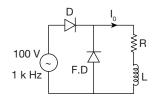
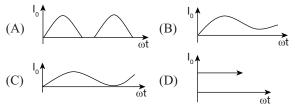
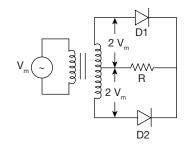
Power Electronics Test 3


Number of Questions: 35

Directions for questions 1 to 35: Select the correct alternative from the given choices.


1. In a electronic device having THD = 12% and out put wave form *V*, *I* lag by 30°. Then the power factor of system should be

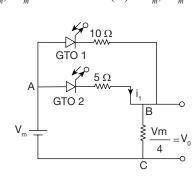
(A)	0.8598	(B)	0.1039
(C)	0.866	(D)	0.8722

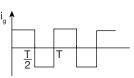

- **2.** Which one of the following suited for current controlled device
 - (A) MOSFET(B) BJT(C) TRIAC(D) SCR
- 3.

highly inductive load and operated at high frequency follow the wave form.

4.

 PIV across $D_1 \& D_2$ are

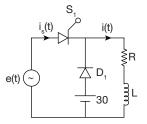

 (A) $4V_m, 4V_m$


 (B) $2V_m, 4V_m$

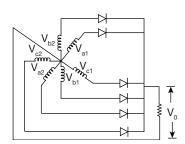
 (C) $4V_m, 2V_m$

 (D) $2V_m, 2V_m$

5.

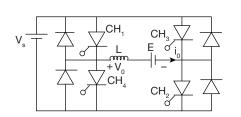


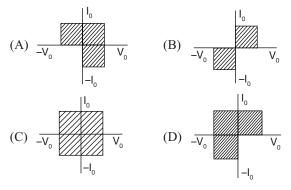
A fully current controlled GTOs are triggered using the gate signal pulse. What will be the value $i_{1:} V_0 = V_{average}$


6.

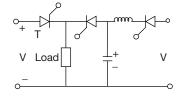
Select most suited condition

- (A) i(t) always present
- (B) $i_s(t)$ flows continuously
- (C) $i_s(t)$ flow when S_1 ON at e(t) > 30 V
- (D) (A) and (C) both potions.

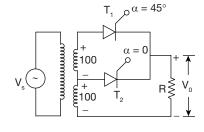

7.


Two set of supply having a, b, c sequence 50 Hz and electrical Angle of 60° phase difference. Then the output signal frequency should be

- (A) 50 Hz
- (B) 150 Hz
- (C) 300 Hz
- (D) 0
- A single phase diode bridge rectifier is fed from a 230 V, 50 Hz AC source, Then load is purely resistive. Then the output RMS value equal to
 - (A) 162.6 V
 - (B) 325.3 V
 - (C) 230 V
 - (D) 115 V

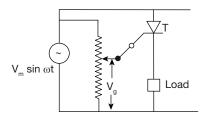

Section Marks: 90

A multi quadrant chopper satisfy one of the following condition


10. For external pulse commutation circuit as shown.

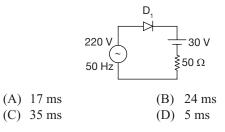
 $V_s = 100 \text{ V DC}$. What will be the minimum value of V_1 to commutate T_1 thyristor

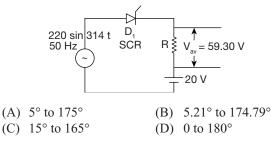
(B) 50 (A) 100 (C) 70.7 (D) 150


- 11. A thyristor switch has voltage rating of 700 V for each and 7 SCRs are connected in series for handling a voltage of 3800 V. The derating factor for this set of arrangement is
 - (A) 77.5%
 - (B) 45.78%
 - (C) 22.45%
 - (D) 23.12%
- 12. A multi voltage regulator circuit shown in figure.

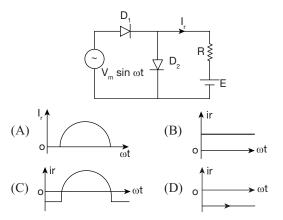
The average out put voltage will be

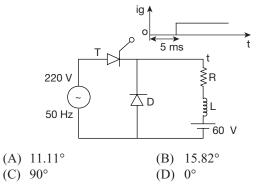
- (A) 166.87 V (B) 83.43 V
- (C) 127.3 V (D) 180 V


13.

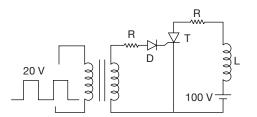

The triggering circuit as shown in figure the triggering angle can

(A)
$$0 - 180^{\circ}$$
 (B) $0 - 2\pi$
(C) $0 - \frac{\pi}{2}$ (D) $\frac{\pi}{4} - \frac{5\pi}{6}$


- 14. Which one of the following condition is exact for thyristor for continuous conduction mode
- 15. Generally inductor connected at the cathode end of SCR for __ protection
 - dV (A) dt di (B) dt
 - (C) over current
 - (D) over voltage
- 16. An uncontrolled switch connected as shown in figure. With standard 50H₂ frequency what will be the time taken by the switch to turn ON.


17. The circuit shown in figure produces an average output voltage of 59.30 V across the resistor. What will be the conduction Angle for SCR

18. Which among the following wave forms indicates the circuit current i_r when $V_m > E$

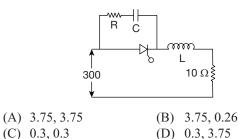


19. The circuit shown in figure is triggered using an external pulse. When will the SCR start conduction

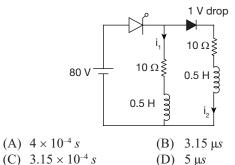
- **20.** A 12 pulse rectifier output generated with minimum and maximum value of ______
 - (A) $0, V_m$ (B) $0.96 V_m, V_m$ (C) $0.5 V_m, V_m$ (D) $0.916 V_m, V_m$

21.

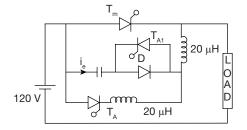
A 2 : 1 pulse transformer is used to trigger the SCR rated at 1.6 KV, 200 A. with $I_h = 150$ mA, $I_L = 200$ mA and $I_{g max} = 200$ mA, $I_{g min} = 100$ mA. The SCR connected to an inductive load where L = 100 mH in series with small resistance and the supply voltage is 100 V. Forward drops of diode and gate junction during ON state 1 volt each. Then the Resistance *R* for perfect ON would be


(A)	90 Ω	(B)	40Ω
(C)	50Ω	(D)	80Ω

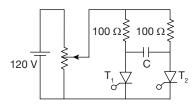
22. A thyristor protection circuit as shown with supply voltage of 300 V dc


$$\left(\frac{di}{dt}\right)_{\rm max} = 80 \,{\rm A}/\,\mu{\rm s}$$

 $\left(\frac{dv}{dt}\right)_{\text{max}} = 300 \text{ V/}\mu\text{s}$ for better protection the values of

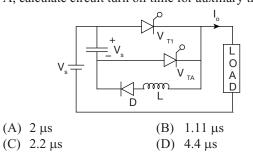

R, *L* respectively are

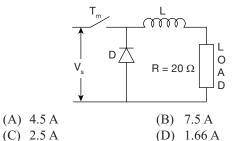
23. An SCR having turn on time of 5 μ s, latching current of 100 mA and holding current of 38 mA is triggered by a short duration pulse. What will be the minimum width, triggering pulse would require for successful turn ON of SCR


24. A commutation circuit shown in figure.

What will be the maximum possible value of current through auxiliary thyristor

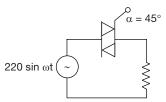
$$T_{A} \text{ when } C = 0.3 \ \mu\text{F} \ L = 20 \ \mu\text{H}$$
(A) 15 A (B) 46.47 A
(C) 309 A (D) 14.69 A


25.


A voltage commutation circuit shown in figure. If turn off time of SCR is 10 μ s and safety margin of 1.5. What will be the minimum value of capacitor required for commutation.

(A)
$$0.14 \,\mu\text{F}$$
 (B) $0.2166 \,\mu\text{F}$

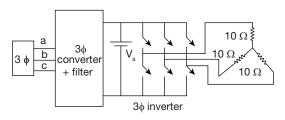
- (C) $0.15 \,\mu\text{F}$ (D) $0.10 \,\mu\text{F}$
- **26.** In a class *D* commutation as, shown in figure. $L = 1 \mu H \& C = 2 \mu F$. For a constant load current of 100 A, calculate circuit turn off time for auxiliary thyristor


27. A step down chopper as shown in figure with 150 dc input. The duty ratio of main thyristor T_m is 0.6 and $L >> 20 \Omega$ then the average current through 20 Ω resistance.

28. A ideal chopper feeds to a load as shown in figure. Switch S_1 operated at 100 KHz with duty ratio of 0.3 the peak to peak source ripple current in amps is (A) 40 A (B) 4 A

(C) 1.2 A (D) 2.4 A

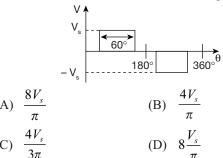
29. A triac based voltage converter connected as shown in the figure

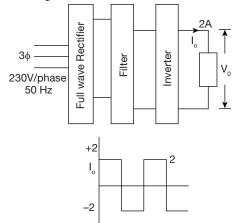


Operated at $\alpha = 45^{\circ}$ what will be the mean power across

the load per cycle $\left(\frac{V_{av}^{2}}{R}\right)$ (A) 1429.1 W (B) $\frac{1429.1}{R}$ W

(C)
$$\frac{57.6}{R}$$
 KW (D) 57.6 KW


30. In a 3 ϕ converter and inverter circuit as shown in figure $V_s = 400 \text{ V}$


If all the devices are ideal; power taken from the source at 180° conduction mode. Then the power drawn from the supply will be

(A)	3.56 KW	(B)	5.33 KW
(C)	10.67 KW	(D)	16 KW

31. In a single pulse modulation as shown what will be the maximum value of dominant harmonic signal

Linked Answer Questions 32 and 33:

32. The output average voltage delivered by 3ϕ full wave rectifier of $230 V_{phase}$, 50 Hz in a converter inverter system of power supply will be

(A) 180 V	(B)	269 V
(C) 538 V	(D)	380 V

	(\mathbf{C})	55	•			(D)	
-	****						

33. What will be the load power
(A) 761 W
(B) 1076 W
(C) 360 W
(D) 538 W

Common data Question 34 and 35:

A inverter has output equation

$$\sum_{n=1,3,5}^{\infty} \frac{100}{n\pi} \sin \frac{n\pi}{2} \sin nd \sin n\omega t$$

at $d = 60^\circ$, single pulse modulation

3.164 | Power Electronics Test 3

34. What will	be the rms out put volt	age	35. Find which frequency eliminated by pulse width mod-				
(A) 20.4 V	V (B)	40.8 V	ulation				
(C) 81 V	(D)	25 V	(A) 3 rd	(B)	5 th		
			(C) 7 th	(D)	9 th		

	Answer Keys								
1. A	2. B	3. D	4. A	5. B	6. D	7. C	8. C	9. C	10. B
11. C	12. B	13. C	14. C	15. B	16. A	17. C	18. D	19. C	20. B
21. B	22. A	23. C	24. D	25. B	26. C	27. A	28. C	29. B	30. C
31 C	32 C	33 B	34 A	35 A					

HINTS AND EXPLANATIONS

1. Power factor =
$$\frac{\cos \theta}{\sqrt{1 + THD^2}} = \frac{\cos 30^\circ}{\sqrt{1 + 0.12^2}} = 0.8598.$$

Choice (A)

2. BJTcan easily turn on and turn off using base current.

Choice (B)

Choice (D)

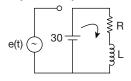
Choice (A)

3. When *L* >> *R* and operated at high frequency the inductor output wave form will be ripple free because inductor makes current continuous.

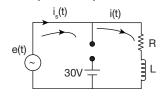
$$\begin{split} & \int_{I_{\min}}^{I_{\max}} di = \int_{0}^{\frac{1}{2}} \frac{V}{L} dt \\ & I_{\max} - I_{\min} = \frac{V}{L} \times \frac{T}{2} \\ & T = \frac{1}{1 \times 10^{3}} = 1 \times 10^{-3} \\ & I_{\max} - I_{\min} = \left(\frac{V}{L}\right) \times 0.5 \times 10^{-3} \cong 0. \end{split}$$

No ripple - means pure dc o/p

4.

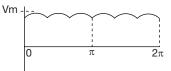

+ 2Vm -2Vm -D₂

In first half cycle D_1 closed D_2 opened voltage across D_2 is 2 $V_m + 2V_m$ PIV = $4V_m$ another half cycle


voltage across $D_1 = 2V_m + 2V_m$ PIV = 4 V_m .

5. i.e.
$$V_{AC} = \frac{V_m}{2}$$
 (:: GTO n on position).
 $V_{AB} = \frac{V_m}{2} - \frac{V_m}{4} = \frac{V_m}{4}$
 $i_1 = \frac{\left(\frac{V_m}{4}\right)}{5} = \frac{V_m}{20}A$. Choice (B)

6. When $e(t) < 30V S_1 \text{ OFF } D_1 \text{ ON}$



when
$$e(t) > 30VD_1$$
 OFF S_1 ON

Choice (D)

7. The output wave form will be like

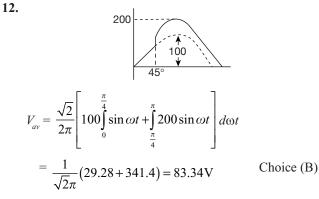
every 2π having 6 pulses i.e., output frequency = 6×50 Hz = 300 Hz.

Choice (C)

8.

$$Vm = \sqrt{\frac{1}{\pi} \int_{0}^{\pi} V_{m}^{2} \sin^{2} \omega t \ d\omega t}$$
$$= \frac{V_{m}}{\sqrt{2}} = \frac{230 \times \sqrt{2}}{\sqrt{2}} = 230V.$$

Choice (C)


- 9. This can be operate in all the 4 quadrants. Choice (C) | 17. The SCR ON at 220 $\sin \omega t > 20$
- 10. For commutate T_1 thyristor voltage across the capacitor will be same as supply voltage

i.e,
$$V_s = V_c$$

The maximum value of V_c can
 $V_c = V_1(1 - \cos \omega_0 t)$
 $\omega_0 = \frac{1}{\sqrt{LC}}$
 $V_{C_{\text{max}}} = 2V_1$
 $V_s = 2V_1 = 100$
 $V_1 = \frac{100}{2} = 50$ Choice (B)

Voltage rating of string **11.** String efficiency = Voltage rating of SCR \times N

$$N = 7 V_{\text{string}} = 3800$$
$$V_{\text{SCR}} = 700$$
$$\eta = \frac{3800}{7 \times 700} = 0.775$$

Derating factor $DRF = 1 - \eta$ = 1 - 0.775 = 22.45%. Choice (C)

13. Supply source is ac

Firing angle can be achieved only from 0 - 90°.

16.
$$V_{\rm rms} = 220V$$

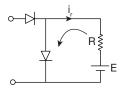
$$f = 50$$

Diode ON, when $\sqrt{2} \times 220 \sin \omega t > 30$

$$\omega t > \sin^{-1} \left(\frac{30}{220 \times \sqrt{2}} \right)$$

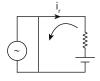
$$t = \frac{5.53}{2\pi \times 50} = 17 \,{\rm ms} \ .$$
 Choice (A)

$$\omega t = \sin^{-1} \left(\frac{20}{220} \right) = 5.2159$$


So SCR trigger only after $5.2159^\circ \rightarrow (5.2159^\circ \text{ to } 180^\circ)$ triggering angle take as α .

i.e.,
$$V_{av} = \frac{1}{2\pi} \int_{a}^{\pi} (220 \sin \omega t - 20) d\omega t$$

 $\frac{1}{2\pi} [220 \times 2 \cos a - 20] [\pi - 2a] = 59.3$


by solving $\alpha = 0.2625$ radian = 15°.04 α to $(180 - \alpha)$ i.e., 15° to 165°

18. Mode I (0 -180°)

 $V_m \operatorname{sin \omega t} < E$

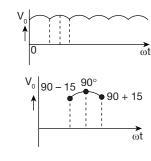
Mode II (0 – 180°) $V_m \sin \omega t > E$ then $D_1 \& D_2$ short circuited

Mode III (180 - 360°) D_1 reverse bias as Mode 1

Choice (D)

Choice (C)

19. Condition for SCR ON. Forward bias and triggering should apply


SCR forward bias at

$$\omega t = \sin^{-1} \left(\frac{60}{220 \times \sqrt{2}} \right) = 11.11^{\circ}$$

Here triggering pulse given at t = 5 ms i.e., $\omega t = \theta = 2\pi \times 50 \times 5 \times 10^{-3}$

20.

Choice (C)

$$V_{\min} = V_m \sin(90 - 15) = 0.9659 V_m$$

$$V_{\max} = V_m \sin 90 = V_m.$$

Choice (B)

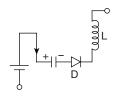
21.

For perfect ON selected I_{gmax} 200 mA voltage across the resistance $V_R = 8V$ = 10 - diode drop - junction drop $R_{\text{min}} = \frac{V_R}{i_{g\text{max}}} = \frac{8}{200 \text{mA}} = 40 \Omega$

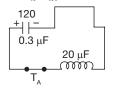
$$R_{\max} = \frac{V_R}{i_{g\min}} = \frac{8}{100 \text{mA}} 80\Omega.$$
 Choice (B)

22.
$$\left(\frac{di}{dt}\right)_{\max} = \frac{V}{L}$$

 $\left(\frac{300}{80}\right) = L = 3.75 \text{ Henry}$
 $R = \frac{L}{V} \left(\frac{dV}{dt}\right)_{\max} = \frac{L}{V} \left(\frac{dV}{dt}\right)_{\max}$
 $= \frac{3.75}{300} \times 300 = 3.75 \Omega$ Choice (A)


23. For successful turn ON $i_1 + i_2 \ge 100 \text{ mA}$ $i_1 = \frac{80}{10} \left(1 - e^{\frac{-10t}{0.5}} \right)$ $i_2 = \frac{80 - 1}{10} \left(1 - e^{\frac{-10t}{0.5}} \right)$

$$I = i_1 + i_2 = (8 + 7.9) (1 - e^{-20t}) = 100 \text{ mA}$$


$$1 - e^{-20t} = 6.30 \mu$$

$$t = 3.15 \times 10^{-4} \text{ s.}$$
 Choice (C)

24.

The maximum value of capacitor voltage is $V_c = 120$ V after long time when T_A , T_{A1} is ON

Then the maximum value of current $I_{c \max}$

$$I_c = V \sqrt{\frac{C}{L}} \sin \omega t$$

$$I_{c \max} = V \sqrt{\frac{C}{L}} = 120 \sqrt{\frac{0.3}{20}}$$

= 14.69 A. Choice (D)
25. The circuit turn off time for thyristors are

$$t_{c1} = R_1 C \ln 2$$

$$t_{c2} = R_2 C \ln 2$$

$$t_{c1} = t_{c2}$$

$$R_1 = R_2$$

safety margin = 1.5
for safe turn off

$$R_1 c \ln 2 = 1.5 t_{c1}$$

$$t_{c1} = 10 \ \mu \text{ sec}$$

$$c = \frac{(1.5 t_{c1})}{(R_1 \ln 2)} = 2.16 \times 10^{-7} \text{F}$$
Choice (B)

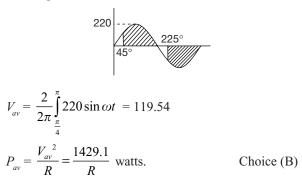
26. In class D commutation turn off time for auxillary thyristor is $t_{c1} = \frac{\pi}{2\omega_0}$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$t_{c1} = 2.221 \,\mu s$$
 Choice (C)

- 27. For step down chopper output average voltage, $V_0 = \alpha V_{\text{Supply}}$ $V_0 = 0.6 \times 150 = 90$ current, $I_0 = \frac{90}{20} = 4.5 \text{A}$. Choice (A)
- **28.** The source ripple depend on inductance. The voltage across the inductor is due to ripple.

When
$$S_1$$
 closed and open $V_s = L \frac{di}{dt}$

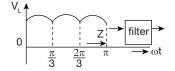

$$\int_{\min}^{\max} di = \frac{V_s}{L} \int_0^{T_{ON}} dt$$

$$I_{\max} - I_{\min} = \frac{V_s}{L} T_{ON}$$

$$= \frac{20}{50\mu} \times \frac{0.3}{100K}$$

$$= 1.2A$$
Choice (C)

29. The output wave form of converter starts from 45°



Power Electronics Test 3 | 3.167

The 3rd harmonic content is dominant having maximum A T 7

value
$$V_0 = \frac{4V_s}{3\pi}$$
. Choice (C)

32. full wave rectifier output will be

and then goes through filter which gives DC value equal to average value of

$$\Rightarrow \frac{3}{\pi} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \sqrt{3} \times 230 \times \sqrt{2} \sin \omega t \, d\omega t$$
$$V_0 = 537.99 \text{ Volt.}$$

33. Consider lossless convertion, Power = $V_0 I_0$ $P_{\text{average}} = 538 \times 2 = 1076$ Watts. Choice (B) $\begin{bmatrix} V^2 \times 2d \end{bmatrix}^{\frac{1}{2}}$

34. (a)
$$V_{rms} = \left[\frac{V_s^* \times 2d}{\pi}\right]^2$$

 $\frac{100}{n\pi} = \frac{4V_s}{n\pi}; V_s = 25 \text{ V}$
 $V_{rms} = 20.41.$ Choice (A)
35. $\sin nd = 0$
 $\operatorname{at} nd = \pi$
 $n = \frac{\pi}{d} = \frac{180^\circ}{60} = 3$
 3^{rd} harmonic is eliminated. Choice (A)

30.

30.

$$V_{\text{Line}} = \frac{1}{\sqrt{3}}$$

$$V_{\text{phase}} = \frac{V_{\text{Line}}}{\sqrt{3}}$$

$$V_{\text{phase}_{\text{rms}}} = \frac{1}{\sqrt{3}} \left[\frac{1}{\pi} \int_{0}^{\frac{2\pi}{3}} V_{s}^{2} d\omega t \right]^{\frac{1}{2}}$$

$$= \frac{1}{\sqrt{3}} \left[400^{2} \times \frac{2\pi}{3} \times \frac{1}{\pi} \right]^{\frac{1}{2}} = 188.561 \text{V}$$
per phase power $= \frac{V^{2}}{R} = \frac{188.561^{2}}{10}$

$$= 3555.55 \text{ W}$$
Total power $= 3 \times 3555.55$

$$= 10.67 \text{ KW}$$
Choice (C)
31. Output voltage signal

$$V_0 = \sum_{n=1,3,5}^{\infty} \frac{4V_s}{n\pi} \sin \frac{n\pi}{2} \sin nd \sin n\omega t$$

$$2d = 60^{\circ}$$

$$d = \frac{60^{\circ}}{2} = 30^{\circ}$$

$$V_0 = \frac{4V_s}{\pi} \left[\sin 30^{\circ} \sin \omega t - \frac{\sin 3\omega t}{3} + \frac{4}{2} \frac{\sin 5\omega t}{5} + \dots \right]$$