0 2 <
2ab-a) a io

(a) The flux of B changes through the loop due 1o the movement of the connector. According

to Lenz’s law, the current in the loop will be anticlockwise, The magnitude of motional

e.m.f.,
E,=v<B>(b-a)

Po b b adx Moo b
2n(b—a)lna(b a}dt- ‘0"‘av

Zn
So, induced current

i Sm MoV b
“ R 2n R a

(b) The force required to maintain the constant velocity of the connector must be the

magnitude equal to that of Ampere’s acting on the connector, but in opposite direction.

; Modo b Mo B b
So, F  =i,l<B>= (ZJCRvmﬂ)(b“a)(?_u(b_a)lna)
b 2
v I"'() . . . ' .
= E(ZE‘oln a),and will be directed as shown in the (Fig.)

(a) The flux through the loop changes due to the movement of the rod AB. Agcording to
Lenz’s law current should be anticlockwise in sense as we have assumed B is directed
into the plane of the loop. The motion em.f §, ()= Blv

and induced current i, = %—I A

From Newton’s law in projection form F, = mw, ‘Ua
= Fomp= m% R Fﬂmp —§®

Bu F,, =i lB= YL 2

So, - l}—B-—i—li-- myv dv

R dx
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x
mRyv
or, f lezfd" or, x-W

(b) From equation of energy conscrvatlon, E;~E;+Heat libcrated = A, + A,

[0 - %m voz] + Heat liberated = 0 +0

So, heat liberated = %m vn2

3.303 With the help of the calculation, done in the previous problem, Ampere’s force on the

connector,
2,2
“:,,,P = vﬂ;?l directed towards left,
Now from Newton’s second law, A
dv
- —_— -
F-F amp =M i 3 ® o
272 - -
So, F= "il % Fampe———-rF
-\
14 v
dv .
or, _!‘dt=m_!.F L B
" R
B?
F-
o1, Lo R In R
’ m B’ F

~tB1*\ RF

Thus ve= (l—é Rom )lez

3.304 According to Lenz, the sense of induced e.n.f. is such that it opposes the cause of change
of flux. In our problem, magnetic field is directed away from the reader and is diminishing,

(@) (b) () (d)

So, in figure (a), in the round conductor, it is clockwise and there is no current in the
connector

In figure (b) in the outside conductor, clockwise.
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3.305

3.306

3.307

In figure (c) in both the conductor, clockwise; and there is no current in the connector to
obey the charge conservation.

In figure (d) in the left side of the figure, clockwise.

The loops are connected in such a way that if the current is clockwise in one, itis anticlockwise
in the other. Hence the e.m.f. in loop b opposes the e.m.f in loop a.

. d 6 2 2 d .
en.f. in loop @ = Z(a B)= a E(BO sin i)

Similarly, e.m.f in loop b= b230 @ Cos Wi,

Hence, net e.m.f. in the circuit = (a° - b%) B, w cos wt, as both the e.m.f’s are in opposite

sense, and resistance of the circuit = 4 (a+b) p

Therefore, the amplitnde of the current
(a*- ) Byw

iaihe " OSA

The flat shape is made up of concentric loops, having different radii, varying from ¢ to
a.
Let us consider an elementary loop of radius r, then e.m.f. induced due to this loop
— —»
~d(B-S)

2
= 1ntr* B, m cos wt.
dt o

and the total induced e.m.f,

a

EM-:I (nr?B,w cos wt) dN, (1)
0

where 7 r2 @ cos wr is the contribution of one turn of radius r and dN is the number of
turns in the interval |7, r + dr].

So, dN = (%r} dr @

nBomcos «© tNa2
3

From (1) and (2), E= -(nrzB mcosw:){v—dru
) > .
0

Maximum value of e.m.f. amplitude E__ = %uBo wNa
The flux through the loop changes due to the variation in B with time and also due to the
movement of the cornector.
e
d(B-:8)
dt

So, g, = as S and B are colliniear

] ]d(BS)

o . 1
But, B, after ¢ sec. of beginning of motion = Bt, and S becomes = / 5 wrz, as connector

starts moving from rest with a constant acceleration w.

So, Boi= 3Blwi?
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We use B= uynl

Then, from the law of electromagnetic induction

o dodo

So,forr<a
E2nr= —srrzponj or, E = —%uonri'. (where | = dl/dp)

For r>a

E 2nr= —nazuon}' of, E = —-uonfaz/Zr
The meaning of minus sign can be deduced from Lenz’s law.

2

The e.m.f. induced in the tumn is p; nix e

. . nd
The resistance is < P

U, Isd
————= 2mA, where p is the resistivity of copper.

So, the current is
The changing magnetic field will induce an e.m.f. in the ring, which is obviously equal,
in the two parts by symmetry (the e.m.f. induced by electromagnetic induction does not
depend on resistance). The current, that will flow due to this, will be different in the two
parts. This will cause an acceleration of charge, leading to the setting up of an electric
field E which has opposite sign in the two parts. Thus,

%—-na£= rI and, %‘+JtaE= nri,

where & is the total induced e.m.f. From this,

E= n+ 1),

-1 .1 n-1
and E- 2na(n_1)”—_ 231:;11]+1E
But by Faraday’s lawE= & a*b

_1pn=1
80, E—2abn+1

Go to the rotating frame with an instantancous angular vélocity @ (¢). In this frame, a
Coriolis force, 2m Vox o )
acts which must be balanced by the magnetic force, e v'x B (f)

— e *
Thus, w()= --2-—';;3(!) .

(It is assumed that @ is small and varies slowly, so w’ and @ can be neglected.)
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3.312 The solenoid has an induétance,

3.313

3314

L=y n*nb?l
where » = number of turns of the solenoid per unit length. When the solenoid is connected

to the source an e.m.f. is set up, which, because of the inductance and resistance, rises
slowly, according to the equation,

RI+LiI=V

This has the well known solution,
v -tR/L
I=—(1- .
- ™)
Corresponding to this current, an e.m.f, is induced in the ring. Its magnetic field

B = y,nlin the solenoid, produces a force per unit lengih, i Bi= p.g ntwail/r

2 24,2

_ HoTa Vo(n? e R (] _gmiRL
r RL ’

acting on each segment of the ring. This force is zero initially and zero for large ¢ Its

maximum value is for some finite £ The maximum value of

2
e_,R/L (l_e-rR/L)= l_(l_e—tR/L) is _l_

472 4
S dF_,. ugnaz v? n? o a’ Vi
© & - 7  ARL arRIpZ

The amount of heat generated in the loop during a small time interval df,

dQ = §2/Rdt, but, E= “%_ 2at-arx,

2
(2at-at) dr

R
and hence, the amount of heat, generated in the loop during the time interval 0 to v

T
N (2at-axf _lazt3
Q“f R ¥ 37R
]

Take an elementary ring of radins r and width dr. dr

So, dQ@ =

The e.m.f. induced in this elementary ring is n r B.

Now the conductance of this ring is. D
1 hdr hrdr
d(R)’p2Jtr so di= 2p ﬁ ' b
Integrating we get the total current,

b
2 2
1=fhrdrﬁ_ hB (B - ad
2p 4p
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33185 Given L = uonz Ve u, n IOﬂ:Rz, where R is the radius of the solenoid.

L1
Molo® R’

Thus, n=

So, length of the wire required is,

.‘/4:”,1,10
l=nl2nR= = 0-10 km.

Hy

3316 From the previous problem, we know that,

I = length of the wire needed= V Lld=x , Where = length of solenoid here.
0

l!
Now, R = pg , (where S = area of crossection of the wire. Also m= p S /')
Thus, =83 R o poVER
Po PPo! PPo
where p, = resistivity of copper and p = its density.
Rm Ll

Equating, —_—=

quaing PPo Ho/AT
Oor, = ﬁ m R

’ 4nppgl

3.317 The current al lime ¢ is given by,

1= 51 -e7 ™)
. |4
The steady state value is, /= R

and T=1]=1

3.318 The time constant T is given by

= - _TD’
Po‘S‘

=

where, p, = resistivity, §, = length of the winding wire, § = cross section of the wire.
But me=lp, S
L _ mL
P ppoly
m/ply

So eliminating S,x =
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From problem 3.315 [; = 4 F;IL
0
(note the interchange of ! and [ because of difference in notation here.)
Thus, 1:=——Z:LT= Uy4m I=0-7ms,
pro——L! P Po
Ho

3.319 Between the cables, where a < r < b, the magnetic field I_{) satisfies

I
Hw2:cr=I or, H‘Pgi-;!—;
B f
So Bg= 2nr
r=b
. . . Ko f Bugl b
The associated flux per unit length is,® -f Ty~ I1xdr= 3 In p
r=a
. . o By b
Hence, the inductance per unit length L, = T 2— In m, where 1= 2

We get L, = 0:26 k‘;g

. . NI NI
3.320 Within the solenoid H 2 r = NI or Hm— T pr- Mg 5 —
a+b
UI‘
and the Dux,®= N®,, = N NI “f’
b
. it Ko a
Finally, L= r Nia (1+b]

3.321 Neglecting end effects the magnetic field B,
between the plates, which is mainly parallel

. I
to the plates, is B = p, 5

(For a derivation see 3.229 b)

Thus, the associated flux per unit length of the
plates is,

dP = uo%xhx1= (p.og-)xI

So,l; = inductance per unit length = uo% = 25 nH/m.
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o 1
2wy
flowing in opposite directions, in the two conductors,

(r > a). For the double line cable, witk current,

wo I
B,= --9——, between the cables, by superposition. The associated flux is,
o

d-a

I I
q,=f_u°_ drxl -u“—m a_ h1n 1 x I, per unit length
n r T a ki

Hence, L;= ?ln M

is the inductance per unit length.

In a superconductor there is no resistance, Hence,

drl dd
La=*a
So integratin, I ad na’B
graung, 3 I
because AD= D D, ;= na’B, &= 0
) dd 1,.,, 1na*B?
Also, the work done ls,A-fEIdt—fIdt - 2LI =371

2 N%s
In a solenoid, the inductance L = ppy,n” V= pp, 5

where S = area of cross section of the solenoid, [ = itslength, V = S/, N = nl = total number
of turns,

When the length of the solenoid is increased, for example, by pulling ii, its inductance
will decrease. If the current remains unchanged, the flux, linked to the solenoid, will also
decrease. An induced e.m.f. will then come into play, which by Lenz’s law will try to
oppose the decrease of flux, for example, by increasing the current. In the superconducting
state the flux will not change and so,

I
'[' = constant

=2, o I= Ioli= I, 1+m)
0

0

Hence,

s | oy
ey

The flux linked to the ring can not change on transition to the superconduction state, for
reasons, similar to that given above. Thus a current / must be induced in the ring, wherc,

I-lg-)-- na’B _ naB
== =

8a 8a
uoa(]n?-2) uu(ln—b——-z)
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3327

3.328

3.329

We write the equation of the circuit as,

L di
Ri+ ndr - E
for = 0. The current at £ = 0 just after inductance is changed, is
i=1 %! so that the flux through the inductance is unchanged.

We look for a solution of the above equation in the form
i= A+Be™"C

cting ¢ L :
Substituting C = nR JB=mn-1A 2

Thus, i= %(1+(’n—1)e'"m/‘r’)

Clearly, L d =R({-i)= E-RI

= E-Ri
So, ZLdt E i

This equation has the solution (as in 3.312)
,_E ~tR/2L

= -
'R @ )

The equations are,

diy  di Ly
L, dtszdt_E’ R +4) ; STTETTY
g

a . P = —m—
Then, ar (L1 L-L,i)=10 i L |
or, L,i -L,i,= constant S

. [
But initially at t= 0, i;= i, =0 bt ’
17 R . _._“__/W\A

so constant must be zero and at all times, £ R

Lii=1Li
In the final steady atate, current must ebviously be i +i,= % . Thus in steady state,

. EL‘Z nd E >~
“T KU+ ™ LT RE A1)

Wof
Here, B = —2_9:5—:- at a distance r from the wire. The flux through the frame is omained as,

a+!
! Ky
o= [ 2 - 2 (144 N
’ b
nus,Lu_%=%ln(l+5}) <[ —i =
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b

3.330 Here also, B= ——

3331

3.332

ol hdr .
2 4 P “O“an

N
Thus, Li,= E—:—o;— in g

The direct calculation of the flux &, is a rather complicated problem, since the configuration

of the field itself is complicated. However, the application of the reciprocity theorem
simplifies the solution of the problem. Indeed, let the same cument / flow through loop
2. Then the magnetic flux created by this current through loop 1 can be easily found.

{
Magnetic induction at the centre of the loop, : B = Pt

2b
i
So, flux throug loop 1, : &, = naz};_?)
and from reciprocity theorem,
2,
Mo ma’
Q2= Py, Py = BT 2

P
So, Li;= —igls %pﬂnaz/b

Let f); be the magnetic moment of the magnet M. Then the magnetic field due to this

3(p - pm
431: rs r3

The flux associated with this, when the magnet is along the axis at a distance x from the
cenire, 1is

magnet is,

3 -—b-—b
[(P d5= - b,

Ea

4Jl:

a

¥y 2npdp  MoPm(1 1
where, P, = 4anf 2 + p})*? T2 lx 2
0

X +

3
and 11 l-lopm f 22:'![!(215[!
(x |P) ,ﬂ )L

_uup,,.xztl 1 ] X
- - _

2 (x2 + 02)3/2

2
WP, a

o O T
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3.333

3.334

3.335

When the flux changes, an e.m.f. - N ek is induced and a current — NdD flows. The

dt R d
total charge g, flowing, as the magnet is removed to infinity from x = 0 is,
N N uﬂpm
9= g Pt=0-% "%
Np,

If a current I flows in one of the coils, the magnetic field at the cenire of the other coil
is,

i a’l [T af
2(+ay? 2177

The flux associated with the sccond coil is then approximately u,(,:l'ta4 2!’

4
By a

Hence, L= YE

dI
12 4t
the other loop. Then if the current in the other loop is [, we must have,

When the current in one of the loop is [, = at, an em.f. L = L,a,is induced in

df
Lz—d—tz+R12=L12a

This familiar equation has the soltution,
TR
Lo L, I .
I, = R l-e which is the required current

Initially, after a steady current is set up, the current is flowing as shown.

In steady condition iy, = §_’ o= 5. L

3 Fo ——m@m@\—-
When the switch is disconnected, the current .
through R, changes from i, to the right, to o
iy to the left. (The current in the inductance —)—V\/E/\/\,—a——-—«-—-—
cannot change suddenly.). We then have the 1 ¢
equation, A

di, _ 4
L —3;+(R+R0)12= 0. Sw |—-

° E : Ll

This equation has the solution i, = i,y e ®*+F*

The heat dissipated in the coil is,
Q=fi22Ra‘t= izzoRfe‘z"“Rﬂ”dr
[ 0

L LE
2(R+R) 2R(R+Ry)

= Ril x apJ
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3.33¢ To find the magnetic field energy we recall that the flux varies linearly with current. Thus,
when the flux is P for current i, we can write ¢ = A i. The total energy inclosed in the
field, when the current is I, is

W-fgid:-fN gd;gidr
I

-de@i-fNAidi- %NAIz- %—NCI)I
0

The characteristic factor %appcars in this way.

3.337 We apply circulation theorem,
H2nb= NI, o, H= NI/2nb.
Thus the total energy,

W= -lj-BH-znb-ztaZ- w2a? b BH.

Given N, I, b we know H, and can find out B from the B - H curve. Then W can be
calculated.

> -
3.338 Fromﬁ H-dr= NI,
Hond+Z b NI, (d>>b)

0

NI
nd + pb’

Since B is continuous across the gap, B is given by,

Also, B= pp,H. Thus H=

B=1pn llomTA_:_!;g, both in the magnetic and the gap.

2

B
——x8xb
(a) WEP_D = 2“0 = ]&
Wmag;uelic BZ x 5 x nd d
2 puy
= = NI SN’T
{b) TheﬂuxistB-dS=Nuu0 5= Uy )
wd + pb b+-—“—£
2
we SN
So, L= .
b+£€
7
Energy wise; total energy
2 NS
B (md s BT S Y
2ugl 1 2 b+£d~ 2
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The L, found in the one way, agrees with that, found in the other way. Note that, in
calculating the flux, we do not consider the field in the gap, since it is not linked to the
winding. But the total energy includes that of the gap.

3.339 When the cylinder with a linear charge density
A rotates with a circular frequency w, a sbrface
current density {charge / length x time) of

i= -h-l—)-is set u
T 2n p-

The direction of the surface current is normal

to the plane of paper at () and the contribution das

of this curreni to the magnetic field at P is l/

Ve

dB = %ﬂ—e;—F‘lds where € is  the Q
~» - -

direction of the current. In magnitude, dB ad8i 3

|ex r]=r, since e is normal to 7 and the Q

P 4

N -->
dBn

—
direction of dB is as shown.

It’s component, d 73; cancels out by cylindrical
symmetry. The component that survives is,

> Mo idS
IBJ.I_ 41 r2

where we have used M= dQ and fd Q = 4 x, the total solid angle around any

r

Mo i ,
cos0= 22 [ dQ = i,

point.
The magnetic field vanishes outside the cylinder by similar argument.
The total energy per unit length of the cylinder is,

2
1  2{Aw 2 Mo 2.2 2
L -2—;0-1,10 (—2:‘) XA Sna Aw

3340 wg= %EOE 2, for the clectric field,

wg = LBZ for the magnetic ficld.

Ug
1 .» 1 2
Th ——B?=
us, Tuy B 3 g, E”,
when E- 2 3 x 10° V/m
Vg ly
3.341 The electric field at P is,
ql

s 4n£0(a2+12)32
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3343

3344

3.345

389

To get the magnetic field, note that the rotating ring constitutes a current i = g ®/2 x, and
the corresponding magnetic field at P is,

noa’i

Bx—row e
f4 2(a2+12)3/2

2 2 i
Wg  gioE qx2
Thus, — = = g
Wy B ot (431780 Th aziJ

o1 (1)2 | / [ p
goMg [a w

M
or, —— = gy w?at/1?
We

The total energy of the magnetic field is,
L @ a1 [ B _
2 (B-H)dv 2 B (I*o jdV
1 — — 1 —_ =
- = B-BdV-—fJ-BdV.
2y 2
The sccond term can be interpreted as the energy of magnetization, and has the density

l—b—b

—.IB

(2) In serics, the current I flows through both coils, and the total e.m.f. induced. when
the current changes is,

dl ydi
“Ag e g
or, L= 2L
(b) In parallel, the current flowing through cither coil is, 5 and the e.m.f. induced is
1 dl
-L (2 d:)
Equating this. to -L’%t!-, we find L' = %L

We use L, = u(,nlz V.L,= u, n22V \
So L= pyn n,V=vL L,

The interaction energy is
1 J‘ - —» 2 1 J‘ - 2 1 f — 2
o B, +B)| dV- — B/ dV-— By} dv
20 J [P+ 2id |2 20 %
1 — —»
=—f81-82dV

Hcre if B is the magnetic ficld produced by the first of the current carrying loops and
Bz, that of the second one, then the magnetic field due to both the loops will be B, +B2
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3.346 We can think of the smaller coil as constituting a magnet of dipole moment,

3.7

3.348

3349

Pp= 2t 1
Iis direction is normal to the loop and makes an anglc 0 with the direction of the magnetic
field, due to the bigger loop. This magnetic field is,
Wy I,
By~ 042
2b
The interaction energy has the magnitude,

el d,
| W= o T4 cos B

Its sign depends on the sense of the currents.

{a) There is a radial outward conduction current. Let Q be the instantaneous charge on
the inner sphere, then,

: L aQ
Jxdmrte =T on i- 4JEr2 dt
D _d{ g »\ =
On the other hand ,}d = @t (4xr’2r) -
(b) At the given moment, E:- ______q___“;_‘
dme er
and by Ohmslaw,;_; E — 49 3
P dmezepr
Then, f:,___q__?;
4nausp
and § ;‘:;:dg:._ 9 deczose‘_ q .
e ep r €€ P

—» —
The surface integral must be -ve because j,, being opposite of j, is inward.

. —
Here also we sce that neglecting edge effects, j,; « — j. Thus Maxwell’s equations reduce
- — —» e

to,div B= 0, Cutl H= 0, B = puH
- - —

A general solution of this equation is B = constant = By - B, can be thought of as an
—_

extraneous magnetic field. If it is zero, B= 0.

Given f = I sin wi. We see that

= Pinwrm —jym -2
K "

or, D= —"'S cos of, so, E, = is the amplitude of the electric field and is
®

m
g8
TV/em
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3.350 The clectric ficld between the plates can be written as,

3.351

3352

vV, . v
E = ReTme'"', instead of jdﬂcos L,

This gives rise to a conduction current,
. o :
j.~0Es= ReEVme“”‘
and a displacement current,

Ja= %?—- Rceoeim—&”lei”'
The total current is,

jr= l/2\102+(1a e )’ cos (@£ + )
T 0

d

where, tanct = on taking the real part of the resultant.

g EW
The corresponding magnetic field is obtained by using circulation theorem,
H2nr=nr r

rV
_"'V02+(eoa o)’

ot, = H,_ cos (wr +a), where, H,_ = od

Inside the solenoid, there is a magnetic field,
B pyni sinot

Since this varies in time there is an associated electric field. This is obtained by using,

99 E’-d?‘-vifﬁ'-d?
dr
C 5

For r< R,anE-—fB-nrz, of, E= -1—;2-5
For r>R E= - 2—5-3
2r
The associated displacement current density is,
. oF - g B2
Ja= 805 = | _e,B RY2 r

The answer, given in the book, is dimensionally incorrect without the factor g,

In the non-relativistic limit.
E-—2 _7
dme r
(a) On a straight line coinciding with the charge path,
= > — —
~  OE_ g [-V 3rr] f . dr_
L I il B & “ar )
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3.353

3354

-

But in this case, = —v and vZx ¥, so, j,= _2_qi3
r 4nr
() In this case,r = 0, as, 7. v Thus,
jam =L
4 4nr
qx
We have, E =
) T 33373
£ 4mey(a +x2)
then Ja= DL 5 (@ - 20%)

ar - 0a T 45 (a® +x%)
This is maximum, when x= x = 0, and minimum at some other value. The maximum
displacement current density is

(jd)max = 4_;?‘1_3
To check this we calculate %i—d ;

-a-ii.. L[ (- ax (@ + ) - 5x (@ -24) ]

This vanishes for x= 0 and for x = v % a. The latter is easily shown to be a smalier
local minimum (negative maximumy).
We use Maxwell’s equations in the form,

when the conduction current vanishes at the site.
‘We know that,

i das y
“r
f ds- 4‘“30 rz

- _
4:lt80fd 43[80211:(1 cos 8),
where, 2x (1 — cos 0) is the solid angle, formed by the disc like surface, at the charge.

Thus, § B-dr=- Znaﬁ-%uoq-sinﬁ-ﬁ

On the other handx = g cot8
differentiating and using %’:—- -V,

v= acosec’ 06

Uy g v rsin O

Thus, B ——
4xr
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3.356

3.357

3.358

403

= Pog (VX 7)
This can be written as, B= —————
4nr
= g Vxr,
and H= (The sense has to be checked independently.)

an 2
(a) If B= B(s), then,

Curl E= -98 = 0.
dr

—
So, E cannot vanish.
. — —»
(b) Here also, curl £ = 0, so £ cannot be uniform.

(c) Suppose for instance, E=a Fll3)

—

where @ is spatially and temporally fixed vector. Then - 9B

s curl £ = 0. Generally

—_—

speaking this contradicts the other equation curl H=- %?— = 0 for in this case the left

hand side is time independent but RHS. depends on time. The only exception is when

. —
f (¢} is linear function. Then a uniform field E can be time dependent.
—»

. = 3D -
From the equation Curl H - ETI.
We get on taking divergence of both sides
d di B‘ avi
=5 div D=divy
- LT ap
But div D= p and hence div j + s 0

B
—  —
From VxE = - LA
of
we get on taking divergence
9 —
= ~—divB
- at

This is compatible with div B= 0

A rotating magnetic field can be represented by,
B, = Bycoswt;B,= Bysinwr and B, = B,
P

Then curl, E. - - i‘?—
at
—»
So, -(CurlE), = -wBysinwt= - wh,

- (CurlE'.)y = wBycoswt= wB, and - (Cur]f)z= 0
Hence, Curl E' = - Ei'xﬁ.,

—- —»
where, W= &30,
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3359

3.360

3.361

3.362

Consider a particle with charge e, moving with velocity ¥, in frame K. It experiences a
= —rp
force F= evx B
In the frame K', moving with velocity ¥, relative to K, the particle is at rest. This means
o .
that there must be an electric field £ in XK', so that the particle experinces & force,
— —. — I
F'm ¢gF'= F= evxB
Thus, E"' e F

Within the plate, there will appear a (% F ) force, which will cause charges inside the
plate to drift, until a countervailing electric ficld is set up. This electric field is related to
B, by E= eB, since v & B are mutually perpendicular, and £ is perpendicular to both.
The charge density + o, on the force of the plate, preducing this electric field, is given
by

E= sg or =g, vB = 0-40 pC/m>
0

Choose @ 11 F along the z-axis, and choose 7. as the cylindrical polar radius vector of
a reference point (perpendicular distance from the axis). This point has the velocity,

— —» —»
v=wxr,

and experiences a x E” ) force, which must be counterbalanced by an electric field,
= — = — TP —
E= —(@xr)xBm —(w-B)r.

There must appear a space charge density,

= - 3
p=ggdiv E= -2¢50 B = ~8pC/m

Since the cylinder, as a wholc is clectrically neutral, the surface of the cylinder must

acquire a positive charge of surface density,

_...'_’ 2
2gp(-Blma —
ag= +M—- aoa(?-B = +-2pC/m2
2na

In the reference frame XK', moving with the particle,
A A Ll
dme,r

— —
B = B-vxE /c*= Q.
Here, 175 = velocity of X', relative to the K frame, in which the particle has velocity v,

Clearly, v, = V. From the second equation,

— —. - —_
= yxE g VXr _l»llq(vxﬂ
B-'cz Eol"'"xtl:teo Y
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—
3.363 Supposc, there is only electric field E, in XK. Then in K', considering nonrelativistic velocity

—
= vx E

v, WE = B— -,
C —  —
So, E'-B=0
In the relativistic case,
Ey=E _, Bu'Bn' 0
E = EL 7 == vk E/c
L= L= =
Vi1-v/¢3 Vi
NOW, E B E’" n+E E’l = 0, Sincc

E' B =-E, -WxEVQ1-v/H= -E, - (GXE, )/ (1-§)= 0

Lo
3364 InK,Bw b5==L, b= constant.

X +y . A
In K, E'= vkB= bv xz:;;=bv§
The electric field is radial (r= x i+ yf )
3365 In KE = a’s L iey))
. BE_ BT
n i~ B o2

The magnetic lines are circular.
3.366 In the non relativistic limit, we ncg]ect v2/¢* and write,
- § _, } By B
E «sE +vxB [P =B —TXE/E
These two equations can be combined to give,
E=E+vxB, B=B-vxE/c
3367 Choose E in the direction of the 2—axis, E= (0, 0, E). The frame K’ is moving with velocity

v= (vsin o, 0, v cos o), in the x — z plane. Then in the frame XK',

.
E'y= EyBy=0
E =2 B2
—-> n o4 -vxE/¢c

E'.L - 1 =
V1-vé V1-v/¢?
The vector along v is €= (sin &, 0, cos ) and the perpendicular vector in the x — z plane
is, -

f= {-cos a, 0, sin at),
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g —» . s
(a) Thus using E= Ecosa e+ Esina f,
Esin o

E' = Ecosa and E'| = ———,
! N
2 2
So E-,E\/l_:ﬁ_@g_g and tana'-*mf—;
1-p V1-v/c
VX E/c

Vi-vi/e?

B = B E sin o

cV1- ﬂz
3.368 Choose 1_9’ in the z direction, and the velocity v= (vsin o, 0, v cos @) in the x -z plane,
then in the X' frame,

—
) By=0, B, =

Ey=E=0, | By=5
Fo- 2227 . 5
1 -v/e 1-v3/¢?

We find similarly, E' = cpBsina

2 2
B =B 1-8 co: % no = tan o
1-8 Vi-p?

—

3.369 (a) We see that, E-B-= Eﬂrgﬂl +E7L‘B',1_

. .I.+VX c
= Ly 5y + . Vv
C2
72 E,-B,-(vxB)- (FXE)/c*
I R 1 =¥
> v E B ~-G%B,) GXE, )/
N L L 1
= E-By+ 7
e
2
— — — — c
But, «B-CxD=A-CB-D-A-DB-C,
L2
-5
e e T e e — —»
80, E"B'=E"‘B"+EJ"B_L v2 =E-B
1_._.
62

o) £2-CB = Ef- B+ B - 87



407

— TF2
- B -B+ (El+?xB)2—c2(BJ_—v:2 ) ]
1-
c
-— T 1 -
=Eﬁ-cB 72 —czBi+(vaL)2—;2-(vxEl)2]
—c
2 2n? 2 v 2 22
=E"—CB" l’2[ B] --3|= E"-c" B,
1- —2 ¢
since, (TX,Z: 2 = vai

—

3.370 In this case, E-B=- 0, as the fields are mutually perpendicular. Also,
2

E B - -20x10° (;ﬂ‘ﬁ) is - ve.

Thus, we can find a frame, in which E' = 0, and

4 2
\/(:Jsr2 3V1 020\/1( 4x 10 J - 015 mT

x108x2x107*

3.371 Suppose the charge g moves in the positive direction of the x-axis of the frame K. Let
us go over to the moving frame K, at whose origin the charge is at rest. We take the
x and x’ axes of the two frames to be coincident, and the y & y' axes, to be parallel,

-~ 1 g7
In the K’ frame, £ = ——*—-,
4ne,
and this has the following components,
1 gx 1 g
E = I, E = 2
*odme, Y dmey o3

Now let us go back to the frame K. At the moment, when the origins of the two frames
coincide, we take ¢ = (), Then,

x= rcosB:x'Vl—-—-z-,ysrsinﬂzy
c
Also, .= £ E =E’/\f1—v2/c2

From these equations, rl= ul_l_ﬁ_ﬁ‘?_n_i)

E q 1 232{ % oA

£ st |
grl1-p)

dmeyr (1 - p°sin’ 0y



