
Introduction to Three Dimensional Geometry

• Three-dimensions coordinate planes

- The coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called *x*, *y*, and *z*-axes.
- The three planes determined by the pair of axes are the coordinate planes, called XY, YZ and ZX-planes.
- The three coordinate planes divide the space into eight parts known as octants.
- In three-dimensional geometry, the coordinates of a point P are always written in the form of triplets i.e., (x, y, z). Here, x, y, and z are the distances from the YZ, ZX and XY-planes. Also, the coordinates of the origin are (0, 0, 0).

• The sign of the coordinates of a point determine the octant in which the point lies. The following table shows the signs of the coordinates in the eight octants.

Octants →	Ι	II	III	IV	V	VI	VII	VIII
Coordinates 4	+	_	_	+	+	_	_	+
y	+	+			+	+		_
Z	+	+	+	+	_	_	_	_

Example: The point (-5, 6, -7) lies in the VI octant.

- In Coordinates of points lying on different axes:
 - Any point on the *x*-axis is of the form (x, 0, 0)
 - Any point on the y-axis is of the form (0, y, 0)
 - Any point on the z-axis is of the form (0, 0, z)

- Coordinates of points lying in different planes:
 - Coordinates of a point in the YZ-plane are of the form (0, y, z)
 - Coordinates of a point in the XY-plane are of the form (x, y, 0)
 - Coordinates of a point in the ZX-plane are of the form (x, 0, z)

Example: The points (-5, 6, 0), (0, -5, 6), (-5, 0, 6) lies in the XY-plane, YZ-plane and ZX-plane respectively.

• distance formula

Distance between two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example: Find the point(s), lying on the *z*-axis, whose distance from point (2, -1, 3) is 3 units. **Solution:** Let the required point be (0, 0, z).

We know that the distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1) + (z_2 - z_1)^2}$

Therefore, $\sqrt{(2-0)^2 + (-1-0)^2 + (3-z)^2} = 3$ On squaring both the sides, we get $4+1+9+z^2-6z=9$ $\Rightarrow z^2-6z+5=0$ $\Rightarrow z^2-5z-z+5=0$ $\Rightarrow z(z-5)-1(z-5)=0$ $\Rightarrow z=1, 5$

Thus, the required points on the *z*-axis are (0, 0, 1) and (0, 0, 5).